Free LATEX
BÀI TẬP TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B thuộc
∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và AC = BD = a.
Khoảng cách từ A đến mặt phẳng√(BCD) bằng
√
√
√
a 2
a 2
B.
.
C.
.
D. a 2.
A. 2a 2.
4
2
d = 30◦ , biết S BC là tam giác đều
Câu 2. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
16
13
9
26
n−1
Câu 3. Tính lim 2
n +2
A. 1.
B. 0.
C. 3.
D. 2.
Câu 4. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 2; m = 1.
B. M = e−2 + 1; m = 1.
C. M = e2 − 2; m = e−2 + 2.
D. M = e−2 − 2; m = 1.
Câu 5. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 12.
C. 30.
D. 10.
√
√
Câu 6. Phần thực √
và phần ảo của số phức
√ z = 2 − 1 − 3i lần lượt l√
√
A. Phần thực là √2 − 1, phần ảo là √
3.
B. Phần thực là 2, √
phần ảo là 1 − √
3.
C. Phần thực là 2 − 1, phần ảo là − 3.
D. Phần thực là 1 − 2, phần ảo là − 3.
Câu 7. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng
√
√
√
√
a 2
a 2
A. a 3.
B.
.
C.
.
D. a 2.
2
3
Câu 8. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
C. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
Câu 9. Cho hình chóp S .ABCD có
√ đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm của
AD, biết S√H ⊥ (ABCD), S A = a 5. Thể tích khối chóp S .ABCD là
√
2a3 3
2a3
4a3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
x2 − 5x + 6
Câu 10. Tính giới hạn lim
x→2
x−2
A. 5.
B. 0.
C. −1.
D. 1.
√
Câu 11. Thể tích của khối lập phương có cạnh bằng a 2 √
√
√
2a3 2
3
3
A. V = 2a .
B. V = a 2.
C.
.
D. 2a3 2.
3
Câu 12. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
Trang 1/10 Mã đề 1
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất khơng thay đổi?
A. 102.424.000.
B. 102.016.000.
C. 102.423.000.
D. 102.016.000.
Câu 13. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 3
a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
4
6
12
12
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 14. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là
√
√
√
a3 2
a3 3
a3 3
2
.
B.
.
C. 2a 2.
.
A.
D.
24
24
12
Câu 15. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
B. F(x) = G(x) trên khoảng (a; b).
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
Câu 16. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
√
√
4n2 + 1 − n + 2
bằng
Câu 17. Tính lim
2n − 3
3
C. 2.
D. +∞.
A. 1.
B. .
2
Câu 18. Cho
√ số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
A. |z| = 10.
B. |z| = 17.
C. |z| = 17.
D. |z| = 10.
Câu 19. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m < 3.
C. m > 3.
D. m ≥ 3.
Câu 20. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. (−∞; −3].
B. [−3; 1].
C. [1; +∞).
D. [−1; 3].
!2x−1
!2−x
3
3
Câu 21. Tập các số x thỏa mãn
≤
là
5
5
A. [1; +∞).
B. (+∞; −∞).
C. [3; +∞).
D. (−∞; 1].
Câu 22. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1202 m.
B. 2400 m.
C. 1134 m.
D. 6510 m.
Câu 23. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R \ {1; 2}.
B. D = [2; 1].
C. D = R.
2
D. D = (−2; 1).
Câu 24. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (2; 4; 6).
C. (1; 3; 2).
D. (2; 4; 4).
un
Câu 25. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. +∞.
B. −∞.
C. 1.
D. 0.
Trang 2/10 Mã đề 1
Câu 26. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. Vô nghiệm.
C. 3.
D. 1.
Z 2
ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
Câu 27. Cho
x2
1
A. 0.
B. −3.
C. 1.
D. 3.
Câu 28. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng
hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√
√
√ là
3
3
3
3
8a 3
a 3
8a 3
4a 3
A.
.
B.
.
C.
.
D.
.
9
9
3
9
Câu 29. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD là
√
a3 3
a3
a3 3
3
A. a .
B.
.
C.
.
D.
.
3
3
9
Câu 30. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 21.
B. P = 10.
C. P = −21.
D. P = −10.
Câu 31. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 4 mặt.
