Free LATEX
BÀI TẬP TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng 2n + 1.
B. Số mặt của khối chóp bằng 2n+1.
C. Số mặt của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh của khối chóp bằng 2n.
Câu 2. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).
B. (I) và (II).
Câu 3. [1] Tập xác định của hàm số y = 4
A. D = (−2; 1).
B. D = [2; 1].
x2 +x−2
C. Cả ba mệnh đề.
D. (II) và (III).
C. D = R \ {1; 2}.
D. D = R.
là
d = 60◦ . Đường chéo
Câu 4. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
0
0 0
0 0
◦
BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
√
a3 6
2a3 6
4a3 6
.
B.
.
C.
.
D. a3 6.
A.
3
3
3
Câu 5.
mệnh đề sau, mệnh đềZ nào sai? Z
Z Cho hàm số f (x), g(x)
Z liên tục trên
Z R. Trong các Z
A.
Z
C.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
Z
f (x)g(x)dx =
f (x)dx g(x)dx.
B.
Z
D.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
Câu 6.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ√thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 10.
B. 2.
C. 2.
D. 1.
Câu 7. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá trị
của hàm số tại x = −2.
A. y(−2) = 6.
B. y(−2) = 22.
C. y(−2) = 2.
D. y(−2) = −18.
log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0 ∨ m = 4.
D. m < 0.
Câu 8. [1226d] Tìm tham số thực m để phương trình
A. m < 0 ∨ m > 4.
B. m ≤ 0.
Câu 9. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. lim f (x) = f (a).
x→a
x→a
C. f (x) có giới hạn hữu hạn khi x → a.
x→a
D. lim+ f (x) = lim− f (x) = a.
x→a
x→a
Câu 10. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó,√các kích
√ thước của hình hộp là
A. 8, 16, 32.
B. 2 3, 4 3, 38.
C. 2, 4, 8.
D. 6, 12, 24.
Trang 1/10 Mã đề 1
Câu 11. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −3 ≤ m ≤ 3.
B. m ≥ 3.
C. −2 ≤ m ≤ 2.
D. m ≤ 3.
Câu 12. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 21.
C. 24.
D. 23.
x−1
Câu 13. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
√ có độ dài bằng
√
√ đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB
A. 2 3.
B. 2.
C. 2 2.
D. 6.
Câu 14. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn cạnh.
B. Năm cạnh.
C. Ba cạnh.
D. Hai cạnh.
Câu 15. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 3 mặt.
C. 6 mặt.
D. 5 mặt.
Câu 16. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là
√
√
a3 3
a3
a3 3
3
A. a .
B.
.
C.
.
D.
.
2
6
3
Câu 17. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
a
2a
5a
8a
.
B. .
C.
.
D.
.
A.
9
9
9
9
Câu 18. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng
√
√
√
a 2
a 2
A.
.
B.
.
C. a 3.
D. a 2.
2
3
Câu 19. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên đúng. B. Cả hai câu trên sai.
C. Chỉ có (I) đúng.
D. Chỉ có (II) đúng.
Câu 20. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là
√
√
a3 5
a3 6
a3 15
A.
.
B.
.
C.
.
D. a3 6.
3
3
3
Câu 21. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tứ giác.
B. Một hình chóp tứ giác và một hình chóp ngũ giác.
C. Hai hình chóp tam giác.
D. Một hình chóp tam giác và một hình chóp tứ giác.
Trang 2/10 Mã đề 1
Câu 22. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số đồng biến trên khoảng (1; 2).
C. Hàm số nghịch biến trên khoảng (−∞; 0).
D. Hàm số nghịch biến trên khoảng (1; +∞).
Câu 23. [4-1246d] Trong tất cả các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất
√ của |z|
D. 3.
A. 2.
B. 1.
C. 5.
Câu 24. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m = 0.
B. m < 0.
C. m > 0.
D. m , 0.
Câu 25. [1] Đạo hàm của làm số y = log x là
1
1
ln 10
1
A. y0 = .
B.
.
C. y0 =
.
D. y0 =
.
x
10 ln x
x
x ln 10
Câu 26. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng
√
√
√
a 6
a 6
a 6
A.
.
B.
.
C. a 6.
D.
.
