Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn tập toán thptqg 5 (6)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (151.73 KB, 12 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là 4.
B. Phần thực là 4, phần ảo là −1.
C. Phần thực là 4, phần ảo là 1.
D. Phần thực là −1, phần ảo là −4.
Câu 2. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 21.
C. 24.
D. 23.
Câu 3. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là −4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là 3, phần ảo là −4.
D. Phần thực là −3, phần ảo là 4.
Câu 4. Cho hình √chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là

3


3

a 15
a 5
a3 6
3
.
B.
.
C. a 6.
.
A.
D.
3
3
3
Câu 5. Cho hình chóp S .ABCD có
√ đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm của
AD, biết S H ⊥ (ABCD), S A = a √
5. Thể tích khối chóp S .ABCD


3
3
3
4a 3
2a 3
4a3
2a
.

B.
.
C.
.
D.
.
A.
3
3
3
3

x2 + 3x + 5
Câu 6. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. 0.
B. .
C. 1.
D. − .
4
4
 π π
Câu 7. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 3.
B. 1.
C. −1.

D. 7.
!
!
!
4x
1
2
2016
Câu 8. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 2016.
B. T =
.
C. T = 1008.
D. T = 2017.
2017
Câu 9. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −21.
B. P = 21.
C. P = −10.
D. P = 10.
x
Câu 10. Tính diện tích hình phẳng

√ giới hạn bởi các đường y = xe , y = 0, x = 1.
1
3
3
A. .
B.
.
C. 1.
D. .
2
2
2

Câu 11. Khối lập phương thuộc loại
A. {3; 4}.
B. {4; 3}.

C. {5; 3}.

D. {3; 3}.

Câu 12. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 3.

C. 2.

D. 4.

Câu 13. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

1
1
A. V = 3S h.
B. V = S h.
C. V = S h.
2
3

D. V = S h.
Trang 1/11 Mã đề 1


1 − 2n
Câu 14. [1] Tính lim
bằng?
3n + 1
2
1
2
A. − .
B. 1.
C. .
D. .
3
3
3
Câu 15. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp là



A. 8, 16, 32.
B. 2, 4, 8.
C. 6, 12, 24.
D. 2 3, 4 3, 38.
Câu 16.√Biểu thức nào sau đây khơng có nghĩa
A. (− 2)0 .
B. 0−1 .

C.


−1.

−3

Câu 17. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 4}.
C. {4; 3}.

D. (−1)−1 .
D. {3; 3}.

[ = 60◦ , S O
Câu 18. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.

√ Khoảng cách từ A đến (S BC) bằng


2a 57
a 57
a 57
A.
D.
.
B.
.
C. a 57.
.
19
19
17
log7 16
Câu 19. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. −4.
B. −2.
C. 4.
D. 2.
Câu 20. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng




a 3
a 3

2a 3
B.
.
C.
.
D.
.
A. a 3.
2
3
2
Câu 21. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD


a3
a3 3
a3 3
A.
.
B.
.
C.
.
D. a3 .
3
9
3
Câu 22. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +

log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 6).
B. (1; 3; 2).
C. (2; 4; 3).
D. (2; 4; 4).
Câu 23. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 24. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối lập phương.
B. Khối bát diện đều.

C. Khối tứ diện đều.

Câu 25. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. (1; 2).
C. (−∞; +∞).

D. Khối 12 mặt đều.
D. [1; 2].

Câu 26. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 27 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 3 lần.
D. Tăng gấp 9 lần.

Câu 27. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
B. T = e + 1.
C. T = e + 3.
D. T = e + .
A. T = 4 + .
e
e
π
Câu 28. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.

A. T = 2 3.
B. T = 2.
C. T = 4.
D. T = 3 3 + 1.
Trang 2/11 Mã đề 1


Câu 29. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng





a 6
.
A. a 3.
B. 2a 6.
C. a 6.
D.
2
Câu 30. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 91cm3 .
C. 48cm3 .
D. 84cm3 .
Câu 31. [2] Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8 √
C. m = ±1.
D. m = ± 3.
A. m = ±3.
B. m = ± 2.
Câu 32. Khối đa diện đều loại {5; 3} có số cạnh
A. 8.
B. 12.