D. 3 mặt.
Câu 32. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
Câu 33. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 22016 .
B. 1.
C. 0.
D. e2016 .
Câu 34. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 8 năm.
B. 9 năm.
C. 7 năm.
D. 10 năm.
Câu 35. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = − loga 2.
B. log2 a = loga 2.
C. log2 a =
.
D. log2 a =
.
loga 2
log2 a
1
ln x p 2
Câu 36. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
1
8
1
A. .
B. .
C. .
D. .
3
3
9
9
Câu 37. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 216 triệu.
B. 212 triệu.
C. 220 triệu.
D. 210 triệu.
Câu 38. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
6
9
18
15
Trang 3/10 Mã đề 1
Câu 39.
[12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23
√ i
h
3
có ít nhất một nghiệm thuộc đoạn 1; 3
A. m ∈ [0; 4].
B. m ∈ [0; 1].
C. m ∈ [0; 2].
q
x+ log23 x + 1+4m−1 = 0
D. m ∈ [−1; 0].
Câu 40. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 3, 5 triệu đồng.
B. 20, 128 triệu đồng. C. 50, 7 triệu đồng.
D. 70, 128 triệu đồng.
7n2 − 2n3 + 1
Câu 41. Tính lim 3
3n + 2n2 + 1
7
2
B. .
C. 0.
A. - .
3
3
Câu 42. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng 2n+1.
B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số cạnh của khối chóp bằng 2n.
D. Số mặt của khối chóp bằng số cạnh của khối chóp.
D. 1.
Câu 43. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là
√
10a3 3
3
3
3
A. 40a .
B. 10a .
C. 20a .
D.
.
3
√
Câu 44. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
√
√
√
3a 38
3a
a 38
3a 58
.
B.
.
C.
.
D.
.
A.
29
29
29
29
Câu 45.
Z Trong các khẳng định sau, khẳng định nào sai? Z
dx = x + C, C là hằng số.
A.
Z
C.
xα dx =
xα+1
+ C, C là hằng số.
α+1
1
dx = ln |x| + C, C là hằng số.
Z x
D.
0dx = C, C là hằng số.
B.
Câu 46. Trong các khẳng định sau, khẳng định nào sai?
A. Z
F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
u0 (x)
B.
dx = log |u(x)| + C.
u(x)
C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
D. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
tan x + m
Câu 47. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
π
0; .
4
A. (−∞; 0] ∪ (1; +∞). B. (−∞; −1) ∪ (1; +∞). C. (1; +∞).
D. [0; +∞).
Câu 48. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình chóp.
B. Hình lập phương.
C. Hình lăng trụ.
D. Hình tam giác.
Câu 49. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 1.
B. +∞.
C. 3.
D. 2.
Trang 4/10 Mã đề 1
Câu 50.
đề nào sai? Z
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh Z
A.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
B.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
Z
Z
Z
Z
C.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
D.
f (x)g(x)dx =
f (x)dx g(x)dx.
Câu 51. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.
C. Khối tứ diện đều.
D. Khối 20 mặt đều.
Câu 52. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
.
B. f 0 (0) = ln 10.
C. f 0 (0) = 10.
D. f 0 (0) = 1.
A. f 0 (0) =
ln 10
Câu 53.
Z Các khẳng định
Z nào sau đây là sai?
Z
Z
A.
k f (x)dx = k
f (x)dx, k là hằng số.
B.
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.
!0
Z
Z
Z
C.
f (x)dx = f (x).
D.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.
log2 240 log2 15
−
+ log2 1 bằng
log3,75 2 log60 2
B. 4.
C. 3.
Câu 54. [1-c] Giá trị biểu thức
A. 1.
Câu 55. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 1.
B. 2.
C. +∞.
D. −8.
D. 0.
Câu 56. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 8 cạnh, 4 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 6 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.
Câu 57. Biểu thức nào sau đây khơng
√ 0 có nghĩa
−1
A. 0 .
B. (− 2) .
C. (−1)−1 .
D.
√
−1.
