Free LATEX
BÀI TẬP TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt√bên (S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
3
3
3
3
a 3
8a 3
8a 3
4a 3
A.
.
B.
.
C.
.
D.
.
9
9
3
9
Câu 2. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. Vô nghiệm.
C. 2.
D. 1.
Câu 3. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 9.
B. 7.
C. 5.
D. 0.
Câu 4. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 4 mặt.
C. 9 mặt.
D. 6 mặt.
log7 16
bằng
Câu 5. [1-c] Giá trị của biểu thức
log7 15 − log7 15
30
A. 4.
B. −4.
C. 2.
D. −2.
x−2
Câu 6. Tính lim
x→+∞ x + 3
2
D. −3.
A. 2.
B. 1.
C. − .
3
Câu 7. Giá √
trị cực đại của hàm số y =√x3 − 3x2 − 3x + 2
√
√
A. −3 + 4 2.
B. −3 − 4 2.
C. 3 − 4 2.
D. 3 + 4 2.
x
x−3 x−2 x−1
+
+
+
và y = |x + 2| − x − m (m là tham
Câu 8. [4-1213d] Cho hai hàm số y =
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [2; +∞).
B. (−∞; 2).
C. (2; +∞).
D. (−∞; 2].
Câu 9. Hàm số y =
A. x = 0.
x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 1.
C. x = 3.
D. x = 2.
Câu 10. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 20 mặt đều.
C. Khối tứ diện đều.
D. Khối 12 mặt đều.
un
Câu 11. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. +∞.
B. 1.
C. −∞.
D. 0.
Câu 12. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều đúng.
B. Cả hai đều sai.
C. Chỉ có (II) đúng.
D. Chỉ có (I) đúng.
Câu 13. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Trang 1/10 Mã đề 1
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 216 triệu.
B. 212 triệu.
C. 220 triệu.
D. 210 triệu.
Câu 14. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 4 lần.
B. Tăng gấp 6 lần.
C. Tăng gấp 8 lần.
D. Tăng gấp đôi.
Câu 15. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 10 năm.
B. 8 năm.
C. 7 năm.
D. 9 năm.
mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 16. Tìm m để hàm số y =
x+m
A. 45.
B. 26.
C. 34.
D. 67.
Câu 17. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là −4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là 3, phần ảo là −4.
D. Phần thực là −3, phần ảo là 4.
Câu 18. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình chóp.
B. Hình lăng trụ.
C. Hình tam giác.
D. Hình lập phương.
Câu 19. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Thập nhị diện đều. B. Bát diện đều.
C. Tứ diện đều.
D. Nhị thập diện đều.
Câu 20. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 2).
B. Hàm số đồng biến trên khoảng (0; 2).
C. Hàm số đồng biến trên khoảng (0; +∞).
D. Hàm số nghịch biến trên khoảng (−∞; 2).
Câu 21. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
!
1
C. Hàm số nghịch biến trên khoảng ; 1 .
3
!
1
B. Hàm số nghịch biến trên khoảng −∞; .
! 3
1
D. Hàm số đồng biến trên khoảng ; 1 .
3
Câu 22. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
B. Hàm số nghịch biến trên khoảng (−2; 1).
C. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 23. Khối chóp ngũ giác có số cạnh là
A. 11 cạnh.
B. 10 cạnh.
C. 9 cạnh.
D. 12 cạnh.
π π
Câu 24. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 3.
B. −1.
C. 1.
D. 7.
Câu 25. [4-1246d] Trong tất cả√các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất của |z|
A. 1.
B. 5.
C. 3.
D. 2.
5
Câu 26. Tính lim
n+3
A. 2.
B. 1.
C. 0.
D. 3.
Câu 27. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −3.
B. m = −2.
C. m = −1.
D. m = 0.
Trang 2/10 Mã đề 1
Câu 28. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm hình chóp tam giác đều, khơng có tứ diện đều.
B. Năm tứ diện đều.
C. Một tứ diện đều và bốn hình chóp tam giác đều.
D. Bốn tứ diện đều và một hình chóp tam giác đều.
Z 1
6
2
3
. Tính
f (x)dx.
