Free LATEX
BÀI TẬP TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. Mệnh đề nào sau đây sai?
A. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
!0
Z
B.
f (x)dx = f (x).
C. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Z
D. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
Câu 2. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −4.
B. −2.
C. 4.
f (x)dx = F(x) + C.
D. 2.
Câu 3. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD
√ là
√
3
3
3
3
8a 3
a 3
4a 3
8a 3
.
B.
.
C.
.
D.
.
A.
9
3
9
9
3
Câu 4. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e2 .
B. e3 .
C. e.
D. e5 .
Câu 5. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
B.
.
C. a 6.
D. 2a 6.
A. a 3.
2
Câu 6. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng 2n + 1.
B. Số mặt của khối chóp bằng 2n+1.
C. Số cạnh của khối chóp bằng 2n.
D. Số mặt của khối chóp bằng số cạnh của khối chóp.
Câu 7. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m < 0.
B. m > 0.
C. m = 0.
Câu 8. Tính lim
A. +∞.
x→1
x3 − 1
x−1
B. 3.
C. 0.
D. m , 0.
D. −∞.
Câu 9. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
13
23
5
9
A.
.
B. −
.
C. − .
D.
.
100
100
16
25
Câu 10. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −1.
C. m = −2.
−2x2
Câu 11. [2-c] Giá trị lớn nhất của hàm số y = xe
1
2
A. 3 .
B. 3 .
2e
e
trên đoạn [1; 2] là
1
C. 2 .
e
Câu 12. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 8 mặt.
C. 7 mặt.
D. m = −3.
D.
1
√ .
2 e
D. 9 mặt.
Trang 1/10 Mã đề 1
Z
Câu 13. Cho
1
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0
1
1
.
D. .
2
4
2
ln x
m
Câu 14. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 22.
C. S = 24.
D. S = 135.
√
√
Câu 15. Tìm giá trị lớn nhất của√hàm số y = x + 3 + 6√− x
√
A. 3.
B. 3 2.
C. 2 3.
D. 2 + 3.
A. 0.
B. 1.
C.
Câu 16. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.
B. 1.
C. 3.
D. 4.
Câu 17. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.
√
√
√
√
5 13
.
D. 2 13.
B. 26.
C.
A. 2.
13
Câu 18. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
B. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
C. Cả ba câu trên đều sai.
D. F(x) = G(x) trên khoảng (a; b).
log 2x
Câu 19. [1229d] Đạo hàm của hàm số y =
là
x2
1 − 2 ln 2x
1
1 − 2 log 2x
1 − 4 ln 2x
.
B. y0 = 3
.
C. y0 =
.
D. y0 =
.
A. y0 = 3
3
x ln 10
2x ln 10
x
2x3 ln 10
Câu 20. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp 6 lần.
C. Tăng gấp 4 lần.
D. Tăng gấp đơi.
Câu 21. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (2; 4; 6).
C. (1; 3; 2).
D. (2; 4; 4).
Câu 22. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {5; 3}.
B. {4; 3}.
C. {3; 4}.
4
3
Câu 23. [1-c] Cho a là số thực dương .Giá trị của biểu thức a :
5
2
5
A. a 8 .
B. a 3 .
C. a 3 .
√3
D. {3; 3}.
a2 bằng
7
D. a 3 .
Câu 24. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là
√
√
a3 3
a3
a3 3
3
A. a .
B.
.
C.
.
D.
.
6
3
2
Trang 2/10 Mã đề 1
√
Câu 25. Xác định phần ảo của số √
phức z = ( 2 + 3i)2
A. −7.
B. −6 2.
C. 7.
√
D. 6 2.
Câu 26. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 5.
B. V = 4.
C. V = 3.
D. V = 6.
Câu 27. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Hai mặt.
B. Một mặt.
C. Bốn mặt.
D. Ba mặt.
Câu 28. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên đúng. B. Chỉ có (I) đúng.
