Free LATEX
BÀI TẬP TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút
Mã đề thi 1
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
n2 + 1
B. lim un = 1.
1
C. Dãy số un khơng có giới hạn khi n → +∞.
D. lim un = .
2
2mx + 1
1
Câu 2. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −2.
B. 1.
C. −5.
D. 0.
Câu 1. [3-1132d] Cho dãy số (un ) với un =
A. lim un = 0.
Câu 3. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 2.
B. 0, 5.
C. 0, 3.
D. 0, 4.
√
√
Câu 4. Tìm giá trị lớn nhất của hàm
√
√ số y = x + 3 + 6 − x√
A. 3.
B. 2 3.
C. 2 + 3.
D. 3 2.
Câu 5. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
C. 9.
D. .
A. 6.
B. .
2
2
0 0 0 0
Câu 6. √[2] Cho hình lâp phương√ABCD.A B C D cạnh a. √
Khoảng cách từ C đến AC√0 bằng
a 3
a 6
a 6
a 6
A.
.
B.
.
C.
.
D.
.
2
3
2
7
Câu 7. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây thứ
5 đến giây thứ 15 là bao nhiêu?
A. 6510 m.
B. 1202 m.
C. 1134 m.
D. 2400 m.
Câu 8. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2]. Giá
trị của biểu thức P = (m2 − 4M)2019
A. 1.
B. 0.
C. 22016 .
D. e2016 .
Câu 9. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m > − .
B. m ≥ 0.
C. m ≤ 0.
D. − < m < 0.
4
4
3
Câu 10. Giá trị cực đại của hàm số y = x − 3x + 4 là
A. 2.
B. −1.
C. 1.
D. 6.
Câu 11. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình chóp.
B. Hình lập phương.
C. Hình lăng trụ.
D. Hình tam giác.
Câu 12. Khối đa diện đều loại {4; 3} có số mặt
A. 6.
B. 10.
D. 12.
C. 8.
Câu 13. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 13.
B. log2 2020.
C. 13.
D. 2020.
Câu 14. Khối lập phương thuộc loại
A. {3; 4}.
B. {3; 3}.
C. {4; 3}.
D. {5; 3}.
1
Câu 15. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 2 < m ≤ 3.
C. 0 < m ≤ 1.
D. 2 ≤ m ≤ 3.
Trang 1/10 Mã đề 1
Câu 16. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 2.
B. 1.
C. 0.
D. 3.
Câu 17. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d song song với (P).
C. d nằm trên P.
D. d nằm trên P hoặc d ⊥ P.
Câu 18. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
18
15
9
6
Câu 19. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 8 m.
B. 16 m.
C. 24 m.
D. 12 m.
Câu 20. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Tăng lên (n − 1) lần. B. Giảm đi n lần.
C. Không thay đổi.
D. Tăng lên n lần.
2
Câu 21. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
1
B. √ .
C. 3 .
A. 2 .
e
2e
2 e
D.
2
.
e3
Câu 22. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.424.000.
C. 102.016.000.
D. 102.423.000.
n−1
Câu 23. Tính lim 2
n +2
A. 3.
B. 2.
C. 1.
D. 0.
Câu 24. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
C. f (x) có giá trị nhỏ nhất trên K.
B. f (x) xác định trên K.
D. f (x) có giá trị lớn nhất trên K.
Câu 25. Hàm số nào sau đây khơng có cực trị
x−2
.
B. y = x3 − 3x.
A. y =
2x + 1
1
C. y = x + .
x
D. y = x4 − 2x + 1.
Câu 26. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
√
1
A. 25.
B. .
C. 5.
D. 5.
5
9t
Câu 27. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 0.
B. 1.
C. Vô số.
D. 2.
√
Trang 2/10 Mã đề 1
Câu 28. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
a
2a
8a
5a
.
B. .
C.
.
D.
.
A.
9
9
9
9
2
2
sin x
Câu 29.