2
3
6
Câu 27. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
D. .
A. 9.
B. 6.
C. .
2
2
Câu 28. Hàm số nào sau đây không có cực trị
1
x−2
A. y = x4 − 2x + 1.
B. y = x + .
C. y =
.
D. y = x3 − 3x.
x
2x + 1
Câu 29. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 4.
C. 3.
D. 2.
Câu 30. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
15
6
18
9
Câu 31. Khối đa diện đều loại {5; 3} có số mặt
A. 8.
B. 20.
C. 30.
D. 12.
√
Câu 32. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
" nhỏ! nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
5
5
;3 .
A. 2; .
B.
C. (1; 2).
D. [3; 4).
2
2
3
Câu 33. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e5 .
B. e.
C. e3 .
√
Câu 34. [1] Biết log6 a = 2 thì log6 a bằng
A. 6.
B. 4.
C. 108.
x+1
Câu 35. Tính lim
bằng
x→+∞ 4x + 3
1
A. 3.
B. .
C. 1.
3
D. e2 .
D. 36.
D.
1
.
4
Câu 36. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 70, 128 triệu đồng. B. 50, 7 triệu đồng.
C. 3, 5 triệu đồng.
D. 20, 128 triệu đồng.
Trang 3/10 Mã đề 1
2
2
Câu 37. [3-c]
và giá trị lớn nhất của hàm số f (x) = 2sin x + 2cos x lần
√ Giá trị nhỏ nhất √
√ lượt là
A. 2 và 2 2.
B. 2 và 3.
C. 2 và 3.
D. 2 2 và 3.
Câu 38. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
A. − .
B. −e.
C. − 2 .
e
e
Câu 39. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 3.
B. 1.
C. 2.
Câu 40. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = (0; +∞).
B. D = R \ {1}.
C. D = R.
√
2
Câu 41. Xác định phần ảo của số
√ phức z = ( 2 + 3i)
A. −7.
B. 6 2.
C. 7.
D. −
1
3|x−1|
1
.
2e
= 3m − 2 có nghiệm duy
D. 4.
D. D = R \ {0}.
√
D. −6 2.
Câu 42. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m ≥ 0.
B. m > 0.
C. m > 1.
D. m > −1.
x
9
Câu 43. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
B. 1.
C. −1.
D. 2.
A. .
2
Câu 44. Khối đa diện đều loại {4; 3} có số mặt
A. 6.
B. 12.
C. 8.
D. 10.
Câu 45. Khối đa diện đều loại {3; 5} có số cạnh
A. 30.
B. 12.
C. 20.
D. 8.
Câu 46. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD
√ là
3
10a 3
A. 40a3 .
B. 20a3 .
C.
.
D. 10a3 .
3
Câu 47. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −e2 .
B. 2e2 .
C. −2e2 .
D. 2e4 .
Câu 48. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.
C. Khối lập phương.
√
√
Câu 49. Tìm
giá
trị
lớn
nhất
của
hàm
số
y
=
x
+
3
+
6√− x
√
A. 2 + 3.
B. 3.
C. 2 3.
D. Khối bát diện đều.
√
D. 3 2.
Câu 50. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
với
đáy
và
S
C
=
a
3. Thể
√ tích khối chóp S .ABC
√là
√
√
3
3
3
a 3
2a 6
a 6
a3 3
A.
.
B.
.
C.
.
D.
.
2
9
12
4
Câu 51. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
B. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Z
u0 (x)
D.
dx = log |u(x)| + C.
u(x)
Trang 4/10 Mã đề 1
12 + 22 + · · · + n2
Câu 52. [3-1133d] Tính lim
n3
1
2
A. .
B. .
C. 0.
D. +∞.
3
3
Câu 53. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 3.
B. V = 5.
C. V = 4.
D. V = 6.
Câu 54. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 0) và (2; +∞). B. (0; 2).
D. (0; +∞).
C. (−∞; 2).
Câu 55. [2] Cho hàm số f (x) = ln(x + 1). Giá trị f (1) bằng
ln 2
1
B. 1.
C.
.
A. .
2
2
Câu 56. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −4.
B. 2.
C. −2.
4
0
D. 2.
D. 4.
Câu 57. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD là
√
3
a3
a3 3
a
3
A.