Câu 29. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
0
3x + 1
A. 4.
B. −1.
C. 2.
D. 6.
Câu 30. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất của hàm số. Khi đó tổng
√
√M + m
√
A. 16.
B. 8 3.
C. 7 3.
D. 8 2.
Câu 31. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng
√
√
√
a 2
a 2
B.
A. 2a 2.
.
C.
.
D. a 2.
2
4
!
3n + 2
2
Câu 32. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 5.
B. 4.
C. 2.
D. 3.
Câu 33. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
6
15
18
9
1
Câu 34. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; +∞).
B. (−∞; 3).
C. (1; 3).
D. (−∞; 1) và (3; +∞).
Câu 35. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 3.
B. 4.
C. 1.
D. 2.
Câu 36. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 = 2 x . ln x.
B. y0 =
.
C. y0 = x
.
D. y0 = 2 x . ln 2.
ln 2
2 . ln x
0 0 0 0
0
Câu 37.√ [2] Cho hình lâp phương
√ bằng
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
a 6
a 3
a 6
a 6
A.
.
B.
.
C.
.
D.
.
2
2
3
7
Câu 38. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
1
ab
ab
A. √
.
B. √
.
C. √
.
D. 2
.
a + b2
2 a2 + b2
a2 + b2
a2 + b2
Trang 3/10 Mã đề 1
Câu 39. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 22 triệu đồng.
B. 2, 20 triệu đồng.
C. 3, 03 triệu đồng.
D. 2, 25 triệu đồng.
Câu 40. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (2; 4; 4).
C. (2; 4; 6).
D. (1; 3; 2).
!2x−1
!2−x
3
3
≤
là
Câu 41. Tập các số x thỏa mãn
5
5
A. (−∞; 1].
B. [1; +∞).
C. (+∞; −∞).
D. [3; +∞).
[ = 60◦ , S O
Câu 42. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S BC) bằng
√
√
2a 57
a 57
a 57
A.
.
B.
.
C. a 57.
D.
.
19
17
19
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 43. Cho hình chóp S .ABC có BAC
Thể tích khối chóp S .ABC là
√
√
√
√
a3 2
a3 3
a3 3
2
B.
.
C.
.
D.
.
A. 2a 2.
24
12
24
Câu 44. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un
= +∞.
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
vn
!
un
B. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
v
n
!
un
C. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
D. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
Câu 45. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45√◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là
10a3 3
.
B. 20a3 .
C. 10a3 .
D. 40a3 .
A.
3
Câu 46. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
C. Số cạnh của khối chóp bằng số mặt của khối chóp.
D. Số đỉnh của khối chóp bằng số mặt của khối chóp.
Câu 47. Khối đa diện đều loại {3; 5} có số mặt
A. 12.
B. 8.
C. 20.
D. 30.
Câu 48. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
6
36
24
Trang 4/10 Mã đề 1
Câu 49. Phát biểu nào sau đây là sai?
A. lim un = c (un = c là hằng số).
C. lim qn = 0 (|q| > 1).
√
x2 + 3x + 5
x→−∞
4x − 1
B. 0.
1
= 0.
n
1
D. lim k = 0.
n
B. lim
Câu 50. Tính giới hạn lim
A. 1.
C.
1
D. − .
4
1
.
4
√
Câu 51. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√
√
√ tích khối chóp S .ABC3 √
3
a 2
a3 6
a3 6
a 6
.
B.
.
C.
.
D.
.
A.
18
6
36
6
Câu 52. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n2 lần.
C. n3 lần.
D. 2n3 lần.
x+1
Câu 53. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
C. .
D. .
A. 1.
B. .
6
2
3
3
x −1
Câu 54. Tính lim
x→1 x − 1
A. 3.
B. +∞.
C. 0.
D. −∞.
Z 1
Câu 55. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0
1
1
A. .
B. 0.
C. 1.
D. .
4
2
Câu 56. Dãy số
!n nào có giới hạn bằng3 0?
!n
6
n − 3n
−2
.
B. un =
.
C. un =
.
D. un = n2 − 4n.
A. un =
3
n+1
5
x−1
Câu 57. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
AB có độ dài bằng
√
√ đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng √
B. 2.
C. 6.
D. 2 2.
A. 2 3.
Câu 58. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là 4.
