Free LATEX
BÀI TẬP TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 2.
B. 3.
C. 1.
D. Vô số.
Câu 2. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng (AB0C)
và (A0C√0 D) bằng
√
√
√
a 3
2a 3
a 3
C.
.
B. a 3.
.
D.
.
A.
3
2
2
Câu 3. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tam giác.
B. Một hình chóp tứ giác và một hình chóp ngũ giác.
C. Hai hình chóp tứ giác.
D. Một hình chóp tam giác và một hình chóp tứ giác.
Câu 4. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. Vô nghiệm.
C. 2.
D. 1.
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử của
Câu 5. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
S bằng
A. 2.
B. 5.
C. 3.
D. 4.
!
!
!
x
1
2
2016
4
. Tính tổng T = f
+f
+ ··· + f
Câu 6. [3] Cho hàm số f (x) = x
4 +2
2017
2017
2017
2016
A. T = 1008.
B. T =
.
C. T = 2017.
D. T = 2016.
2017
Câu 7. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 8 mặt.
C. 6 mặt.
D. 7 mặt.
√
Câu 8. Thể tích của khối lập phương có cạnh bằng a 2
√
√
√
2a3 2
3
3
A. 2a 2.
B. V = 2a .
C.
.
D. V = a3 2.
3
Câu 9. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy
một góc 60◦ . Thể tích√khối chóp S .ABCD là √
√
√
2a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D. a3 3.
3
6
3
Câu 10. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 13.
B. 9.
C. Không tồn tại.
D. 0.
[ = 60◦ , S O
Câu 11. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a. Khoảng cách từ O đến (S
√ BC) bằng
√
√
2a 57
a 57
a 57
A.
.
B. a 57.
C.
.
D.
.
19
17
19
Câu 12.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nàoZsai?
A.
Z
C.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
f (x)g(x)dx =
B.
Z
D.
f (x)dx g(x)dx.
Z
Z
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Trang 1/10 Mã đề 1
log2 240 log2 15
−
+ log2 1 bằng
log3,75 2 log60 2
B. −8.
C. 4.
Câu 13. [1-c] Giá trị biểu thức
A. 3.
D. 1.
Câu 14. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −5.
B. −3.
C. Không tồn tại.
D. −7.
Câu 15. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 4}.
B. {5; 3}.
C. {3; 5}.
D. {4; 3}.
Câu 16. [1] Đạo hàm của làm số y = log x là
1
ln 10
1
1
A. y0 =
.
B. y0 =
.
C.
.
D. y0 = .
x ln 10
x
10 ln x
x
x
9
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
Câu 17. [2-c] Cho hàm số f (x) = x
9 +3
1
A. 1.
B. 2.
C. .
D. −1.
2
Câu 18. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 4.
Câu 19.
A. 3.
Câu 20.
1
A. .
2
B. 1.
C. 3.
√
[1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
B. −3.
C. − .
3
2n + 1
Tính giới hạn lim
3n + 2
2
B. 0.
C. .
3
Câu 21. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 24.
D. 2.
C. S = 32.
Câu 23. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
B. 1.
1
.
3
D.
3
.
2
ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
D. S = 135.
Câu 22. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. R.
C. (0; 2).
nhất?
A. 2.
D.
C. 4.
D. (2; +∞).
1
3|x−1|
= 3m − 2 có nghiệm duy
D. 3.
d = 120◦ .
Câu 24. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 4a.
B. 3a.
C. 2a.
D.
.
2
Câu 25. [4-1246d] Trong tất cả các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất
√ của |z|
A. 1.
B. 2.
C. 3.
D. 5.
Trang 2/10 Mã đề 1
Câu 26. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 5%.
B. 0, 8%.
C. 0, 7%.
D. 0, 6%.
Câu 27. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
ab
1
1
.
B. 2
.
D. √
.
.
C. √
A. √
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
Câu 28. Tìm giới hạn lim
A. 3.
2n + 1
n+1
B. 1.
C. 0.
D. 2.
Câu 29. Các khẳng
!0 định nào sau đây là sai?
