Free LATEX
BÀI TẬP TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
C. f (x) xác định trên K.
B. f (x) có giá trị lớn nhất trên K.
D. f (x) có giá trị nhỏ nhất trên K.
√
√
2
−
1
−
3i lần lượt l√
Câu 2. Phần thực và phần
ảo
của
số
phức
z
=
√
√
√
A. Phần thực là 1√− 2, phần ảo là −√ 3.
B. Phần thực là √2 − 1, phần ảo là √
3.
D. Phần thực là 2 − 1, phần ảo là − 3.
C. Phần thực là 2, phần ảo là 1 − 3.
Câu 3. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 10 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 4. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 6.
B. 1.
C. −1.
D. 2.
Câu 5. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tứ giác.
B. Một khối chóp tam giác, một khối chóp ngữ giác.
C. Hai khối chóp tam giác.
D. Một khối chóp tam giác, một khối chóp tứ giác.
Câu 6. [1-c] Giá trị của biểu thức
A. −2.
log7 16
log7 15 − log7
B. −4.
√
√
4n2 + 1 − n + 2
Câu 7. Tính lim
bằng
2n − 3
A. +∞.
B. 1.
15
30
bằng
C. 2.
D. 4.
3
.
2
D. 2.
C.
Câu 8. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a
√
a3 15
a3 5
a3 15
a3
A.
.
B.
.
C.
.
D.
.
5
25
25
3
Câu 9. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. .
B. − .
C. −2.
2
2
Câu 10. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A
hợp với đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là
√
√
a3 3
2a3 3
3
A. a 3.
B.
.
C.
.
3
3
Câu 11. Dãy số nào sau đây có giới hạn khác 0?
sin n
n+1
1
A.
.
B.
.
C. .
n
n
n
D. 2.
⊥ (ABCD). Mặt bên (S CD)
√
a3 3
D.
.
6
1
D. √ .
n
[ = 60◦ , S O
Câu 12. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.√Khoảng cách từ A đến (S
√ BC) bằng
√
√
2a 57
a 57
a 57
A. a 57.
B.
.
C.
.
D.
.
19
19
17
Trang 1/10 Mã đề 1
Câu 13. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 24 m.
C. 12 m.
D. 8 m.
Câu 14. Hàm số nào sau đây khơng có cực trị
A. y = x4 − 2x + 1.
B. y = x3 − 3x.
1
C. y = x + .
x
D. y =
x−2
.
2x + 1
Câu 15. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 3, 5 triệu đồng.
B. 50, 7 triệu đồng.
C. 70, 128 triệu đồng. D. 20, 128 triệu đồng.
Câu 16. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 15 tháng.
B. 17 tháng.
C. 18 tháng.
D. 16 tháng.
4x + 1
bằng?
x→−∞ x + 1
B. 4.
Câu 17. [1] Tính lim
A. −4.
C. −1.
D. 2.
Câu 18. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 4.
B. ln 14.
C. ln 12.
D. ln 10.
Câu 19. Khối đa diện đều loại {5; 3} có số mặt
A. 8.
B. 12.
C. 20.
D. 30.
Câu 20. Khối đa diện đều loại {4; 3} có số mặt
A. 10.
B. 8.
C. 6.
D. 12.
Câu 21. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị
" đây?
!
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới
5
5
A.
;3 .
B. (1; 2).
C. 2; .
D. [3; 4).
2
2
√
ab.
Câu 22. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
C. Số cạnh của khối chóp bằng số mặt của khối chóp.
D. Số đỉnh của khối chóp bằng số mặt của khối chóp.
2
2
sin x
Câu 23. [3-c]
+ 2cos x lần
√ Giá trị nhỏ nhất và giá trị lớn nhất của hàm√số f (x) = 2
√ lượt là
A. 2 và 2 2.
B. 2 và 3.
C. 2 và 3.
D. 2 2 và 3.
Câu 24. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2
A. −1.
B. 6.
3
Z
6
3x + 1
1
. Tính
f (x)dx.
0
C. 2.
D. 4.
Câu 25. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = (0; +∞).