B. Phần thực là 4, phần ảo là 1.
C. Phần thực là 4, phần ảo là −1.
D. Phần thực là −1, phần ảo là −4.
Câu 59. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 7 mặt.
B. 9 mặt.
C. 6 mặt.
D. 8 mặt.
Câu 60. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; 8).
B. A(−4; 8).
C. A(4; −8).
D. A(−4; −8)(.
Câu 61. Mệnh đề nào sau đây sai?
Z
A. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z
B.
f (x)dx = f (x).
f (x)dx = F(x) + C.
C. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
D. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
Trang 5/10 Mã đề 1
!
!
!
4x
1
2
2016
Câu 62. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
.
B. T = 2016.
C. T = 1008.
D. T = 2017.
A. T =
2017
Câu 63. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 6.
C. 12.
D. 10.
Câu 64. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 50, 7 triệu đồng.
B. 3, 5 triệu đồng.
C. 70, 128 triệu đồng. D. 20, 128 triệu đồng.
x−2 x−1
x
x+1
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3].
B. [−3; +∞).
C. (−3; +∞).
D. (−∞; −3).
Câu 65. [4-1212d] Cho hai hàm số y =
d = 60◦ . Đường chéo
Câu 66. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
√
4a3 6
a3 6
2a3 6
3
.
B. a 6.
C.
.
D.
.
A.
3
3
3
Câu 67. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là
√
√
√
3
2a3 3
a3 3
4a3 3
5a 3
.
B.
.
C.
.
D.
.
A.
3
3
2
3
Câu 68. Cho z là√nghiệm của phương trình x2 + x + 1 = 0. Tính P = z4 + 2z3 − z
√
−1 − i 3
−1 + i 3
A. P =
.
B. P = 2.
C. P = 2i.
D. P =
.
2
2
Câu 69. [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
√ min |z − 1 − i|.
A. 2.
B. 10.
C. 1.
D. 2.
Câu 70. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 3
a3 5
a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
12
6
12
4
Câu 71. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng
√
√
√
a 6
a 6
a 6
A.
.
B.
.
C.
.
D. a 6.
3
2
6
Câu 72. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 72cm3 .
B. 27cm3 .
C. 64cm3 .
D. 46cm3 .
Câu 73. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [1; 2].
B. [−1; 2).
C. (1; 2).
D. (−∞; +∞).
Câu 74. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 2.
D. 4.
C. 3.
Trang 6/10 Mã đề 1
Câu 75. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
100.1, 03
120.(1, 12)3
triệu.
B. m =
triệu.
A. m =
3
(1, 12) − 1
3
(1, 01)3
100.(1, 01)3
C. m =
triệu.
D.
m
=
triệu.
(1, 01)3 − 1
3
Câu 76. Dãy số nào sau đây có giới hạn khác 0?
n+1
1
sin n
.
C.
.
A. √ .
B.
n
n
n
Z 2
ln(x + 1)
Câu 77. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 0.
B. −3.
C. 3.
!
1
1
1
Câu 78. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. .
B. 0.
C. 1.
2
2n − 3
Câu 79. Tính lim 2
bằng
2n + 3n + 1
A. +∞.
B. 0.
C. 1.
D.
1
.
n
D. 1.
D. 2.
D. −∞.
Câu 80. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 10 năm.
C. 12 năm.
D. 14 năm.
2
Câu 81. [2]√Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2
A. m = ± 2.
B. m = ±3.
C. m = ± 3.
D. m = ±1.
Câu 82. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
C. f (x) liên tục trên K.
B. f (x) có giá trị lớn nhất trên K.
D. f (x) xác định trên K.
x2
trên đoạn [−1; 1]. Khi đó
ex
1
C. M = e, m = .
D. M = e, m = 1.
e
Câu 83. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y =
A. M = e, m = 0.
1
B. M = , m = 0.
e
Câu 84. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là√
√
a3
a3
4a3 3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
6
3
3
Câu 85. Khối đa diện đều loại {5; 3} có số cạnh
A. 30.
B. 8.
C. 12.
D. 20.
Câu 86. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Trang 7/10 Mã đề 1
Câu 87. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
5a
a
2a
8a
.