Z
Z
Z
A.
f (x)dx = f (x).
B.
k f (x)dx = k
f (x)dx, k là hằng số.
Z
Z
Z
Z
C.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. D.
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.
Câu 30. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 4.
B. 0, 2.
C. 0, 5.
D. 0, 3.
x2
Câu 31. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
C. M = , m = 0.
D. M = e, m = 0.
A. M = e, m = 1.
B. M = e, m = .
e
e
Câu 32. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45√◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là
10a3 3
A.
.
B. 20a3 .
C. 10a3 .
D. 40a3 .
3
Câu 33. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Hai mặt.
B. Một mặt.
C. Ba mặt.
D. Bốn mặt.
Câu 34. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim− f (x) = f (b).
B. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→b
x→a
x→b
C. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→b
x→a
x→b
D. lim− f (x) = f (a) và lim− f (x) = f (b).
Câu 35. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 18 lần.
B. Tăng gấp 3 lần.
C. Tăng gấp 27 lần.
D. Tăng gấp 9 lần.
Câu 36. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hồn nợ ở mỗi tháng là như nhau và ơng A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 22 triệu đồng.
B. 3, 03 triệu đồng.
C. 2, 25 triệu đồng.
D. 2, 20 triệu đồng.
Câu 37. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1134 m.
B. 1202 m.
C. 2400 m.
D. 6510 m.
Trang 3/10 Mã đề 1
Câu 38. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 + 2e
1 − 2e
.
B. m =
.
C. m =
.
A. m =
4 − 2e
4e + 2
4 − 2e
Câu 39. Dãy! số nào có giới hạn bằng 0?
!n
n
n3 − 3n
−2
6
A. un =
.
B. un =
.
C. un =
.
5
n+1
3
D. m =
1 − 2e
.
4e + 2
D. un = n2 − 4n.
Câu 40. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng
√
a
a
a 3
A. .
B. a.
C. .
D.
.
3
2
2
Câu 41. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
C. log2 a = − loga 2.
D. log2 a =
.
A. log2 a = loga 2.
B. log2 a =
log2 a
loga 2
Câu 42. Cho z là√nghiệm của phương trình√ x2 + x + 1 = 0. Tính P = z4 + 2z3 − z
−1 + i 3
−1 − i 3
A. P =
.
B. P =
.
C. P = 2.
D. P = 2i.
2
2
un
Câu 43. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 0.
B. +∞.
C. −∞.
D. 1.
Câu 44. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. 3n3 lần.
B. n2 lần.
C. n3 lần.
D. n lần.
√
Câu 45. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) √
bằng
√
√
3a 58
3a 38
3a
a 38
.
B.
.
C.
.
D.
.
A.
29
29
29
29
Câu 46. Khối đa diện đều loại {3; 5} có số đỉnh
A. 12.
B. 8.
C. 20.
D. 30.
Câu 47. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
24
36
6
12
Câu 48. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
B. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!
un
= 0.
C. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
v! n
un
D. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
0 0 0 0
0
Câu 49.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 3
a 6
a 6
a 6
A.
.
B.
.
C.
.
D.
.
2
3
2
7
3
Câu 50. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e2 .
B. e3 .
C. e5 .
D. e.
Trang 4/10 Mã đề 1
Câu 51. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 48cm3 .
C. 84cm3 .
D. 91cm3 .
√
Câu 52. [1] Biết log6 a = 2 thì log6 a bằng
A. 36.
B. 6.
C. 108.
D. 4.
Câu 53. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 2ac
3b + 3ac
A.
.
B.
.
C.
.
D.
.
c+2
c+2
c+3
c+1
√
Câu 54. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√
√
√ tích khối chóp S .ABC3 √
3
a 2
a3 6
a3 6
a 6
.
B.
.
C.
.
D.
.
A.
18
6
36
6
Câu 55. Mệnh đề nào sau đây sai?
A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
!0
Z
B.
f (x)dx = f (x).
Z
C. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
D. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
1
Câu 56. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R \ {1}.
B. D = R.
C. D = (−∞; 1).
1 − 2n
bằng?