C. Cả hai câu trên sai.
D. Chỉ có (II) đúng.
Câu 29. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e4 .
B. 2e2 .
C. −2e2 .
D. −e2 .
Câu 30.
Z [1233d-2] Mệnh đề nào sau đây sai?
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
B.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
C.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
D.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
A.
Câu 31. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n lần.
B. 3n3 lần.
C. n2 lần.
D. n3 lần.
Câu 32. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng
√
a
a
a 3
A. .
B. .
C.
.
D. a.
3
2
2
Câu 33. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a 3. Thể tích khối chóp S .ABCD
là
√
√
3
3
a
a 3
a3 3
3
A. a .
B.
.
C.
.
D.
.
3
3
9
Câu 34. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một.
B. Khơng có.
C. Có hai.
D. Có một hoặc hai.
Câu 35. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m > .
C. m < .
D. m ≥ .
4
4
4
4
Câu 36. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. 5.
B. 7.
C. .
D.
.
2
2
Trang 3/10 Mã đề 1
Câu 37. Bát diện đều thuộc loại
A. {3; 4}.
B. {5; 3}.
C. {4; 3}.
D. {3; 3}.
Câu 38. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 220 triệu.
B. 216 triệu.
C. 212 triệu.
D. 210 triệu.
8
Câu 39. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 81.
B. 96.
C. 64.
D. 82.
Câu 40. Khối đa diện đều loại {5; 3} có số đỉnh
A. 30.
B. 8.
C. 12.
Câu 41. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
π
x
Câu 42. [2-c] Giá trị lớn nhất của hàm số y = e cos x trên đoạn 0; là
2
√
1 π3
3 π6
A. 1.
B. e .
e .
C.
2
2
Câu 43. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
C. − 2 .
A. −e.
B. − .
e
e
D. 20.
√
2 π4
e .
D.
2
D. −
1
.
2e
π
Câu 44. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3
√
trị của biểu thức T = a + b 3.
√
√
A. T = 2.
B. T = 4.
C. T = 3 3 + 1.
D. T = 2 3.
Câu 45. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 0.
B. 3.
C. 2.
D. 1.
Câu 46. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√
√ chóp S .ABCD là
√
a3 2
a3 3
a3 3
a3 6
.
B.
.
C.
.
D.
.
A.
16
24
48
48
Câu 47.
Z Các khẳng định
Z nào sau đây là sai?
Z
Z
f (x)dx, k là hằng số.
B.
f (x)dx = F(x) +C ⇒
!0
Z
Z
Z
C.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. D.
f (x)dx = f (x).
A.
k f (x)dx = k
f (u)dx = F(u) +C.
Câu 48. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Trang 4/10 Mã đề 1
x2 − 12x + 35
Câu 49. Tính lim
x→5
25 − 5x
2
A. .
B. −∞.
5
Câu 50. [1] Đạo hàm của làm số y = log x là
ln 10
1
A. y0 =
.
B.
.
x
10 ln x
√
Câu 51. [1] Biết log6 a = 2 thì log6 a bằng
A. 36.
B. 4.
2
D. − .
5
C. +∞.
C. y0 =
1
.
x ln 10
C. 6.
1
D. y0 = .
x
D. 108.
Câu 52. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
Câu 53. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
9
18
15
6
2
1−n
bằng?
Câu 54. [1] Tính lim 2
2n + 1
1
1
1
A. − .
B. 0.
C. .
D. .
2
2
3
Câu 55. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.
C. 10 mặt.
D. 8 mặt.
Câu 56. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
24
6
36
12
Câu 57. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
0 0
(AB0C) và
√ (A C D) bằng
√
√
√
2a 3
a 3
a 3
.
B.
.
C.
.
D. a 3.
A.
2
2
3
Câu 58. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối lập phương.
C. Khối 12 mặt đều.
D. Khối tứ diện đều.
Câu 59. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lăng trụ tam giác.