B.
.
C. .
D.
.
A.
9
9
9
9
1 − n2
Câu 88. [1] Tính lim 2
bằng?
2n + 1
1
1
1
A. .
B. 0.
C. − .
D. .
2
2
3
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
Câu 89. [3-1132d] Cho dãy số (un ) với un =
n2 + 1
1
B. lim un = 0.
A. lim un = .
2
C. lim un = 1.
D. Dãy số un khơng có giới hạn khi n → +∞.
Câu 90. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.
√
√
√
√
5 13
.
C. 2 13.
A. 2.
B.
D. 26.
13
Câu 91. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
C. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 92. [1] Đạo hàm của làm số y = log x là
1
1
1
ln 10
.
B. y0 =
.
C. y0 = .
D.
.
A. y0 =
x
x ln 10
x
10 ln x
1
Câu 93. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2) ∪ (−1; +∞). B. (−∞; −2] ∪ [−1; +∞). C. −2 ≤ m ≤ −1.
D. −2 < m < −1.
Câu 94. Khối lập phương thuộc loại
A. {4; 3}.
B. {5; 3}.
C. {3; 3}.
D. {3; 4}.
Câu 95. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng
√
√
√
c a2 + b2
b a2 + c2
a b2 + c2
abc b2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 96. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng
√
√
√
√
a 2
a 2
A. a 3.
B.
.
C. a 2.
D.
.
2
3
Câu 97. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 5 mặt. C. 6 đỉnh, 9 cạnh, 6 mặt. D. 5 đỉnh, 9 cạnh, 6 mặt.
cos n + sin n
Câu 98. Tính lim
n2 + 1
A. 0.
B. 1.
C. +∞.
D. −∞.
Câu 99. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 12.
B. 27.
C. 18.
D.
.
2
Trang 8/10 Mã đề 1
[ = 60◦ , S O
Câu 100. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.√Khoảng cách từ O đến (S
√ BC) bằng
√
a 57
2a 57
a 57
A.
.
B.
.
C.
.
D. a 57.
19
19
17
Câu 101.
Trong các khẳng định sau, khẳng định nào sai?Z
Z
1
A.
dx = ln |x| + C, C là hằng số.
B.
dx = x + C, C là hằng số.
Z x
Z
xα+1
α
C.
0dx = C, C là hằng số.
D.
x dx =
+ C, C là hằng số.
α+1
Câu 102. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. −7, 2.
B. 7, 2.
C. 72.
D. 0, 8.
!
x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
Câu 103. [3] Cho hàm số f (x) = ln 2017 − ln
x
4035
2017
2016
A. 2017.
B.
.
C.
.
D.
.
2018
2018
2017
Câu 104. Tính thể tích khối lập phương biết tổng diện tích√tất cả các mặt bằng 18.
D. 8.
A. 9.
B. 27.
C. 3 3.
Câu 105. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m < .
C. m ≤ .
D. m ≥ .
A. m > .
4
4
4
4
3
Câu 106. Hàm số y = −x + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; −1).
B. (−∞; 1).
C. (−1; 1).
D. (1; +∞).
Câu 107. [1] Giá trị của biểu thức 9log3 12 bằng
A. 144.
B. 24.
C. 2.
D. 4.
Câu 108. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
B. m ≤ 0.
C. − < m < 0.
D. m ≥ 0.
A. m > − .
4
4
Câu 109. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên đúng. B. Cả hai câu trên sai.
C. Chỉ có (I) đúng.
D. Chỉ có (II) đúng.
Câu 110. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 3.
B. V = 5.
C. V = 4.
D. V = 6.
Câu 111. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = ln 10.
B. f 0 (0) = 1.
Câu 112. Khối đa diện đều loại {3; 5} có số cạnh
A. 20.
B. 8.
C. f 0 (0) = 10.
D. f 0 (0) =
C. 30.
D. 12.
Câu 113. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.