−3
x2
Câu 58. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
D. M = , m = 0.
A. M = e, m = 0.
B. M = e, m = 1.
C. M = e, m = .
e
e
Câu 59. [4-1246d] Trong tất cả các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất
√ của |z|
A. 2.
B. 1.
C. 5.
D. 3.
Câu 60. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tứ giác.
B. Một khối chóp tam giác, một khối chóp tứ giác.
C. Hai khối chóp tam giác.
D. Một khối chóp tam giác, một khối chóp ngữ giác.
Câu 61. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. [1; 2].
C. (1; 2).
D. (−∞; +∞).
12 + 22 + · · · + n2
Câu 62. [3-1133d] Tính lim
n3
1
2
A. .
B. .
C. +∞.
D. 0.
3
3
Câu 63. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Tăng lên (n − 1) lần. B. Giảm đi n lần.
C. Tăng lên n lần.
D. Không thay đổi.
√
Câu 64. √Xác định phần ảo của số phức z = ( 2 + 3i)2 √
A. −6 2.
B. −7.
C. 6 2.
D. 7.
Trang 5/10 Mã đề 1
Câu 65. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ là
√ Thể tích khối chóp S 3.ABC
√
√
3
a 3
a 2
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
4
12
6
12
0 0 0 0
0
Câu 66.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 6
a 3
.
B.
.
C.
.
D.
.
A.
2
3
7
2
Câu 67. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B.
.
C.
.
D. a3 .
12
6
24
log 2x
Câu 68. [1229d] Đạo hàm của hàm số y =
là
x2
1 − 4 ln 2x
1 − 2 log 2x
1 − 2 ln 2x
1
.
B. y0 =
.
C. y0 =
.
D. y0 = 3
.
A. y0 = 3
3
3
2x ln 10
2x ln 10
x
x ln 10
Câu 69. [1] Giá trị của biểu thức 9log3 12 bằng
A. 144.
B. 2.
C. 4.
D. 24.
Câu 70. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (I) sai.
B. Khơng có câu nào C. Câu (II) sai.
sai.
Câu 71. Khối đa diện đều loại {3; 5} có số đỉnh
A. 20.
B. 12.
C. 30.
D. Câu (III) sai.
D. 8.
x+3
Câu 72. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 2.
B. 3.
C. 1.
D. Vơ số.
2
Câu 73. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2√
A. m = ±3.
B. m = ±1.
C. m = ± 2.
D. m = ± 3.
Câu 74. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là
√
√
a3
a3 3
a3 3
A.
.
B.
.
C.
.
D. a3 .
3
6
2
Câu 75. Dãy số nào sau đây có giới hạn là 0?
1 − 2n
n2 − 3n
n2 + n + 1
n2 − 2
A. un =
.
B.
u
=
.
C.
u
=
.
D.
u
=
.
n
n
n
5n + n2
n2
(n + 1)2
5n − 3n2
Câu 76. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
A. lim
= .
B. lim [ f (x)g(x)] = ab.
x→+∞ g(x)
x→+∞
b
C. lim [ f (x) − g(x)] = a − b.
D. lim [ f (x) + g(x)] = a + b.
x→+∞
x→+∞
Trang 6/10 Mã đề 1
Câu 77.√Thể tích của tứ diện đều √
cạnh bằng a
a3 2
a3 2
A.
.
B.
.
12
6
x−3
Câu 78. [1] Tính lim
bằng?
x→3 x + 3
A. +∞.
B. 1.
√
a3 2
C.
.
4
√
a3 2
D.
.
2
C. −∞.
D. 0.
Câu 79. Bát diện đều thuộc loại
A. {3; 3}.
B. {3; 4}.
C. {4; 3}.
D. {5; 3}.
Câu 80. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối bát diện đều.
C. Khối 12 mặt đều.
D. Khối tứ diện đều.
Câu 81. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 1.
B. m > −1.
C. m ≥ 0.
D. m > 0.
Câu 82. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a + b + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. 9.
B. 6.
C. .
D. .
2
2
2
1−n
Câu 83. [1] Tính lim 2
bằng?
2n + 1
1
1
1
B. − .
C. .
D. 0.
A. .
3
2
2
1
Câu 84. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 2 ≤ m ≤ 3.