B. D = R.
C. D = R \ {1}.
D. D = R \ {0}.
Câu 26. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối tứ diện đều.
C. Khối bát diện đều.
D. Khối 12 mặt đều.
Trang 2/10 Mã đề 1
Câu 27. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B.
.
C.
.
D. a3 .
6
12
24
Câu 28. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có vơ số.
B. Có một.
C. Khơng có.
D. Có hai.
Câu 29. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 4 mặt.
C. 6 mặt.
D. 3 mặt.
Câu 30. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m ≤ .
C. m ≥ .
D. m > .
A. m < .
4
4
4
4
Câu 31. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 27cm3 .
B. 46cm3 .
C. 72cm3 .
D. 64cm3 .
cos n + sin n
Câu 32. Tính lim
n2 + 1
A. +∞.
B. 1.
C. −∞.
D. 0.
Câu 33. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
Thể tích khối chóp S .ABC √là
√ với đáy và S C = a 3.3 √
√
3
a 3
a 6
2a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
2
12
9
4
Câu 34. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −9.
B. −15.
C. −5.
D. −12.
!
!
!
x
2
2016
1
4
. Tính tổng T = f
+f
+ ··· + f
Câu 35. [3] Cho hàm số f (x) = x
4 +2
2017
2017
2017
2016
A. T = 2017.
B. T = 2016.
C. T =
.
D. T = 1008.
2017
Câu 36. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; 0) và (1; +∞). B. (0; 1).
C. (−∞; −1) và (0; +∞). D. (−1; 0).
√
Câu 37. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √
√
√
3
a 6
a 2
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
18
6
36
6
Câu 38. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).
B. [6, 5; +∞).
C. (4; 6, 5].
Câu 39. Giá trị của giới hạn lim
A. 1.
B. 0.
2−n
bằng
n+1
C. 2.
D. (4; +∞).
D. −1.
Câu 40. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 0.
B. 2.
C. 3.
D. 1.
Câu 41. Khối đa diện đều loại {3; 4} có số cạnh
A. 12.
B. 8.
D. 10.
C. 6.
Trang 3/10 Mã đề 1
Câu 42. Khẳng định nào sau đây đúng?
A. Hình lăng trụ tứ giác đều là hình lập phương.
B. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ đứng là hình lăng trụ đều.
!
3n + 2
2
Câu 43. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 2.
B. 3.
C. 5.
D. 4.
Câu 44. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD
√ là
3
10a 3
.
D. 40a3 .
A. 20a3 .
B. 10a3 .
C.
3
Câu 45. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P hoặc d ⊥ P.
B. d song song với (P).
C. d nằm trên P.
D. d ⊥ P.
x+1
Câu 46. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. .
B. 1.
C. .
D. .
2
3
6
Câu 47. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 4.
C. 6.
D. 8.
Câu 48. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√
√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng
√
√
a 2
a 2
.
B. a 2.
.
C. 2a 2.
D.
A.
2
4
x2
Câu 49. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 0.
B. M = , m = 0.
C. M = e, m = .
D. M = e, m = 1.
e
e
Câu 50. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
15
9
18
6
Câu 51. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 1587 m.
B. 25 m.
C. 387 m.
D. 27 m.
Câu 52. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là −4.
B. Phần thực là −3, phần ảo là 4.
C. Phần thực là 3, phần ảo là 4.
D. Phần thực là −3, phần ảo là −4.
a
1
+
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
C. 4.
D. 7.
Câu 53. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) =
A. 2.
B. 1.
Trang 4/10 Mã đề 1
Câu 54. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 1.
B. +∞.
C. 3.
Câu 55. [1] !Tập xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
A.
; +∞ .
B. −∞; .
C. −∞; − .
2
2
2
D. 2.
!
1
D. − ; +∞ .
2
Câu 56. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 220 triệu.
B. 212 triệu.
C. 216 triệu.
D. 210 triệu.
Câu 57. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng BD và S C bằng
√
√
√
√
a 6
a 6
a 6
.
C.
.
D.
.
B.