C. V = S h.
3
2
1
.
ln 10
D. V = 3S h.
Trang 9/10 Mã đề 1
log2 240 log2 15
−
+ log2 1 bằng
log3,75 2 log60 2
B. −8.
C. 3.
Câu 114. [1-c] Giá trị biểu thức
A. 4.
Câu 115. Biểu thức nào sau đây khơng
√ 0 có nghĩa
−1
A. 0 .
B. (− 2) .
C.
√
−1.
−3
D. 1.
D. (−1)−1 .
Câu 116. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
A. −4.
B. −7.
1
Câu 117. [1] Giá trị của biểu thức log √3
bằng
10
1
A. −3.
B. .
3
x+1
bằng
Câu 118. Tính lim
x→+∞ 4x + 3
A. 1.
B. 3.
67
.
27
C. −2.
D.
C. 3.
1
D. − .
3
C.
1
.
3
D.
1
.
4
Câu 119. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
√
1
A. 5.
B. .
C. 5.
D. 25.
5
Câu 120. Khối đa diện đều loại {5; 3} có số đỉnh
A. 12.
B. 8.
C. 20.
D. 30.
1
Câu 121. Hàm số y = x + có giá trị cực đại là
x
A. 1.
B. 2.
C. −2.
D. −1.
2x + 1
Câu 122. Tính giới hạn lim
x→+∞ x + 1
1
A. 1.
B. .
C. 2.
D. −1.
2
√
Câu 123.√Thể tích của khối lập phương có cạnh bằng a 2
√
√
2a3 2
A.
.
B. V = 2a3 .
C. 2a3 2.
D. V = a3 2.
3
12 + 22 + · · · + n2
Câu 124. [3-1133d] Tính lim
n3
1
2
C. .
D. 0.
A. +∞.
B. .
3
3
ln x p 2
1
Câu 125. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
1
1
8
A. .
B. .
C. .
D. .
3
3
9
9
Câu 126. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục ảo.
B. Đường phân giác góc phần tư thứ nhất.
C. Trục thực.
D. Hai đường phân giác y = x và y = −x của các góc tọa độ.
√
Câu 127. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 3 đỉnh, 3 cạnh, 3 mặt. B. 4 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 6 đỉnh, 6 cạnh, 4 mặt.
Câu 128. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m > 0.
B. m = 0.
C. m , 0.
D. m < 0.
Trang 10/10 Mã đề 1
Câu 129. [1] Tập
! xác định của hàm số! y = log3 (2x + 1) là
!
1
1
1
A. − ; +∞ .
B.
; +∞ .
C. −∞; − .
2
2
2
!
1
D. −∞; .
2
Câu 130. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 0.
B. m > −1.
C. m > 1.
D. m ≥ 0.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 11/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
2.
B
3. A
6.
5.
C
B
7. A
B
8. A
9.
10.
B
11.
D
D
12.
C
13.
14.
C
15.
D
16.
C
17.
D
18.
C
19. A
20.
21.
B
22.
C
23.
24.
C
25.
26.
C
27.
28.
C
29. A
30. A
32.
31.
B
35. A
C
37.
39. A
B
B
D
38.
C
40.
C
43.
B
44. A
45.
B
46.
47.
C
48. A
49.
C
50.
D
D
52. A
B
54. A
55.
D
56. A
57. A
58.
C
60. A
B
61.
63.
D
36.
42. A
59.
B
D
B
51. A
C
34.
41.
53.
B
D
62.
C
64.
C
65. A
66.
B
B
67.
C
68.
69.
C
70.
1
D
C
71.
72.
C
D
73.
76.
C
C
77.
B
78.
79.
B
80. A
81.
D
74.
C
75.
B
D
82.
C
83. A
84.
C
85. A
86.
C
87. A
88.
C
89. A
90.
B
92.
B
91.
B
93.
C
94. A
95.
C
96.
97.
B
99.
B
98. A
C
101.
100. A
D
102. A
103.
C
104.
C
105.
C
106.
C
107. A
108. A
109. A
110.
C
111. A
112.
C
113.
B
114.
115. A
B
116.
C
117.
D
118.
D
119.
D
120.
C
121.
C
122.
C
123.
C
124.
C
125.
127.
126.
D
D
128.
B
129. A
130.
2
C
B