+ 2cos x √
lần lượt là
√ [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x)
√ =2
A. 2 2 và 3.
B. 2 và 3.
C. 2 và 2 2.
D. 2 và 3.
Câu 30. Tứ diện đều thuộc loại
A. {3; 3}.
B. {4; 3}.
C. {3; 4}.
D. {5; 3}.
Z 3
a
a
x
Câu 31. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
√
d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = −2.
B. P = 4.
C. P = 28.
D. P = 16.
Câu 32. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
A. 2.
B. 1.
C.
.
D. .
2
2
Câu 33. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45√◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là
10a3 3
.
B. 40a3 .
C. 20a3 .
D. 10a3 .
A.
3
9x
Câu 34. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. .
B. 2.
C. 1.
D. −1.
2
Câu 35. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 12.
C. 30.
D. 10.
Câu 36. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 12.
C. 6.
D. 10.
Câu 37. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
A. a 6.
B. a 3.
C.
.
D. 2a 6.
2
3
x −1
Câu 38. Tính lim
x→1 x − 1
A. −∞.
B. 0.
C. 3.
D. +∞.
Câu 39. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {1}.
B. D = R \ {0}.
C. D = (0; +∞).
D. D = R.
x−3 x−2 x−1
x
+
+
+
và y = |x + 2| − x − m (m là tham
Câu 40. [4-1213d] Cho hai hàm số y =
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].
B. (2; +∞).
C. [2; +∞).
D. (−∞; 2).
√
2
Câu 41.
√ Xác định phần ảo của số phức z = ( 2 + 3i)
√
A. 6 2.
B. −7.
C. −6 2.
D. 7.
Câu 42. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. (1; 2).
C. (−∞; +∞).
D. [1; 2].
Trang 3/10 Mã đề 1
√
Câu 43. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
C. − .
D. −3.
A. 3.
B. .
3
3
1 − 2n
Câu 44. [1] Tính lim
bằng?
3n + 1
2
1
2
A. .
B. .
C. 1.
D. − .
3
3
3
Câu 45. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. V = 4π.
B. 8π.
C. 32π.
D. 16π.
Câu 46. Khối đa diện đều loại {3; 4} có số mặt
A. 12.
B. 10.
C. 6.
D. 8.
Câu 47. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là√
2a3 3
a3
4a3 3
a3
A.
.
B.
.
C.
.
D.
.
3
6
3
3
x+1
Câu 48. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
B. .
C. 1.
D. .
A. .
2
3
6
3
2
Câu 49. Hàm số y = 2x + 3x + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; −1) và (0; +∞). B. (−∞; 0) và (1; +∞). C. (−1; 0).
D. (0; 1).
Câu 50. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
D. aα+β = aα .aβ .
A. aα bα = (ab)α .
B. aαβ = (aα )β .
C. β = a β .
a
Câu 51. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −7.
B. −3.
C. −5.
D. Không tồn tại.
Câu 52. Dãy số nào sau đây có giới hạn khác 0?
1
n+1
.
B. .
A.
n
n
C.
sin n
.
n
1
D. √ .
n
Câu 53. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; −8)(.
B. A(4; 8).
C. A(−4; 8).
D. A(4; −8).
x2 − 12x + 35
Câu 54. Tính lim
x→5
25 − 5x
2
2
A. +∞.
B. − .
C. .
D. −∞.
5
5
Câu 55. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
ab
1
1
A. 2
.
B. √
.
C. √
.
D. √
.
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
Câu 56. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 2ac
3b + 3ac
A.
.
B.
.
C.
.
D.
.
c+2
c+2
c+3
c+1
Câu 57. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó không rút tiền ra?
A. 11 năm.
B. 10 năm.
C. 12 năm.
D. 14 năm.
Trang 4/10 Mã đề 1
Câu 58. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.
√
√
√
√
5 13
.
C. 2.
A. 26.
B.
D. 2 13.
13
√
Câu 59. Thể tích của khối lập phương có cạnh bằng a 2
√
√
√
2a3 2
3
3
3
.
B. V = 2a .
C. V = a 2.
D.
A. 2a 2.
3
Câu 60. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim− f (x) = f (b).
B. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim+ f (x) = f (a) và lim− f (x) = f (b).
D. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→a
x→b
Câu 61. Giá√trị cực đại của hàm số y =
√ x − 3x − 3x + 2
√
A. −3 + 4 2.
B. −3 − 4 2.
C. 3 + 4 2.
3
2
x→b
√
D. 3 − 4 2.
Câu 62. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng
√
√
√
a 2
a 2
C.
A.
.
B. a 3.
.
D. a 2.
3
2
Câu 63. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 3.
B. 2.
C. 0.
D. 1.
Câu 64. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
2−n
Câu 65. Giá trị của giới hạn lim
bằng
n+1
A. 0.
B. 2.
C. 1.
D. −1.
Câu 66. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là
√
√
a3
a3 3
a3 3
A.
.
B.
.
C.
.
D. a3 .
3
6
2
q
2
Câu 67. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 2].
C. m ∈ [0; 1].
D. m ∈ [−1; 0].
12 + 22 + · · · + n2
n3
B. 0.
Câu 68. [3-1133d] Tính lim
2
1
.
D. .
3
3
Câu 69. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của hình chóp S .ABCD với√mặt phẳng (AIC) có diện√tích là
√
2
a 7
11a2
a2 2
a2 5
A.
.
B.
.
C.
.
D.
.
8
32
4
16
x2 − 3x + 3
Câu 70. Hàm số y =
đạt cực đại tại
x−2
A. x = 0.
B. x = 1.
C. x = 2.
D. x = 3.
A. +∞.
C.
Trang 5/10 Mã đề 1
Câu 71. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
B. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
C. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
d = 30◦ , biết S BC là tam giác đều
Câu 72. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
13
26
16
9
Câu 73. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 2; m = 1.
B. M = e−2 + 1; m = 1.
C. M = e2 − 2; m = e−2 + 2.
D. M = e−2 − 2; m = 1.
Câu 74. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 10 năm.
B. 7 năm.
C. 8 năm.
D. 9 năm.
x2
Câu 75. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
B. M = e, m = 0.
C. M = e, m = .
D. M = e, m = 1.
A. M = , m = 0.
e
e
x
Câu 76.
√ Tính diện tích hình phẳng giới hạn bởi các đường y = xe , y = 0, x = 1.
3
1
3
.
B. .
C. .
D. 1.
A.
2
2
2
Câu 77. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 23.
B. 24.
C. 21.
D. 22.
log2 240 log2 15
−
+ log2 1 bằng
Câu 78. [1-c] Giá trị biểu thức
log3,75 2 log60 2
A. 4.
B. 1.
C. −8.
D. 3.
log 2x
Câu 79. [3-1229d] Đạo hàm của hàm số y =
là
x2
1
1 − 2 log 2x
1 − 2 ln 2x
1 − 4 ln 2x
A. y0 = 3
.
B. y0 =
.
C. y0 = 3
.
D. y0 =
.
3
2x ln 10
x
x ln 10
2x3 ln 10
Câu 80. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 6 mặt.
C. 9 mặt.
D. 4 mặt.
π
Câu 81. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3
√
trị của biểu thức T = a + b 3.
√
√
A. T = 4.
B. T = 3 3 + 1.
C. T = 2.
D. T = 2 3.
Câu 82. [1] !Tập xác định của hàm số y != log3 (2x + 1) là
!
1
1
1
A.
; +∞ .
B. − ; +∞ .
C. −∞; − .
2
2
2
!
1
D. −∞; .
2
Trang 6/10 Mã đề 1
Câu 83. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 1.
B. 2.
C. 3.
D. Vô số.
Z 1
Câu 84. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0
1
1
A. .
B. 0.
C. 1.
D. .
2
4
Câu 85. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có hai.
B. Có vơ số.
C. Có một.
D. Khơng có.
π π
Câu 86. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. −1.
B. 3.
C. 7.
D. 1.
Câu 87. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng
√
√
√
√
2a 3
a 3
a 3
A. a 3.
.
C.
.
D.
.
B.
2
2
3
Câu 88. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
n2 − 2
1 − 2n
n2 + n + 1
A. un =
.
B.
u
=
.
C.
u
=
.