.
B.
.
C. a3 .
D.
.
3
9
3
1
Câu 58. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = e − 1.
B. xy = e + 1.
C. xy0 = −ey + 1.
D. xy0 = −ey − 1.
Câu 59.
!0 nào sau đây sai?
Z Mệnh đề
f (x)dx = f (x).
A.
B. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
C. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Z
D. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
Câu 60. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 20 mặt đều.
C. Khối bát diện đều. D. Khối 12 mặt đều.
mx − 4
Câu 61. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 26.
B. 67.
C. 45.
D. 34.
Câu 62. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun √
z.
√
√
√
5 13
A.
.
B. 2 13.
C. 26.
D. 2.
13
Câu 63. Dãy
!n số nào sau đây có giới
!n hạn là 0?
!n
!n
5
5
4
1
A. − .
B.
.
C.
.
D.
.
3
3
e
3
x+2
Câu 64. Tính lim
bằng?
x→2
x
A. 1.
B. 0.
C. 3.
D. 2.
Câu 65. Khối đa diện đều loại {3; 5} có số mặt
A. 30.
B. 20.
n−1
Câu 66. Tính lim 2
n +2
A. 3.
B. 1.
C. 12.
D. 8.
C. 2.
D. 0.
Trang 5/10 Mã đề 1
log 2x
là
Câu 67. [3-1229d] Đạo hàm của hàm số y =
x2
1 − 4 ln 2x
1
1 − 2 log 2x
1 − 2 ln 2x
A. y0 =
.
D. y0 = 3
.
B. y0 = 3
.
C. y0 =
.
3
3
2x ln 10
2x ln 10
x
x ln 10
Câu 68. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
√
√
Câu 69. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
9
3
3
A. m ≥ 0.
B. 0 ≤ m ≤ .
C. 0 < m ≤ .
D. 0 ≤ m ≤ .
4
4
4
Câu 70. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 13.
B. 0.
C. 9.
D. Không tồn tại.
2
2
Câu 71. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Chỉ có (I) đúng.
C. Cả hai đều đúng.
D. Cả hai đều sai.
Câu 72. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.
C. Khối 12 mặt đều.
D. Khối bát diện đều.
C. +∞.
2
D. − .
5
Câu 73. Tính lim
x→5
A. −∞.
x2 − 12x + 35
25 − 5x
2
B. .
5
Câu 74. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tam giác.
B. Một khối chóp tam giác, một khối chóp tứ giác.
C. Một khối chóp tam giác, một khối chóp ngữ giác.
D. Hai khối chóp tứ giác.
4x + 1
bằng?
x→−∞ x + 1
B. −4.
Câu 75. [1] Tính lim
A. 2.
C. 4.
D. −1.
Câu 76. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 3}.
B. {5; 3}.
C. {3; 4}.
D. {4; 3}.
Câu 77. Khối đa diện đều loại {3; 4} có số mặt
A. 8.
B. 12.
C. 10.
D. 6.
Câu 78. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị lớn nhất trên K.
C. f (x) có giá trị nhỏ nhất trên K.
B. f (x) liên tục trên K.
D. f (x) xác định trên K.
Câu 79. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1134 m.
B. 1202 m.
C. 2400 m.
D. 6510 m.
cos n + sin n
Câu 80. Tính lim
n2 + 1
A. 0.
B. 1.
C. −∞.
D. +∞.
Trang 6/10 Mã đề 1
Câu 81. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là −4.
B. Phần thực là 3, phần ảo là −4.
C. Phần thực là −3, phần ảo là 4.
D. Phần thực là 3, phần ảo là 4.
Câu 82. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e2 − 2; m = e−2 + 2.
B. M = e−2 + 1; m = 1.
C. M = e−2 + 2; m = 1.
D. M = e−2 − 2; m = 1.
Câu 83. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?
A. 102.424.000.
B. 102.423.000.
C. 102.016.000.
D. 102.016.000.
x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
Câu 84. [4-1212d] Cho hai hàm số y =
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. (−3; +∞).
C. (−∞; −3].
D. [−3; +∞).
Câu 85. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.
B. 8.
C. 20.
D. 12.
2
1−n
Câu 86. [1] Tính lim 2
bằng?