B. Khối bát diện đều.
C. Khối tứ diện.
D. Khối lập phương.
Câu 60. Khối đa diện đều loại {4; 3} có số mặt
A. 12.
B. 8.
C. 6.
D. 10.
π π
Câu 61. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. −1.
B. 3.
C. 7.
D. 1.
Câu 62. Tính thể tích khối lập phương biết tổng diện tích √
tất cả các mặt bằng 18.
A. 8.
B. 9.
C. 3 3.
D. 27.
Trang 5/10 Mã đề 1
Câu 63. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
3
3
a 6
a3 6
a3 6
a 3
.
B.
.
C.
.
D.
.
A.
24
8
24
48
Câu 64. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 1.
C. 0.
D. 22016 .
Câu 65. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là√
a3
4a3 3
a3
2a3 3
.
B.
.
C.
.
D.
.
A.
3
6
3
3
Câu 66. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −3.
B. −7.
C. −5.
D. Không tồn tại.
Câu 67. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là −4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là −3, phần ảo là 4.
D. Phần thực là 3, phần ảo là −4.
log 2x
Câu 68. [3-1229d] Đạo hàm của hàm số y =
là
x2
1 − 4 ln 2x
1 − 2 log 2x
1 − 2 ln 2x
A. y0 =
.
B. y0 =
.
C. y0 = 3
.
3
3
2x ln 10
x
x ln 10
D. y0 =
2x3
1
.
ln 10
Câu 69. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là
√ hình chóp S .ABCD với mặt
√
2
2
2
a 7
a 2
11a
a2 5
A.
.
B.
.
C.
.
D.
.
8
4
32
16
Câu 70. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 25 m.
B. 387 m.
C. 27 m.
D. 1587 m.
Câu 71. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a
√
a3 15
a3 5
a3
a3 15
A.
.
B.
.
C.
.
D.
.
25
25
3
5
!
3n + 2
2
Câu 72. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 4.
B. 3.
C. 5.
D. 2.
Câu 73. [1] Giá trị của biểu thức 9log3 12 bằng
A. 4.
B. 144.
C. 24.
Câu 75. Khối đa diện đều loại {3; 5} có số cạnh
A. 8.
B. 30.
C. 20.
D. 2.
x+2
Câu 74. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 3.
B. 1.
C. Vô số.
D. 2.
D. 12.
Trang 6/10 Mã đề 1
Câu 76. [2] Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8
C. m = ± 2.
D. m = ±3.
A. m = ±1.
B. m = ± 3.
4x + 1
Câu 77. [1] Tính lim
bằng?
x→−∞ x + 1
A. −4.
B. −1.
C. 4.
D. 2.
Câu 78. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể tích khối chóp S .ABC là √
√
√
a3 3
a3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
4
4
12
8
Câu 79. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 10.
B. ln 4.
C. ln 12.
D. ln 14.
Câu 80. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 21.
C. 23.
D. 24.
Câu 81. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.
B. Khơng có câu nào C. Câu (II) sai.
D. Câu (I) sai.
sai.
!
x+1
Câu 82. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2017
2016
4035
.
B. 2017.
C.
.
D.
.
A.
2018
2018
2017
x2
Câu 83. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = , m = 0.
B. M = e, m = .
C. M = e, m = 0.
D. M = e, m = 1.
e
e
Câu 84. Khối đa diện đều loại {3; 3} có số mặt
A. 4.
B. 3.
C. 5.
D. 2.
Câu 85. Khối đa diện đều loại {5; 3} có số cạnh
A. 8.
B. 20.
C. 30.
D. 12.
[ = 60◦ , S O
Câu 86. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.√Khoảng cách từ A đến (S BC) bằng
√
√
a 57
2a 57
a 57
A.
.
B.
.
C. a 57.
D.
.
17
19
19
Câu 87. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + 2 sin 2x.
B. 1 − sin 2x.
C. −1 + sin x cos x.
D. 1 + 2 sin 2x.
Câu 88. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; −8).