D.
u
=
.
n
n
n
n2
5n − 3n2
5n + n2
(n + 1)2
Câu 89. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối 20 mặt đều.
C. Khối tứ diện đều.
D. Khối bát diện đều.
1
a
, với a, b ∈ Z. Giá trị của a + b là
Câu 90. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
4 b ln 3
A. 2.
B. 7.
C. 1.
D. 4.
1
Câu 91. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; 3).
B. (1; +∞).
C. (−∞; 1) và (3; +∞). D. (−∞; 3).
cos n + sin n
Câu 92. Tính lim
n2 + 1
A. −∞.
B. 1.
C. 0.
D. +∞.
Câu 93. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng
√
a
a
a 3
A. .
B. a.
C. .
D.
.
2
3
2
log(mx)
Câu 94. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0.
B. m < 0 ∨ m = 4.
C. m ≤ 0.
D. m < 0 ∨ m > 4.
x−2
Câu 95. Tính lim
x→+∞ x + 3
2
A. −3.
B. − .
C. 2.
D. 1.
3
Câu 96. Khối đa diện đều loại {5; 3} có số mặt
A. 12.
B. 8.
C. 30.
D. 20.
Câu 97. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
B. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Trang 7/10 Mã đề 1
u0 (x)
dx = log |u(x)| + C.
u(x)
D. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
Z
C.
Câu 98.
f (x), g(x) liên
đề nào sai? Z
Z Cho hàm số Z
Z tục trên R. Trong cácZmệnh đề sau, mệnh Z
A.
f (x)g(x)dx =
f (x)dx g(x)dx.
B.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
Z
Z
Z
Z
C.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
D.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
Câu 99. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 8%.
B. 0, 5%.
C. 0, 7%.
D. 0, 6%.
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
Câu 100. [3-1214d] Cho hàm số y =
x+2
tam giác đều ABI có hai đỉnh A, √
B thuộc (C), đoạn thẳng √
AB có độ dài bằng
√
A. 2.
B. 2 3.
C. 6.
D. 2 2.
Câu 101. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −2 ≤ m ≤ 2.
B. −3 ≤ m ≤ 3.
C. m ≤ 3.
D. m ≥ 3.
√
Câu 102. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là √
√
√
a3 3
a3
a3 3
3
.
C.
.
D.
.
A. a 3.
B.
3
12
4
Câu 103.
Trong các khẳng định sau, khẳng định nào sai?Z
Z
1
A.
dx = ln |x| + C, C là hằng số.
B.
dx = x + C, C là hằng số.
Z
Z x
xα+1
+ C, C là hằng số.
D.
0dx = C, C là hằng số.
C.
xα dx =
α+1
Câu 104. √
Tính mơ đun của số phức z√biết (1 + 2i)z2 = 3 + 4i. √
4
A. |z| = 5.
B. |z| = 2 5.
C. |z| = 5.
D. |z| = 5.
Câu 105. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.
B. 3.
C. 4.
D. 1.
Câu 106. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
B. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C. Số cạnh của khối chóp bằng số mặt của khối chóp.
D. Số đỉnh của khối chóp bằng số mặt của khối chóp.
Câu 107. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vuông góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD
là
√
3
3
a 3
a 3
a3
A. a3 .
B.
.
C.
.
D.
.
3
9
3
Trang 8/10 Mã đề 1
√
√
4n2 + 1 − n + 2
bằng
Câu 108. Tính lim
2n − 3
3
A. .
B. 1.
2
2n + 1
Câu 109. Tìm giới hạn lim
n+1
A. 2.
B. 1.
C. 2.
D. +∞.
C. 0.
D. 3.
Câu 110. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; +∞).
B. (0; 2).
C. (−∞; 0) và (2; +∞). D. (−∞; 2).
Câu 111. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 2.
B. 1.
C. +∞.
D. 3.
8
Câu 112. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 81.
B. 96.
C. 64.
D. 82.
Câu 113. √
Cho số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
√
A. |z| = 10.
B. |z| = 10.
C. |z| = 17.
D. |z| = 17.
Câu 114. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Cả hai đều sai.