2n + 1
1
1
A. − .
B. .
2
3
C.
1
.
2
D. 0.
Câu 87. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 88. Tính lim
A. 2.
2n2 − 1
3n6 + n4
B.
2
.
3
C. 1.
D. 0.
Câu 89. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√ N, P bằng
√
√
√
14 3
20 3
A.
.
B. 6 3.
C. 8 3.
D.
.
3
3
Câu 90. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 11 năm.
C. 14 năm.
D. 10 năm.
Câu 91. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (2; +∞).
B. (−∞; 1).
C. (0; 2).
Câu 92. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 4.
2n − 3
Câu 93. Tính lim 2
bằng
2n + 3n + 1
A. 0.
B. 1.
D. R.
C. 5.
D. 8.
C. −∞.
D. +∞.
Trang 7/10 Mã đề 1
Câu 94. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√
√ là
√
√ Thể tích khối chóp S 3.ABC
3
a 3
a3 3
a3 2
a 3
.
B.
.
C.
.
D.
.
A.
12
6
4
12
π
x
Câu 95. [2-c] Giá trị lớn nhất của hàm số y = e cos x trên đoạn 0; là
2
√
√
1 π3
2 π4
3 π6
A. e .
B.
e .
C.
e .
D. 1.
2
2
2
!
x+1
Câu 96. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2017
2016
4035
.
B. 2017.
C.
.
D.
.
A.
2018
2018
2017
Câu 97. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 220 triệu.
B. 212 triệu.
C. 216 triệu.
D. 210 triệu.
[ = 60◦ , S A ⊥ (ABCD).
Câu 98. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối
√chóp S .ABCD là
√
3
3
√
a 2
a 2
a3 3
3
B.
.
C.
.
D.
.
A. a 3.
4
12
6
Câu 99. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy
một góc 60◦ . Thể tích√khối chóp S .ABCD là √
√
√
a3 3
a3 3
2a3 3
.
B.
.
C.
.
D. a3 3.
A.
3
3
6
Câu 100. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc
45◦ . Tính
.ABC theo a
√ thể tích của khối chóp 3S√
√
3
a 15
a 5
a3
a3 15
A.
.
B.
.
C.
.
D.
.
5
25
3
25
Câu 101. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B. a3 .
C.
.
D.
.
6
24
12
Câu 102.
Các khẳngZđịnh nào sau đây là sai?
Z
k f (x)dx = k
A.
Z
C.
Z
f (x)dx, k là hằng số.
B.
f (x)dx = F(x) + C ⇒
!0
Z
Z
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C. D.
f (x)dx = f (x).
Z
f (t)dt = F(t) + C.
[ = 60◦ , S O
Câu 103. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ Khoảng cách từ O đến (S√BC) bằng
√ với mặt đáy và S O = a.
√
a 57
a 57
2a 57
.
B.
.
C.
.
D. a 57.
A.
17
19
19
Câu 104.
[1233d-2] MệnhZđề nào sau đây
Z
Z sai?
A.
[ f (x) − g(x)]dx =
f (x)dx −
g(x)dx, với mọi f (x), g(x) liên tục trên R.
Trang 8/10 Mã đề 1
Z
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
C.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
D.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
B.
Câu 105. Khối đa diện đều loại {3; 3} có số đỉnh
A. 4.
B. 5.
C. 3.
D. 2.
Câu 106. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn
nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.
100.(1, 01)3
100.1, 03
triệu.
B. m =
triệu.
A. m =
3
3
(1, 01)3
120.(1, 12)3
triệu.
D.
m
=
triệu.
C. m =
(1, 12)3 − 1
(1, 01)3 − 1
!
1
1
1
Câu 107. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 1.
B. 0.
C. .
D. 2.
2
Câu 108. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
√
3
3
3
3
8a 3
4a 3
a 3
8a 3
.
B.
.
C.
.
D.
.
A.
9
3
9
9
Câu 109. Khối đa diện đều loại {5; 3} có số cạnh
A. 30.
B. 12.
C. 8.
D. 20.
Câu 110. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một hoặc hai.
B. Có một.
C. Khơng có.
D. Có hai.
Câu 111. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
B. T = 4 + .
C. T = e + 1.
D. T = e + 3.
A. T = e + .
e
e
Câu 112. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n3 lần.