B. A(−4; 8).
C. A(4; 8).
D. A(−4; −8)(.
Câu 89. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 + 2e
1 + 2e
A. m =
.
B. m =
.
C. m =
.
4 − 2e
4e + 2
4 − 2e
D. m =
1 − 2e
.
4e + 2
Trang 7/10 Mã đề 1
1
Câu 90. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 3).
B. (1; 3).
C. (−∞; 1) và (3; +∞). D. (1; +∞).
Câu 91. Hàm số nào sau đây không có cực trị
1
A. y = x + .
B. y = x4 − 2x + 1.
x
C. y = x3 − 3x.
D. y =
x−2
.
2x + 1
Câu 92. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đơi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 11 năm.
C. 10 năm.
D. 13 năm.
2n + 1
Câu 93. Tìm giới hạn lim
n+1
A. 2.
B. 0.
C. 3.
D. 1.
Câu 94.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2
a 2
A.
.
B.
.
6
4
√
a3 2
C.
.
2
√
a3 2
D.
.
12
Câu 95. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 3ac
3b + 2ac
A.
.
B.
.
C.
.
D.
.
c+2
c+2
c+1
c+3
Câu 96. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. V = 4π.
B. 32π.
C. 16π.
D. 8π.
Câu 97. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−1; 1).
B. (−∞; −1).
C. (1; +∞).
D. (−∞; 1).
Câu 98. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 3 mặt.
C. 9 mặt.
D. 4 mặt.
Câu 99. Phát biểu nào sau đây là sai?
A. lim un = c (Với un = c là hằng số).
C. lim qn = 1 với |q| > 1.
1
B. lim √ = 0.
n
1
D. lim k = 0 với k > 1.
n
Câu 100. Giá trị của lim (3x2 − 2x + 1)
x→1
B. +∞.
2n − 3
Câu 101. Tính lim 2
bằng
2n + 3n + 1
A. 1.
B. 0.
A. 2.
C. 3.
D. 1.
D. +∞.
q
2
Câu 102. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 1].
C. m ∈ [0; 4].
D. m ∈ [−1; 0].
x−3
Câu 103. [1] Tính lim
bằng?
x→3 x + 3
A. −∞.
B. 1.
C. +∞.
D. 0.
C. −∞.
Câu 104. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích
hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 4.
B. 0, 2.
C. 0, 3.
D. 0, 5.
Trang 8/10 Mã đề 1
Câu 105. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là 4.
B. Phần thực là 4, phần ảo là 1.
C. Phần thực là −1, phần ảo là −4.
D. Phần thực là 4, phần ảo là −1.
Câu 106.
hạn là 0?
!n Dãy số nào sau đây có !giới
n
5
4
A.
.
B.
.
e
3
!n
5
C. − .
3
!n
1
D.
.
3
d = 30◦ , biết S BC là tam giác đều
Câu 107. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
16
9
13
26
Câu 108. [4-1245d] Trong tất cả
√ min |z − 1 − i|.
√ các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
A. 1.
B. 10.
C. 2.
D. 2.
Câu 109. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 72cm3 .
B. 46cm3 .
C. 64cm3 .
D. 27cm3 .
√
Câu 110. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh
bên S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
√
√
√
3a
3a 58
3a 38
a 38
A.
.
B.
.
C.
.
D.
.
29
29
29
29
Câu 111. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
B. − < m < 0.
C. m ≤ 0.
D. m ≥ 0.
A. m > − .
4
4
Câu 112. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 48cm3 .
C. 84cm3 .
D. 91cm3 .
Câu 113. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = 3S h.
C. V = S h.
2
3
D. V = S h.
Câu 114. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tứ giác.
B. Hai hình chóp tam giác.
C. Một hình chóp tam giác và một hình chóp tứ giác.
D. Một hình chóp tứ giác và một hình chóp ngũ giác.
Câu 115. [3-1132d] Cho dãy số (un ) với un =
A. lim un = 0.
1
C. lim un = .
2
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
n2 + 1
B. lim un = 1.
D. Dãy số un khơng có giới hạn khi n → +∞.
Câu 116. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tam giác.