A. a 6.
3
2
6
Câu 58. Khối đa diện đều loại {5; 3} có số đỉnh
A. 8.
B. 20.
C. 30.
D. 12.
Câu 59. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 3
a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
12
12
6
4
x−3
Câu 60. [1] Tính lim
bằng?
x→3 x + 3
A. 0.
B. 1.
C. +∞.
D. −∞.
2
2n − 1
Câu 61. Tính lim 6
3n + n4
2
A. 1.
B. 0.
C. .
D. 2.
3
Câu 62. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 2).
B. (−∞; 0) và (2; +∞). C. (0; +∞).
D. (0; 2).
Câu 63. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 4 lần.
B. Tăng gấp đôi.
C. Tăng gấp 8 lần.
D. Tăng gấp 6 lần.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 64. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là
√
√
√
a3 3
a3 2
a3 3
2
A.
.
B. 2a 2.
C.
.
D.
.
24
24
12
Câu 65. Khối đa diện đều loại {4; 3} có số cạnh
A. 12.
B. 10.
C. 20.
D. 30.
Câu 66. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
A. .
B.
.
C. 2.
D. 1.
2
2
Câu 67. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√
√ là
3
3
3
3
8a 3
4a 3
8a 3
a 3
A.
.
B.
.
C.
.
D.
.
3
9
9
9
Trang 5/10 Mã đề 1
!2x−1
!2−x
3
3
Câu 68. Tập các số x thỏa mãn
≤
là
5
5
A. [1; +∞).
B. (+∞; −∞).
C. [3; +∞).
D. (−∞; 1].
Câu 69. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −2.
B. −4.
C.
.
D. −7.
27
2n + 1
Câu 70. Tính giới hạn lim
3n + 2
2
1
3
B. .
C. 0.
D. .
A. .
2
3
2
Câu 71. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 2.
B. 0, 5.
C. 0, 4.
D. 0, 3.
Câu 72.
có nghĩa
√ Biểu thức nào sau đây khơng
−3
−1
A.
−1.
B. 0 .
√
C. (− 2)0 .
D. (−1)−1 .
Câu 73. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim f (x) = f (a).
B. f (x) có giới hạn hữu hạn khi x → a.
x→a
C. lim+ f (x) = lim− f (x) = +∞.
x→a
x→a
D. lim+ f (x) = lim− f (x) = a.
x→a
x→a
Câu 74. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√
√
√ chóp S .ABCD là
a3 3
a3 6
a3 2
a3 3
.
B.
.
C.
.
D.
.
A.
24
48
48
16
9x
Câu 75. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. −1.
B. 2.
C. .
D. 1.
2
1
Câu 76. Hàm số y = x + có giá trị cực đại là
x
A. −1.
B. 2.
C. −2.
D. 1.
Câu 77. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.
Câu 78. Tính lim
x→2
A. 3.
x+2
bằng?
x
B. 2.
C. Khối 12 mặt đều.
D. Khối 20 mặt đều.
C. 0.
D. 1.
Câu 79. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 6 cạnh, 4 mặt. B. 3 đỉnh, 3 cạnh, 3 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 6 đỉnh, 6 cạnh, 4 mặt.
Câu 80. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp S .ABCD là
√
4a3
4a3 3
2a3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
2
Câu 81. Tính
√ mơ đun của số phức z√4biết (1 + 2i)z = 3 + 4i. √
A. |z| = 2 5.
B. |z| = 5.
C. |z| = 5.
D. |z| = 5.
Câu 82. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = 6.
C. y(−2) = 2.
D. y(−2) = −18.
Trang 6/10 Mã đề 1
Câu 83. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.
√
B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
D. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
!
x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
Câu 84. [3] Cho hàm số f (x) = ln 2017 − ln
x
4035
2017
2016
A. 2017.
B.
.
C.
.
D.
.
2018
2018
2017
Câu 85. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (1; −3).
B. (2; 2).
C. (0; −2).
D. (−1; −7).
Câu 86. Hàm số y =
A. x = 2.
x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 3.
C. x = 1.
D. x = 0.
m
ln2 x
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
Câu 87. [3] Biết rằng giá trị lớn nhất của hàm số y =
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 135.