C. 20.

Câu 33. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
A. 1.
B. 2.
C. .
2


D. 30.

D.

ln 2
.
2

2
Câu 34. [2]√Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2
A. m = ± 2.
B. m = ±1.
C. m = ± 3.
D. m = ±3.

Câu 35. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm tứ diện đều.
B. Năm hình chóp tam giác đều, khơng có tứ diện đều.
C. Bốn tứ diện đều và một hình chóp tam giác đều.
D. Một tứ diện đều và bốn hình chóp tam giác đều.
Z 1
Câu 36. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

A. 1.


B.

1
.
2

C.

1
.
4

D. 0.

Câu 37. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 1.

B. 3.

C. 4.

D. 2.

Câu 38. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 6 mặt. B. 5 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 5 mặt. D. 6 đỉnh, 6 cạnh, 6 mặt.
Câu 39. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?

(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 0.

B. 3.

C. 1.

D. 2.
Trang 3/11 Mã đề 1


Câu 40. Dãy số nào sau đây có giới hạn khác 0?
1
sin n
.
B. √ .
A.
n
n

C.

1
.
n

D.


n+1
.
n

[ = 60◦ , S A ⊥ (ABCD).
Câu 41. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh

√ S C là a. Thể tích khối chóp S .ABCD là
3
3

a 2
a 3
a3 2
3
A.
.
B.
.
C. a 3.
D.
.
4
6
12

Câu 42. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới
" đây?

!
5
5
A. [3; 4).
B.
;3 .
C. 2; .
D. (1; 2).
2
2
Câu 43. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
x+1
bằng
Câu 44. Tính lim
x→−∞ 6x − 2
1
1
1
A. .
B. .
C. 1.
D. .
2
6
3
Câu 45. Khối đa diện đều loại {4; 3} có số đỉnh

A. 4.
B. 10.
C. 8.
D. 6.
Câu 46. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (−1; −7).
B. (2; 2).
C. (0; −2).

D. (1; −3).

Câu 47. Bát diện đều thuộc loại
A. {5; 3}.
B. {4; 3}.

D. {3; 4}.

C. {3; 3}.

Câu 48. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
1
ab
.
B. √
.
C. 2
.

.
D. √
A. √
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
log(mx)
Câu 49. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m = 4.
B. m < 0 ∨ m > 4.
C. m ≤ 0.
D. m < 0.
0

0

Câu 50. Khối đa diện đều loại {5; 3} có số đỉnh
A. 12.
B. 20.

0

0

C. 30.


D. 8.

Câu 51. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng số cạnh của khối chóp.
B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số cạnh của khối chóp bằng 2n.
D. Số mặt của khối chóp bằng 2n+1.
Câu 52. [2] Ơng A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.
100.(1, 01)3
(1, 01)3
A. m =
triệu.
B. m =
triệu.
3
(1, 01)3 − 1
120.(1, 12)3
100.1, 03
C. m =
triệu.
D. m =
triệu.
3
(1, 12) − 1
3
Trang 4/11 Mã đề 1



Câu 53. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 1200 cm2 .
C. 160 cm2 .
D. 120 cm2 .
Câu 54. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


3
a3 3
a
3
a3
.
B.
.
C. a3 .
D.
.
A.
3
2
6
Câu 55. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Tăng lên n lần.

B. Tăng lên (n − 1) lần. C. Giảm đi n lần.
D. Không thay đổi.
Câu 56. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất khơng thay đổi?
A. 102.016.000.
B. 102.423.000.
C. 102.016.000.
D. 102.424.000.

Câu 57. Thể tích của khối lập phương có cạnh bằng a 2 √


2a3 2
A. V = a3 2.
B. V = 2a3 .
C.
.
D. 2a3 2.
3
log2 240 log2 15
Câu 58. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. 3.
B. 1.
C. −8.
D. 4.