C. 2 < m ≤ 3.
D. 0 < m ≤ 1.
log 2x
là
Câu 85. [3-1229d] Đạo hàm của hàm số y =
x2
1
1 − 2 log 2x
1 − 2 ln 2x
1 − 4 ln 2x
A. y0 = 3
.
B. y0 =
.
D. y0 = 3
.
.
C. y0 =
3
3
2x ln 10
x
2x ln 10
x ln 10
2
√
√
2
Câu 86. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
9
3
3
A. m ≥ 0.
B. 0 ≤ m ≤ .
C. 0 < m ≤ .
D. 0 ≤ m ≤ .
4
4
4
!
!
!
x
4
1
2
2016
Câu 87. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 2017.
B. T =
.
C. T = 1008.
D. T = 2016.
2017
1
Câu 88. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 1.
B. 4.
C. 3.
D. 2.
√
Câu 89. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √
√
√
3
a 6
a 6
a3 6
a3 2
A.
.
B.
.
C.
.
D.
.
6
18
36
6
Câu 90. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = 4 + .
B. T = e + .
C. T = e + 1.
D. T = e + 3.
e
e
Câu 91. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
2
2
Trang 7/10 Mã đề 1
Câu 92. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng
√
√
√
a 3
2a 3
a 3
.
B. a 3.
C.
.
D.
.
A.
3
2
2
Câu 93. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−1; 0).
B. (0; 1).
C. (−∞; 0) và (1; +∞). D. (−∞; −1) và (0; +∞).
!4x
!2−x
2
3
Câu 94. Tập các số x thỏa mãn
≤
là
#
" 3
! 2
"
!
#
2
2
2
2
A. −∞; .
B. − ; +∞ .
C.
; +∞ .
D. −∞; .
3
3
5
5
Z 3
a
a
x
Câu 95. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
√
d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 16.
B. P = 28.
C. P = −2.
D. P = 4.
1
Câu 96. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 ≤ m ≤ −1.
B. −2 < m < −1.
C. (−∞; −2] ∪ [−1; +∞). D. (−∞; −2) ∪ (−1; +∞).
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 97. [3-12217d] Cho hàm số y = ln
x
+
1
A. xy0 = ey + 1.
B. xy0 = −ey − 1.
C. xy0 = −ey + 1.
D. xy0 = ey − 1.
2n − 3
bằng
Câu 98. Tính lim 2
2n + 3n + 1
A. 0.
B. −∞.
C. +∞.
D. 1.
Câu 99. Khối đa diện đều loại {5; 3} có số mặt
A. 30.
B. 20.
C. 12.
D. 8.
−2x2
Câu 100. [2-c] Giá trị lớn nhất của hàm số y = xe
1
1
A. √ .
B. 2 .
e
2 e
trên đoạn [1; 2] là
2
C. 3 .
e
D.
1
.
2e3
3
2
x
Câu 101. [2]
√ Tìm m để giá trị lớn nhất của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng 8√
B. m = ±3.
C. m = ±1.
D. m = ± 2.
A. m = ± 3.
1
Câu 102. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (1; +∞).
B. D = (−∞; 1).
C. D = R.
D. D = R \ {1}.
Câu 103. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 + 2 sin 2x.
B. −1 + sin x cos x.
C. 1 − sin 2x.
D. −1 + 2 sin 2x.
Câu 104. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x + x − y − 12 = 0. Tìm giá trị nhỏ nhất của
P = xy + x + 2y + 17
A. −12.
B. −9.
C. −5.
D. −15.
2
Câu 105. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 72.
B. 0, 8.
C. −7, 2.
D. 7, 2.
!
1
1
1
Câu 106. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 1.
B. .
C. 0.
D. 2.
2
Câu 107. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 5 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 6 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 5 mặt. D. 6 đỉnh, 9 cạnh, 6 mặt.
Trang 8/10 Mã đề 1
Câu 108. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m > − .
B. m ≥ 0.
C. − < m < 0.
D. m ≤ 0.
4
4
Câu 109. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 25 m.
C. 1587 m.
D. 27 m.
Câu 110. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
6
12
36
24
Câu 111. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.
C. Khối bát diện đều. D. Khối 20 mặt đều.
Câu 112. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn cạnh.