B. Hai khối chóp tứ giác.
C. Một khối chóp tam giác, một khối chóp tứ giác.
D. Một khối chóp tam giác, một khối chóp ngữ giác.
Trang 9/10 Mã đề 1
Câu 117. Khối đa diện đều loại {3; 4} có số đỉnh
A. 6.
B. 8.
C. 4.
D. 10.
Câu 118. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó
Q0 là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số
lượng vi khuẩn đạt 100.000 con?
A. 20.
B. 24.
C. 3, 55.
D. 15, 36.
Câu 119. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
2a
8a
5a
a
A.
.
B.
.
C.
.
D. .
9
9
9
9
3a
Câu 120. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng
√
a
a 2
2a
a
A. .
B.
.
C.
.
D. .
3
3
3
4
2
3
7n − 2n + 1
Câu 121. Tính lim 3
3n + 2n2 + 1
2
7
C. 0.
D. - .
A. 1.
B. .
3
3
4
0
Câu 122. [2] Cho hàm số f (x) = ln(x + 1). Giá trị f (1) bằng
1
ln 2
A. .
B.
.
C. 1.
D. 2.
2
2
Câu 123. Khối đa diện đều loại {3; 5} có số đỉnh
A. 12.
B. 30.
C. 8.
D. 20.
Câu 124. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 2.
C. 3.
Câu 125. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
n2 + n + 1
.
B.
u
=
.
A. un =
n
(n + 1)2
n2
C. un =
n2 − 2
.
5n − 3n2
D. 1.
D. un =
1 − 2n
.
5n + n2
Câu 126. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp
√ đã cho
√ là 1728. Khi đó, các kích thước của hình hộp là
A. 2 3, 4 3, 38.
B. 2, 4, 8.
C. 8, 16, 32.
D. 6, 12, 24.
Câu 127. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình tam giác.
B. Hình lập phương.
C. Hình chóp.
D. Hình lăng trụ.
Câu 128. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 11 cạnh.
D. 10 cạnh.
C. 9 cạnh.
Câu 129. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
A. aα+β = aα .aβ .
B. β = a β .
C. aα bα = (ab)α .
D. aαβ = (aα )β .
a
Câu 130. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
2.
3. A
4.
C
5.
7.
9.
D
8.
C
B
10.
B
C
12.
13.
C
14. A
C
D
16.
B
C
17.
D
6.
11.
15.
B
C
18. A
19. A
20. A
21.
B
22. A
23.
B
24.
25.
D
27.
26.
C
D
B
28. A
29.
D
30.
31.
D
32.
D
34.
D
33.
B
C
35. A
36.
C
37. A
38.
C
39. A
40.
D
D
41.
D
42.
43.
D
44.
45.
47.
C
B
49. A
51.
B
46.
C
48.
C
50.
C
52.
B
54. A
55.
D
B
56.
D
57.
C
58.
D
59.
C
60.
C
61.
62.
C
63.
C
64.
C
65.
C
67.
C
66.
68.
D
69. A
C
1
D
70.
71. A
C
72. A
74.
D
76.
75.
B
81.
82.
C
79.
D
80. A
C
84. A
86.
B
77.
C
78.
73.
D
B
83.
C
85.
C
87. A
B
88.
C
89.
D
90.
C
91.
D
92. A
93. A
D
94.
95. A
97. A
98.
99.
101.
C
100. A
102.
B
103.
D
104.
105.
D
106.
107.
C
109.
D
110.
C
D
B
112. A
113.
C
114.
115.
C
116.
B
C
118.
117. A
B
121.
120.
D
123. A
D
125.
127. A
129.
D
108. A
111. A
119.
B
B
2
D
C
122.
D
124.
D
126.
D
128.
D
130.
D