Câu 59. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
B. F(x) = G(x) trên khoảng (a; b).
C. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
D. Cả ba câu trên đều sai.
Câu 60. [1] Tính lim
x→3

A. −∞.

x−3
bằng?
x+3
B. +∞.

C. 0.

D. 1.

Câu 61. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
B. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
C. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim

= −∞.
vn
!
un
D. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
Câu 62. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim− f (x) = f (b).
B. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a

x→b

x→a

x→b

C. lim+ f (x) = f (a) và lim+ f (x) = f (b).

x→a

x→b

x→a

x→b

D. lim− f (x) = f (a) và lim− f (x) = f (b).


Câu 63. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 5
a3 5
a3 3
A.
.
B.
.
C.
.
D.
.
12
6
12
4
Trang 5/11 Mã đề 1


Câu 64. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 4.

C. 6.

D. 8.


Câu 65. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp đôi.
B. Tăng gấp 4 lần.
C. Tăng gấp 6 lần.
D. Tăng gấp 8 lần.
Câu 66. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 5}.
B. {5; 3}.
C. {4; 3}.

D. {3; 4}.

Câu 67. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 13.
B. 13.
C. 2020.
D. log2 2020.
Câu 68. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4





a3 3
a3 3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
6
12
24
36
Câu 69. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m > 0.
B. m = 0.
C. m , 0.
D. m < 0.
Câu 70. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 10 năm.
B. 9 năm.
C. 7 năm.
D. 8 năm.
Câu 71. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?

A. Tứ diện đều.
B. Thập nhị diện đều. C. Bát diện đều.

D. Nhị thập diện đều.

Câu 72. Giá trị cực đại của hàm số y = x − 3x + 4 là
A. 2.
B. 1.
C. 6.
3

D. −1.
Z 1
6
2
3
. Tính
Câu 73. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
f (x)dx.
0
3x + 1
A. −1.

B. 2.

C. 6.

D. 4.

Câu 74. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a bằng

1
1
C. 2.
D. .
A. −2.
B. − .
2
2
2
2
0
Câu 75. Cho f (x) = sin x − cos x − x. Khi đó f (x) bằng
A. 1 − sin 2x.
B. −1 + sin x cos x.
C. −1 + 2 sin 2x.
D. 1 + 2 sin 2x.
2n + 1
Câu 76. Tính giới hạn lim
3n + 2
3
1
2
A. .
B. .
C. 0.
D. .
2
2
3
Câu 77. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình

phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 4.
C. 0, 5.
D. 0, 2.
2

Câu 78. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.




5 13
A. 2.
B. 2 13.
C. 26.
D.
.
13
Câu 79. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e4 .
B. −2e2 .
C. 2e2 .
D. −e2 .
Trang 6/11 Mã đề 1


Câu 80. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.

B. 9 mặt.
C. 3 mặt.
D. 6 mặt.
Câu 81. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = R \ {1}.

C. D = (0; +∞).

D. D = R \ {0}.

Câu 82. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 1; m = 1.
B. M = e2 − 2; m = e−2 + 2.
C. M = e−2 + 2; m = 1.
D. M = e−2 − 2; m = 1.
Câu 83. Phát biểu nào sau đây là sai?
1
B. lim qn = 1 với |q| > 1.
A. lim √ = 0.
n
1
C. lim k = 0 với k > 1.
D. lim un = c (Với un = c là hằng số).
n
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 84. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là




a3 2
a3 3
a3 3
A.
.
B.
.
C.
.
D. 2a2 2.
24
24
12
0
Câu 85. [2] Cho hàm số y = ln(2x + 1). Tìm m để y (e) = 2m + 1
1 − 2e
1 + 2e
1 − 2e
1 + 2e
.
B. m =
.
C. m =
.
D. m =
.
A. m =
4e + 2

4 − 2e
4 − 2e
4e + 2
Câu 86. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 2.
B. y(−2) = 22.
C. y(−2) = 6.
D. y(−2) = −18.
Câu 87. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 8 m.
B. 24 m.
C. 16 m.
D. 12 m.
Câu 88. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể tích của khối chóp S .ABC√ theo a


a3 5
a3 15
a3 15
a3
A.
.
B.
.
C.
.
D.