1
bằng
Câu 115. [1] Giá trị của biểu thức log √3
10
A. −3.
Câu 116. Tính lim
x→3
A. 6.
x2 − 9
x−3
C. Chỉ có (I) đúng.
D. Cả hai đều đúng.
B. 3.
1
C. − .
3
D.
B. −3.
C. +∞.
D. 3.
1
.
3
√
Câu 117. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√
√
√
√ cho là
πa3 3
πa3 3
πa3 6
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
2
3
6
√3
4
Câu 118. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
7
2
5
5
A. a 3 .
B. a 3 .
C. a 3 .
D. a 8 .
√
√
Câu 119. Phần thực
√ và phần ảo của số√phức z = 2 − 1 − 3i lần lượt√l
√
A. Phần thực là √2 − 1, phần ảo là √
3.
B. Phần thực là 2, √
phần ảo là 1 − √
3.
C. Phần thực là 2 − 1, phần ảo là − 3.
D. Phần thực là 1 − 2, phần ảo là − 3.
Câu 120. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Thập nhị diện đều. B. Nhị thập diện đều. C. Bát diện đều.
D. Tứ diện đều.
Câu 121. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 1.
B. 2.
1
Câu 122. Hàm số y = x + có giá trị cực đại là
x
A. −1.
B. −2.
C. 0.
D. +∞.
C. 1.
D. 2.
Trang 9/10 Mã đề 1
Câu 123. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. (−∞; −3].
B. [−1; 3].
C. [1; +∞).
D. [−3; 1].
Câu 124. Khối đa diện đều loại {3; 3} có số cạnh
A. 8.
B. 5.
C. 4.
D. 6.
Câu 125. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp là
√
√
A. 2, 4, 8.
B. 6, 12, 24.
C. 8, 16, 32.
D. 2 3, 4 3, 38.
Câu 126. Khối chóp ngũ giác có số cạnh là
A. 9 cạnh.
B. 10 cạnh.
C. 12 cạnh.
D. 11 cạnh.
Câu 127. Phát biểu nào sau đây là sai?
1
B. lim un = c (Với un = c là hằng số).
A. lim √ = 0.
n
1
C. lim k = 0 với k > 1.
D. lim qn = 1 với |q| > 1.
n
Câu 128. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.
C. 3 mặt.
D. 5 mặt.
6
Câu 129. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2 f (x3 ) − √
. Tính
3x
+
1
Z 1
f (x)dx.
0
A. 6.
B. 2.
C. −1.
Câu 130. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai cạnh.
B. Năm cạnh.
C. Ba cạnh.
D. 4.
D. Bốn cạnh.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
D
3.
5.
C
B
2.
D
4.
D
6.
B
7. A
8.
B
9. A
10.
D
11.
12. A
13. A
15.
C
14.
16. A
B
D
17.
19.
20.
B
21. A
22.
B
23.
24. A
25. A
26. A
27.
28.
D
31.
32. A
33.
34.
B
D
D
29. A
30. A
36.
D
C
35.
B
B
C
B
37. A
38.
C
39.
40.
C
41. A
42.
C
43.
44.
D
D
D
C
48.
49.
C
50.
D
B
46.
47.
51.
D
C
52. A
53.
B
54.
55.
B
56.
B
57. A
58.
B
59. A
60.
C
61. A
62.
C
63.
64.
C
65.
D
66.
67.
D
68.
69. A
70.
1
C
B
C
D
B
71.
D
72. A
73.
D
74.
D
76.
D
75.
B
D
77.
C
79.
80. A
81. A
83.
82.
B
86.
D
87.
90.
91.
94.
B
D
97.
C
99.
C
105.
B
100.
B
102.
B
104. A
106.
B
D
107.
108.
109. A
110.
111. A
112. A
113. A
114. A
115.
C
116. A
117.
C
118.
119.
C
120. A
121.
C
122.
125.
C
98. A
C
123.
B
96. A
B
103.
C
92.
C
95.
D
88.
89. A
101.
B
84. A
85. A
93.
C
78.
D
D
B
C
B
B
124.
B
126.
127.
D
128. A
129.
D
130.
2
D
B
C