B. Ba cạnh.
C. Năm cạnh.
D. Hai cạnh.
Câu 113. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Khơng có.
B. Có một hoặc hai.
C. Có hai.
D. Có một.
Câu 114. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. 3n3 lần.
B. n3 lần.
C. n lần.
D. n2 lần.
π
Câu 115. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3
√
trị của biểu √
thức T = a + b 3.
√
A. T = 3 3 + 1.
B. T = 2 3.
C. T = 4.
D. T = 2.
5
Câu 116. Tính lim
n+3
A. 2.
B. 1.
C. 0.
D. 3.
1
2mx + 1
Câu 117. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −2.
B. 1.
C. 0.
D. −5.
Câu 118. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 7 mặt.
B. 8 mặt.
C. 9 mặt.
D. 6 mặt.
Câu 119. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 4.
B. ln 10.
C. ln 14.
D. ln 12.
2
x − 3x + 3
Câu 120. Hàm số y =
đạt cực đại tại
x−2
A. x = 0.
B. x = 1.
C. x = 3.
D. x = 2.
3
2
Câu 121. Giá
√ trị cực đại của hàm số√y = x − 3x − 3x + 2
√
A. −3 − 4 2.
B. 3 + 4 2.
C. −3 + 4 2.
√
D. 3 − 4 2.
√
Câu 122. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là
√
3
√
a 3
a3
a3 3
A.
.
B.
.
C.
.
D. a3 3.
3
4
12
Trang 9/10 Mã đề 1
Câu 123. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc
60◦ . Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n.
Thể tích khối
√ chóp S .ABMN là 3 √
√
√
3
5a 3
a 3
4a3 3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
2
3
3
x
x+1
x−2 x−1
Câu 124. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [−3; +∞).
B. (−3; +∞).
C. (−∞; −3].
D. (−∞; −3).
2x + 1
Câu 125. Tính giới hạn lim
x→+∞ x + 1
1
A. 2.
B. 1.
C. .
D. −1.
2
√
x2 + 3x + 5
Câu 126. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. 0.
B. 1.
C. − .
D. .
4
4
2
x −9
Câu 127. Tính lim
x→3 x − 3
A. 6.
B. +∞.
C. −3.
D. 3.
Câu 128. Tứ diện đều thuộc loại
A. {3; 4}.
B. {5; 3}.
C. {3; 3}.
D. {4; 3}.
Câu 129. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = 3S h.
C. V = S h.
D. V = S h.
3
2
Câu 130. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 1.
B. 4 − 2 ln 2.
C. e.
D. −2 + 2 ln 2.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
C
1.
2.
3.
B
4.
5.
B
6.
7.
B
8.
C
9.
D
C
D
C
10.
11.
D
12. A
13.
D
14.
15.
D
16. A
17. A
B
18. A
19.
D
20.
B
22.
21. A
23.
C
25.
27.
B
24.
D
B
26. A
B
29.
D
28. A
C
30.
C
32.
B
33.
C
34.
B
35.
C
36.
C
39.
D
41. A
37.
B
40.
B
42.
C
43.
C
44. A
45.
C
46.
47.
C
48.
D
D
49.
D
50.
51.
D
52.
53.
D
58. A
59. A
60.
63.
65.
D
56.
57. A
61.
B
54.
B
55.
B
D
C
B
62. A
B
64.
D
66.
67. A
68.
69. A
70.
1
C
B
D
B
71.
B
72.
73.
B
74.
B
C
75. A
76. A
77. A
78.
D
D
79.
B
80.
81.
B
82.
C
83.
B
84.
C
D
85.
C
87.
89.
88. A
D
90.
B
91. A
92. A
93. A
94.
95.
D
96. A
97.
D
98. A
99.
D
86.
C
100.
101.
D
102. A
103.
D
104. A
105.
C
106. A
107.
C
108. A
109.
D
B
B
110.
B
111.
B
112.
B
113.
B
114.
B
115.
C
116.
C
117.
C
118.
C
119.
C
120.
121.
C
122. A
123.
B
B
124.
C
125. A
126.
C
127. A
128.
C
129. A
130.
C
2