Câu 57. [1] Tính lim
3n + 1
2
1
A. − .
B. .
3
3
Câu 58. Dãy số nào sau đây có giới hạn khác 0?
n+1
sin n
A.
.
B.
.
n
n
C. 1.
C.
1
.
n
D. D = (1; +∞).
D.
2
.
3
1
D. √ .
n
Câu 59. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 216 triệu.
B. 212 triệu.
C. 210 triệu.
D. 220 triệu.
Câu 60. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 1200 cm2 .
B. 160 cm2 .
C. 120 cm2 .
D. 160 cm2 .
√
√
x
+
3
+
6−x
Câu 61.
Tìm
giá
trị
lớn
nhất
của
hàm
số
y
=
√
√
√
A. 2 3.
B. 2 + 3.
C. 3.
D. 3 2.
Câu 62. Khối đa diện đều loại {3; 3} có số đỉnh
A. 3.
B. 4.
!4x
!2−x
2
3
Câu 63. Tập các số x thỏa mãn
≤
là
3 # 2
#
2
2
A. −∞; .
B. −∞; .
5
3
C. 2.
"
!
2
C. − ; +∞ .
3
D. 5.
"
!
2
D.
; +∞ .
5
Trang 5/10 Mã đề 1
Câu 64. Khối đa diện đều loại {5; 3} có số cạnh
A. 12.
B. 8.
C. 20.
Câu 65. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
1
C. .
A. 2.
B. − .
2
2
Câu 66. Khối đa diện đều loại {3; 4} có số mặt
A. 10.
B. 8.
C. 6.
D. 30.
D. −2.
D. 12.
d = 30◦ , biết S BC là tam giác đều
Câu 67. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
16
13
26
9
π π
Câu 68. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 7.
B. 3.
C. −1.
D. 1.
Câu 69. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 3.
B. 0.
C. −6.
D. −3.
Câu 70. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
!
1
1
1
+ ··· +
Câu 71. [3-1131d] Tính lim +
1 1+2
1 + 2 + ··· + n
5
3
A. +∞.
B. .
C. .
2
2
D. 2.
Câu 72. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8
A. m = ± 2.
B. m = ±1.
C. m = ± 3.
D. m = ±3.
x−3
Câu 73. [1] Tính lim
bằng?
x→3 x + 3
A. −∞.
B. 0.
C. +∞.
D. 1.
Câu 74. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Tăng lên n lần.
B. Giảm đi n lần.
C. Tăng lên (n − 1) lần. D. Khơng thay đổi.
x+2
Câu 75. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. Vô số.
B. 3.
C. 2.
D. 1.
Câu 76. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 77. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có một.
B. Khơng có.
C. Có hai.
D. Có vơ số.
Câu 78. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 9 cạnh.
C. 10 cạnh.
D. 11 cạnh.
Trang 6/10 Mã đề 1
Câu 79. Tính lim
x→2
A. 1.
x+2
bằng?
x
B. 3.
C. 0.
D. 2.
Câu 80. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
√3
4
Câu 81. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
2
5
7
5
A. a 3 .
B. a 3 .
C. a 3 .
D. a 8 .
Câu 82. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n2 lần.
C. 2n3 lần.
D. n3 lần.
12 + 22 + · · · + n2
n3
B. +∞.
Câu 83. [3-1133d] Tính lim
A.
2
.
3
C.
1
.
3
Câu 84. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [1; 2].
B. [−1; 2).
C. (−∞; +∞).
D. 0.
D. (1; 2).
√
Câu 85. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√
√ cho là
√
√
3
πa 3
πa3 3
πa3 6
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
2
6
6
3
Câu 86. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một hoặc hai.
B. Có hai.
C. Có một.
D. Khơng có.
Câu 87. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 13 năm.
C. 10 năm.
D. 12 năm.
Câu 88. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 − sin 2x.
B. −1 + sin x cos x.
C. −1 + 2 sin 2x.
D. 1 + 2 sin 2x.
1
2mx + 1
Câu 89. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 0.
B. 1.
C. −5.
D. −2.
Câu 90.