.
3
25
5
25
Z 2
ln(x + 1)
Câu 89. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. −3.
B. 1.
C. 0.
D. 3.
[ = 60◦ , S O
Câu 90. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ Khoảng cách từ O đến (S BC) bằng

√ với mặt đáy và S O = a.

a 57
a 57
2a 57
.
B.
.
C. a 57.
D.

.
A.
19
17
19
Câu 91. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 1.
B. +∞.
C. 2.
D. 3.
Câu 92. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD
√ là
3
10a 3
A. 10a3 .
B. 20a3 .
C.
.
D. 40a3 .
3
Câu 93.
các khẳng định sau, khẳng định nào sai?
Z Trong
u0 (x)
A.
dx = log |u(x)| + C.
u(x)
B. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.

Trang 7/11 Mã đề 1


C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
D. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
Câu 94. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. 2.
C. Vô số.
D. 1.
1
Câu 95. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 2 < m ≤ 3.
C. 0 < m ≤ 1.
D. 2 ≤ m ≤ 3.
2n + 1
Câu 96. Tìm giới hạn lim
n+1
A. 3.
B. 1.
C. 2.
D. 0.
Câu 97. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
5
13

23
9
A. − .
B.
.
C. −
.
D.
.
16
100
100
25
Câu 98. Khẳng định nào sau đây đúng?
A. Hình lăng trụ tứ giác đều là hình lập phương.
B. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ đứng là hình lăng trụ đều.
D. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
Câu 99. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tam giác và một hình chóp tứ giác.
B. Hai hình chóp tam giác.
C. Một hình chóp tứ giác và một hình chóp ngũ giác.
D. Hai hình chóp tứ giác.
Câu 100. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là


3
3

3

2a
a
a
3
3
3
B.
.
C.
.
D.
.
A. a3 3.
6
3
3
Câu 101. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 + ln x.
B. y0 = x + ln x.
C. y0 = ln x − 1.
D. y0 = 1 − ln x.
Câu 102. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 5.
B. 7.

C. 9.


D. 0.

Câu 103. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 1.
C. 2.
D. Vô nghiệm.
Câu 104. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Hai đường phân giác y = x và y = −x của các góc tọa độ.
B. Đường phân giác góc phần tư thứ nhất.
C. Trục ảo.
D. Trục thực.
Câu 105. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng M + m


A. 8 2.
B. 16.
C. 7 3.
D. 8 3.
3

Câu 106. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e.
B. e5 .
C. e3 .
D. e2 .
Trang 8/11 Mã đề 1



Câu 107. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d song song với (P).
B. d ⊥ P.
C. d nằm trên P.
D. d nằm trên P hoặc d ⊥ P.
Câu 108. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 6.
C. 12.
D. 10.
!
x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
Câu 109. [3] Cho hàm số f (x) = ln 2017 − ln
x
4035
2016
2017
A.
.
B. 2017.
C.
.
D.
.
2018
2017
2018
Câu 110. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng

cách giữa
√ hai đường thẳng BD và√S C bằng


a 6
a 6
a 6
A.
.
B.
.
C. a 6.
D.
.
2
3
6
Câu 111. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (1; +∞).
C. (−∞; −1).

D. (−1; 1).

Câu 112. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − .
B. − .

C. −e.
D. − 2 .
e
2e
e
Câu 113.
Cho hàm số f (x),
mệnh đề nào sai?
Z
Z g(x) liên tục
Z trên R. Trong các
Z mệnh đề sau, Z
A.
Z
C.

( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
Z
f (x)g(x)dx =
f (x)dx g(x)dx.

k f (x)dx = f

B.
Z
D.

f (x)dx, k ∈ R, k , 0.

Z
Z
( f (x) − g(x))dx =
f (x)dx − g(x)dx.

Câu 114. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
C. .
D. 9.
A. 6.
B. .
2
2
Câu 115. ZCho hai hàm Zy = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
f 0 (x)dx =

A. Nếu
Z

Z

g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
C. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.

Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
B. Nếu

f (x)dx =

g0 (x)dx thì f (x) = g(x), ∀x ∈ R.

2n − 3
bằng
Câu 116. Tính lim 2
2n + 3n + 1
A. +∞.
B. 1.

C. 0.

D. −∞.

Câu 117. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lăng trụ tam giác.
B. Khối bát diện đều.
C. Khối tứ diện.
D. Khối lập phương.
Câu 118. Cho số phức z thỏa mãn |z√+ 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.

A. |z| = 17.

B. |z| = 10.
C. |z| = 10.
D. |z| = 17.
Câu 119. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−3; 1].
B. [−1; 3].
C. (−∞; −3].
D. [1; +∞).
Trang 9/11 Mã đề 1


1
1
1
Câu 120. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
A. +∞.
B. 2.
C. .
2
2
x − 3x + 3
Câu 121. Hàm số y =
đạt cực đại tại
x−2
A. x = 2.

B. x = 0.
C. x = 1.

!

D.

5
.
2

D. x = 3.

Câu 122. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa hai đường thẳng S B và AD bằng




a 2
a 2
A. a 2.
B. a 3.
C.
.
D.
.
3
2
Câu 123. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng

rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 10 năm.
C. 12 năm.
D. 14 năm.
1
a
, với a, b ∈ Z. Giá trị của a + b là
Câu 124. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
4 b ln 3
A. 4.
B. 7.
C. 2.
D. 1.
2
x − 5x + 6
Câu 125. Tính giới hạn lim
x→2
x−2
A. 0.
B. −1.
C. 1.
D. 5.
2
x
Câu 126. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1

1
C. M = , m = 0.
D. M = e, m = 0.
A. M = e, m = 1.
B. M = e, m = .
e
e
Câu 127. Mệnh đề nào sau đây sai?
A. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
B. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Z
C. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z
D.
f (x)dx = f (x).

f (x)dx = F(x) + C.

Câu 128. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9
tháng thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không
thay đổi trong thời gian gửi.
A. 0, 5%.
B. 0, 6%.
C. 0, 7%.
D. 0, 8%.
Câu 129. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).

(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. Cả ba mệnh đề.

B. (II) và (III).
C. (I) và (III).
D. (I) và (II).
mx − 4
Câu 130. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 67.
B. 45.
C. 34.
D. 26.
- - - - - - - - - - HẾT- - - - - - - - - Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

2. A

B

3.

D


4.

D

5.

D

6.

D

7.

B

9. A
11.

8.

C

10.

C

13.


C

14. A

15.

C

16.

17. A

18. A

19. A

20.

21. A

22. A

23.

D

12.

B


B

24.

25.

C

26. A

27.

C

28.

29.

C

30. A

B
C
B
C

31.

B


32.

33.

B

34.

B

36.

B

35.
37.

D

D

38.

B

39.

D


40.

41. A

B
B

C

44.

45.

C

46.
D

D

42.

43.
47.

C

C

48. A


49. A

50.

B

51.

C

52.

B

53.

C

54.

B

55.

C

56.

57.

59.

D
C

61. A
63.
65.

D

58.

C

60.

C

62. A
64.

C
D

C

66. A

67. A


68.
1

B


69.
71.

70.

C
B
D

74. A

C

77. A
D

79.
B
C

89. A
91.


C

93. A

D
C
D

86.

D

88.

D

90.

D

92.

B

94.

B

96.


B

97.

C
B

101. A

C

98.

D

100.

D

102.

103.
105.

78.

84. A
D

87.


99.

D

82.

85.

95.

76.
80.

81. A
83.

C

72.

73.
75.

B

C

104. A


C
B

106.

B

107.

D

108.

109.

D

110.

111.

D

112.

B

114.

B


C

113.
115.

B

117.
119. A

118.

B

120.

B

124.

D
B

126.

B

127. A
129.


C

122.

C

123. A
125.

D

116.
C

121.

C

D

2

D

128.

C

130.


C



×