B. 3n3 lần.
C. n2 lần.
D. n lần.
Câu 113. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
B. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
C. F(x) = G(x) trên khoảng (a; b).
D. Cả ba câu trên đều sai.
Câu 114. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = loga 2.
B. log2 a = − loga 2.
C. log2 a =
.
D. log2 a =
.
loga 2
log2 a
Câu 115. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Khơng có.
B. Có vơ số.
C. Có một.
D. Có hai.
Trang 9/10 Mã đề 1
Câu 116. Dãy!số nào có giới hạn bằng 0?
!n
n
−2
6
n3 − 3n
2
A. un =
.
B. un = n − 4n.
C. un =
.
D. un =
.
3
n+1
5
√
x2 + 3x + 5
Câu 117. Tính giới hạn lim
x→−∞
4x − 1
1
1
B. 1.
C. .
D. 0.
A. − .
4
4
Câu 118. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−3; 1].
B. [1; +∞).
C. (−∞; −3].
D. [−1; 3].
Câu 119. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Thập nhị diện đều. B. Tứ diện đều.
C. Nhị thập diện đều. D. Bát diện đều.
Câu 120. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 27 m.
C. 1587 m.
D. 25 m.
2n + 1
Câu 121. Tính giới hạn lim
3n + 2
3
2
1
C. .
D. .
A. 0.
B. .
2
2
3
Câu 122. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 2ac
3b + 3ac
.
B.
.
C.
.
D.
.
A.
c+2
c+1
c+2
c+3
Câu 123. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục ảo.
B. Hai đường phân giác y = x và y = −x của các góc tọa độ.
C. Trục thực.
D. Đường phân giác góc phần tư thứ nhất.
Câu 124. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; 6, 5].
B. (4; +∞).
C. (−∞; 6, 5).
Câu 125. Hàm số y =
A. x = 3.
x − 3x + 3
đạt cực đại tại
x−2
B. x = 0.
D. [6, 5; +∞).
2
C. x = 2.
D. x = 1.
Câu 126. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √
√
a3 3
a3 3
a3 3
a3
A.
.
B.
.
C.
.
D.
.
8
4
12
4
1
Câu 127. Hàm số y = x + có giá trị cực đại là
x
A. 2.
B. −1.
C. 1.
D. −2.
Câu 128. Bát diện đều thuộc loại
A. {4; 3}.
B. {3; 3}.
C. {3; 4}.
Câu 129. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm mặt.
B. Hai mặt.
C. Bốn mặt.
D. {5; 3}.
D. Ba mặt.
Câu 130. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. .
B.
.
C. 5.
D. 7.
2
2
Trang 10/10 Mã đề 1
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 11/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
D
2.
3.
D
4.
D
6.
D
5.
C
D
7.
9.
8.
C
10.
B
11. A
12. A
13. A
14.
15. A
16.
17. A
18. A
19. A
20.
21.
B
C
D
C
B
B
22. A
23. A
24.
D
D
25.
D
26.
27.
D
28.
C
D
29.
B
31.
32.
B
33. A
34.
B
35.
D
D
36.
D
37.
38.
D
39.
B
41.
B
43.
B
40.
C
42.
D
44. A
46.
45. A
47. A
B
48.
D
50.
C
49.
D
51.
D
52. A
53.
54. A
55.
56.
D
57. A
C
58. A
60.
C
59.
B
62. A
B
61.
D
63.
D
64.
D
65.
66.
D
67.
D
69.
D
68.
C
1
B
70.
B
71. A
72.
B
73.
74.
B
75.
76.
B
77. A
78.
B
79.
80. A
C
D
81.
D
82.
84.
C
83. A
D
85.
C
86. A
87. A
D
88.
90.
B
89.
B
B
C
91.
92. A
93. A
94. A
95.
B
97.
B
99.
B
96.
98.
C
B
100.
101.
D
102.
C
103.
104.
C
105. A
106.
D
109. A
110. A
111.
112. A
113. A
D
115.
C
116. A
117. A
118. A
119. A
120.
B
107. A
108. A
114.
D
D
121.
B
D
122. A
123.
124. A
125.
D
126. A
127.
D
129.
D
128.
C
130. A
2
B