Z Trong các khẳng định sau, khẳng định nào sai? Z
1
A.
dx = ln |x| + C, C là hằng số.
B.
0dx = C, C là hằng số.
x
Z
Z
xα+1
α
C.
x dx =
+ C, C là hằng số.
D.
dx = x + C, C là hằng số.
α+1
Câu 91. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 10 năm.
B. 7 năm.
C. 9 năm.
D. 8 năm.
Trang 7/10 Mã đề 1
Câu 92. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
120.(1, 12)3
(1, 01)3
triệu.
B.
m
=
triệu.
A. m =
(1, 01)3 − 1
(1, 12)3 − 1
100.(1, 01)3
100.1, 03
C. m =
triệu.
D. m =
triệu.
3
3
Câu 93. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên khoảng (−2; 1).
C. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
8
Câu 94. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 82.
B. 64.
C. 96.
D. 81.
Câu 95. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
C là
√
√
a3 3
a3
a3 3
3
A.
.
B.
.
C. a .
D.
.
2
3
6
Câu 96. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
A. 1.
B. 2.
C.
.
D. .
2
2
Câu 97. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.
B. 10.
C. 12.
D. 20.
Câu 98. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√
√
√ của hàm số. Khi đó tổng M + m
B. 16.
C. 8 2.
D. 8 3.
A. 7 3.
Câu 99. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt phẳng vng góc với (ABCD).
Thể tích khối chóp
√
√ S .ABCD là
3
3
3
√
a 3
a 2
a 3
A.
.
B. a3 3.
C.
.
D.
.
2
2
4
Câu 100. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
A. aα+β = aα .aβ .
B. aα bα = (ab)α .
C. β = a β .
D. aαβ = (aα )β .
a
2
Câu 101. [2-c] Giá trị lớn nhất của hàm số y = ln(x + x + 2) trên đoạn [1; 3] là
A. ln 14.
B. ln 4.
C. ln 12.
D. ln 10.
Z 2
ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
Câu 102. Cho
x2
1
A. 3.
B. 1.
C. −3.
D. 0.
√
√
4n2 + 1 − n + 2
Câu 103. Tính lim
bằng
2n − 3
3
A. .
B. 1.
C. 2.
D. +∞.
2
Câu 104. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB)
√ bằng
√
√
√
a 6
A.
.
B. a 3.
C. a 6.
D. 2a 6.
2
Trang 8/10 Mã đề 1
Câu 105. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 12.
C. 6.
D. 10.
cos n + sin n
Câu 106. Tính lim
n2 + 1
A. 0.
B. −∞.
C. +∞.
D. 1.
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
Câu 107. [3-1132d] Cho dãy số (un ) với un =
n2 + 1
1
A. lim un = 0.
B. lim un = .
2
C. Dãy số un khơng có giới hạn khi n → +∞.
D. lim un = 1.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥
Câu 108. Cho hình chóp S .ABC có BAC
(ABC). Thể
√là
√ tích khối chóp S .ABC
√
3
3
3
√
3
a 3
a 2
a
A.
.
B.
.
C. 2a2 2.
D.
.
12
24
24
Câu 109. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B.
.
C. a3 .
D.
.
12
6
24
Câu 110. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm
0
A đến đường
√
√
√
√ thẳng BD bằng
a b2 + c2
b a2 + c2
abc b2 + c2
c a2 + b2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
√
Câu 111. Xác định phần ảo của số phức z = ( 2 + 3i)2 √
√
D. −6 2.
A. −7.
B. 7.
C. 6 2.
Câu 112. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = 1.
B. f 0 (0) = 10.
C. f 0 (0) = ln 10.
D. f 0 (0) =
1
.
ln 10
Câu 113. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 20 mặt đều.
C. Khối tứ diện đều.
D. Khối 12 mặt đều.
x−3 x−2 x−1
x
Câu 114. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].
B. [2; +∞).
C. (−∞; 2).
D. (2; +∞).
Câu 115. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lăng trụ tam giác.
B. Khối bát diện đều.
C. Khối lập phương.
D. Khối tứ diện.
Câu 116. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa
√ hai đường thẳng BD và√S C bằng
√
√
a 6
a 6
a 6
A.