C. S = 24.
D. S = 32.
Câu 88. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 2ac
3b + 3ac
.
B.
.
C.
.
D.
.
A.
c+3
c+2
c+2
c+1
Câu 89. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
A. aα bα = (ab)α .
B. β = a β .
C. aαβ = (aα )β .
D. aα+β = aα .aβ .
a
x+3
nghịch biến trên khoảng
Câu 90. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x−m
(0; +∞)?
A. Vô số.
B. 2.
C. 1.
D. 3.
Câu 91. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R.
B. D = R \ {1; 2}.
C. D = [2; 1].
2
D. D = (−2; 1).
Câu 92. Tứ diện đều thuộc loại
A. {4; 3}.
B. {5; 3}.
C. {3; 3}.
D. {3; 4}.
x−3 x−2 x−1
x
Câu 93. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (2; +∞).
B. (−∞; 2].
C. [2; +∞).
D. (−∞; 2).
1 − xy
Câu 94. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.
√
√
√
2 11 − 3
18 11 − 29
9 11 − 19
9 11 + 19
A. Pmin =
.
B. Pmin =
. C. Pmin =
. D. Pmin =
.
3
21
9
9
1
Câu 95. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 1) và (3; +∞). B. (1; +∞).
C. (−∞; 3).
D. (1; 3).
0 0 0 0
0
Câu 96.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 6
a 3
A.
.
B.
.
C.
.
D.
.
7
2
3
2
Trang 7/10 Mã đề 1
Câu 97. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
n2 − 2
.
B.
u
=
.
A. un =
n
5n − 3n2
n2
C. un =
1 − 2n
.
5n + n2
D. un =
n2 + n + 1
.
(n + 1)2
Câu 98. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 2).
B. Hàm số đồng biến trên khoảng (0; +∞).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số đồng biến trên khoảng (0; 2).
2
Câu 99. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2√
A. m = ±1.
B. m = ±3.
C. m = ± 3.
D. m = ± 2.
Câu 100. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp
√ là√
A. 6, 12, 24.
B. 2, 4, 8.
C. 2 3, 4 3, 38.
D. 8, 16, 32.
Câu 101. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 12.
C. 20.
D. 30.
Câu 102. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục thực.
B. Trục ảo.
C. Hai đường phân giác y = x và y = −x của các góc tọa độ.
D. Đường phân giác góc phần tư thứ nhất.
Câu 103. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 48cm3 .
B. 91cm3 .
C. 84cm3 .
D. 64cm3 .
Câu 104. Cho z √
là nghiệm của phương trình x2 + x + 1 = 0. Tính P √
= z4 + 2z3 − z
−1 + i 3
−1 − i 3
.
B. P = 2i.
C. P =
.
D. P = 2.
A. P =
2
2
Câu 105. Cho hình
√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là
√
√
a3 6
a3 15
a3 5
.
B.
.
C.
.
D. a3 6.
A.
3
3
3
2n − 3
Câu 106. Tính lim 2
bằng
2n + 3n + 1
A. −∞.
B. 0.
C. 1.
D. +∞.
Câu 107. Phát biểu nào sau đây là sai?
1
A. lim k = 0 với k > 1.
n
C. lim un = c (Với un = c là hằng số).
B. lim qn = 1 với |q| > 1.
1
D. lim √ = 0.
n
Câu 108. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình tam giác.
B. Hình chóp.
C. Hình lập phương.
D. Hình lăng trụ.
Câu 109. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp
√
√ phẳng vng góc với 3(ABCD).
√ S .ABCD là
3
3
√
3
2
3
a
a
a
A. a3 3.
B.
.
C.
.
D.
.
2
2
4
Câu 110. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 5}.
B. {4; 3}.
C. {5; 3}.
D. {3; 4}.
Trang 8/10 Mã đề 1
Câu 111.
√ Thể tích của tứ diện đều
√cạnh bằng a
√
√
a3 2
a3 2
a3 2
a3 2
A.
.
B.
.
C.
.
D.
.
4
2
6
12
Câu 112.
√ các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất của |z|
√ [4-1246d] Trong tất cả
B. 5.
C. 2.
D. 1.
A. 3.
Câu 113. [1] Đạo hàm của làm số y = log x là
1
ln 10
1
1
A.
.
B. y0 =
.
C. y0 = .
D. y0 =
.
10 ln x
x
x
x ln 10
Câu 114. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
.
C. f 0 (0) = ln 10.
D. f 0 (0) = 1.
A. f 0 (0) = 10.
B. f 0 (0) =
ln 10
1
Câu 115. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 2 < m ≤ 3.
C. 0 ≤ m ≤ 1.
D. 2 ≤ m ≤ 3.
Câu 116. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa
√ hai đường thẳng S B và AD bằng
√
√
√
a 2
a 2
.
B. a 2.
.
A.
C. a 3.
D.
3
2
Câu 117. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. 6.
B. .
C. 9.
D. .
2
2
Câu 118. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
√3
4
Câu 119. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
2
5
5
7
A. a 3 .
B. a 3 .
C. a 8 .
D. a 3 .
Câu 120. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
Câu 121. Phát biểu nào sau đây là sai?
1
A. lim qn = 0 (|q| > 1).
B. lim k = 0.
n
1
C. lim = 0.
D. lim un = c (un = c là hằng số).
n
Câu 122. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.
B. 16π.
C. V = 4π.
D. 8π.
Câu 123. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
Trang 9/10 Mã đề 1
A. Câu (III) sai.
B. Câu (II) sai.
D. Khơng có câu nào
sai.
√
Câu 124. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh
bên S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
√
√
√
3a
a 38
3a 58
3a 38
A.
.
B.
.
C.
.
D.
.
29
29
29
29
Câu 125. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng số cạnh của khối chóp.
B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số cạnh của khối chóp bằng 2n.
D. Số mặt của khối chóp bằng 2n+1.
Câu 126. Khối đa diện đều loại {3; 3} có số cạnh
A. 8.
B. 5.
C. Câu (I) sai.
C. 4.
D. 6.
Câu 127. Khối đa diện đều loại {3; 5} có số đỉnh
A. 8.
B. 12.
C. 20.
D. 30.
1
Câu 128. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2) ∪ (−1; +∞). B. (−∞; −2] ∪ [−1; +∞). C. −2 ≤ m ≤ −1.
D. −2 < m < −1.
Câu 129. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = 3S h.
B. V = S h.
C. V = S h.
D. V = S h.
3
2
x−2 x−1
x
x+1
Câu 130. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3].
B. (−3; +∞).
C. [−3; +∞).
D. (−∞; −3).
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
C
3.
6.
B
B
C
8.
C
9.
11.
4. A
D
5.
7.
D
2.
1. A
B
13. A
15.
D
10.
B
12.
B
14.
D
16.
D
17.
B
18.
19.
B
20.
21. A
23.
D
B
C
22.
D
24.
D
25.
B
26.
D
27.
B
28.
D
30.
B
31. A
32.
D
33.
34.
D
35.
36.
D
37. A
38.
B
D
39.
C
40. A
D
41. A
42.
43.
C
44. A
D
45. A
46.
D
47.
48. A
D
49. A
51.
D
52.
53.
D
54.
55.
D
56.
B
57.
D
58.
B
59. A
61.
63.
D
60. A
62.
B
C
65. A
67.
B
B
64.
C
66.
C
68. A
C
69. A
70.
1
B
71.
D
73. A
72.
B
74.
B
75.
D
76.
77.
D
78.
79. A
C
B
80. A
D
81.
B
82.
83.
B
84.
C
86.
C
85.
C
D
87.
89.
88.
B
D
90.
B
91. A
92.
93.
C
94. A
C
95. A
C
96.
98.
C
97.
99. A
D
100. A
C
101.
103.
C
102.
D
104.
105.
B
106.
107.
B
108. A
109.
B
110. A
D
B
111.
D
112.
C
113.
D
114.
C
115.
116.
B
117.
D
118.
119. A
120. A
121. A
123.
124.
128.
B
D
125.
C
126.
D
D
C
130. A
2
C
127.
B
129.
B