.
B.
.
C. a 6.
D.
.
6
3
2
Câu 117. Khối đa diện đều loại {3; 5} có số cạnh
A. 30.
B. 8.
C. 20.
D. 12.
3
2
x
Câu 118. [2] Tìm m để giá trị nhỏ nhất
2
√ của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng √
A. m = ±1.
B. m = ± 2.
C. m = ±3.
D. m = ± 3.
Trang 9/10 Mã đề 1
Câu 119. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
đề nào dưới đây đúng?
!
!
1
1
B. Hàm số nghịch biến trên khoảng ; 1 .
A. Hàm số nghịch biến trên khoảng −∞; .
3
! 3
1
C. Hàm số đồng biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng (1; +∞).
3
2n − 3
bằng
Câu 120. Tính lim 2
2n + 3n + 1
A. +∞.
B. 0.
C. −∞.
D. 1.
Câu 121. Khối đa diện đều loại {4; 3} có số đỉnh
A. 8.
B. 4.
C. 10.
!2x−1
!2−x
3
3
Câu 122. Tập các số x thỏa mãn
≤
là
5
5
A. (+∞; −∞).
B. [1; +∞).
C. [3; +∞).
D. 6.
D. (−∞; 1].
Câu 123. Hàm số nào sau đây khơng có cực trị
x−2
1
A. y =
.
B. y = x4 − 2x + 1.
C. y = x + .
D. y = x3 − 3x.
2x + 1
x
Câu 124. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √
√
a3 3
a3 3
a3 3
a3
A.
.
B.
.
C.
.
D.
.
4
8
12
4
Câu 125. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng
√
√
√
a 2
a 2
B.
.
C. 2a 2.
D.
.
A. a 2.
2
4
√
Câu 126. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
√
1
D. .
A. 5.
B. 25.
C. 5.
5
Câu 127. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
B. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
C. Z
F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
u0 (x)
dx = log |u(x)| + C.
D.
u(x)
Câu 128. Khối đa diện đều loại {3; 3} có số cạnh
A. 8.
B. 6.
C. 5.
D. 4.
Câu 129. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc
60◦ . Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n.
Thể tích khối
√ chóp S .ABMN là 3 √
√
√
3
5a 3
2a 3
a3 3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
3
2
3
Câu 130. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
Trang 10/10 Mã đề 1
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (I) sai.
B. Câu (II) sai.
C. Khơng có câu nào D. Câu (III) sai.
sai.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 11/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
2. A
3. A
4.
D
5.
6. A
7. A
8. A
10.
C
9.
11.
13.
D
12.
17. A
19.
D
C
C
20.
C
22.
C
B
24.
25.
B
26.
C
D
30.
31.
D
32.
33.
D
34. A
39.
40.
D
43. A
42.
C
44.
C
48.
D
52.
53. A
54. A
55.
C
D
56.
D
57. A
D
58. A
60.
B
61.
D
63.
62.
D
B
64.
C
65.
67.
D
50.
B
51. A
59.
B
46. A
B
47.
49.
D
38.
C
41.
B
36. A
D
37.
C
D
D
C
D
28.
29.
35.
C
18.
23.
27.
B
16. A
C
21.
D
14.
B
15.
45.
D
D
66.
68.
B
1
D
B
D
69.
D
70.
71.
D
72. A
73.
B
74.
75.
C
76. A
77.
C
78.
79.
D
80.
C
B
C
B
82.
81. A
83.
D
84.
C
C
85.
D
86. A
87.
D
88.
C
90.
C
89. A
91.
C
92. A
93.
C
94.
95. A
97.
C
D
96.
B
98.
B
99. A
100.
C
101. A
102.
C
C
103.
B
104.
105.
B
106. A
107.
B
108.
B
110.
B
109. A
111.
112.
C
113.
D
114.
115.
D
116. A
117. A
119.
C
B
118. A
120.
B
121. A
122.
B
123. A
124.
B
126.
B
128.
B
125.
B
B
127.
129.
D
130.
C
2
C