Free LATEX
BÀI TẬP TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −2e2 .
B. 2e2 .
C. 2e4 .
D. −e2 .
Câu 2. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
A. 3.
C. 2e + 1.
B. 2e.
D.
2
.
e
Câu 3. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 10 năm.
B. 7 năm.
C. 8 năm.
D. 9 năm.
Câu 4. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
A. 2.
B. −2.
C. − .
2
D.
1
.
2
Câu 5. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
√ C là
√
3
a 3
a3 3
a3
3
A.
.
B. a .
C.
.
D.
.
6
2
3
1
Câu 6. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m−2 có nghiệm duy nhất?
3
A. 4.
B. 3.
C. 2.
D. 1.
Câu 7. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
Thể tích khối chóp S .ABCD là
√
√ phẳng vng góc với 3(ABCD).
3
3
√
a 3
a 2
a 3
.
B.
.
C.
.
D. a3 3.
A.
2
4
2
Câu 8. Khối đa diện đều loại {4; 3} có số mặt
A. 10.
B. 6.
C. 8.
D. 12.
2
Câu 9. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
2
1
A. √ .
B. 3 .
C. 2 .
e
e
2 e
D.
1
.
2e3
Câu 10. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; +∞).
B. Hàm số đồng biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (0; 2).
D. Hàm số nghịch biến trên khoảng (−∞; 2).
Câu 11. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối 12 mặt đều.
2x + 1
x→+∞ x + 1
B. −1.
C. Khối tứ diện đều.
D. Khối bát diện đều.
Câu 12. Tính giới hạn lim
A. 1.
C.
Câu 13. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 22.
1
.
2
D. 2.
ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
C. S = 24.
D. S = 135.
Trang 1/10 Mã đề 1
Câu 14. Tính lim
x→2
A. 3.
x+2
bằng?
x
B. 2.
C. 0.
D. 1.
Câu 15. [1] Tập
! xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
A. −∞; − .
B. −∞; .
C. − ; +∞ .
2
2
2
!
1
D.
; +∞ .
2
Câu 16. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp tứ giác.
B. Hai khối chóp tam giác.
C. Hai khối chóp tứ giác.
D. Một khối chóp tam giác, một khối chóp ngữ giác.
Câu 17. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng là hình lăng trụ đều.
B. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
Câu 18. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 1.
C. 2.
D. Vô nghiệm.
Câu 19. Mệnh đề nào sau đây sai?
A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
!0
Z
f (x)dx = f (x).
B.
C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
D. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
1
a
, với a, b ∈ Z. Giá trị của a + b là
Câu 20. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
4 b ln 3
A. 2.
B. 7.
C. 4.
D. 1.
Z 3
a
x
a
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
Câu 21. Cho I =
√
d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 16.
B. P = −2.
C. P = 28.
D. P = 4.
x+1
Câu 22. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. 1.
B. .
C. .
D. .
3
2
6
Câu 23. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục ảo.
B. Trục thực.
C. Hai đường phân giác y = x và y = −x của các góc tọa độ.
D. Đường phân giác góc phần tư thứ nhất.
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
B thuộc (C), đoạn thẳng √
AB có độ dài bằng
√ đều ABI có hai đỉnh A, √
A. 2 3.
B. 2 2.
C. 6.
D. 2.
Câu 24. [3-1214d] Cho hàm số y =
Câu 25. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
Trang 2/10 Mã đề 1
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều sai.
B. Cả hai đều đúng.
C. Chỉ có (I) đúng.
D. Chỉ có (II) đúng.
Câu 26. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tứ giác và một hình chóp ngũ giác.
B. Hai hình chóp tứ giác.
C. Một hình chóp tam giác và một hình chóp tứ giác.
D. Hai hình chóp tam giác.
Câu 27. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
C. − .
D. − 2 .
A. −e.
B. − .
e
2e
e
Câu 28. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
D. V = S h.
A. V = S h.
B. V = 3S h.
C. V = S h.
2
3
Câu 29. Khối đa diện đều loại {5; 3} có số mặt
A. 20.
B. 30.
C. 12.
D. 8.
2
3
7n − 2n + 1
Câu 30. Tính lim 3
3n + 2n2 + 1
7
2
D. .
A. 1.
B. 0.
C. - .
3
3
3
2
Câu 31. Cho hàm số y = x − 3x − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 0).
B. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số đồng biến trên khoảng (1; 2).
D. Hàm số nghịch biến trên khoảng (0; 1).
Câu 32. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng (S AB). Thiết diện của
√mặt phẳng (AIC) có diện
√tích là
√ hình chóp S .ABCD với
2
2
2
2
a 7
a 5
a 2
11a
.
B.
.
C.
.
D.
.
A.
32
8
16
4
Câu 33. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (0; 2).
C. (2; +∞).
D. R.
Câu 34. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là
√
√
3
3
a 3
a 2
a3 3
a3 6
A.
.
B.
.
C.
.
D.
.
48
16
24
48
Câu 35. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là
√
√
a3 6
a3 5
a3 15
A.
.
B.
.
C.
.
D. a3 6.
3
3
3
Câu 36. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.016.000.
C. 102.423.000.
D. 102.424.000.
√
Câu 37. [12215d] Tìm m để phương trình 4 x+
3
9
A. 0 < m ≤ .
B. 0 ≤ m ≤ .
4
4
1−x2
√
− 4.2 x+
1−x2
C. m ≥ 0.
− 3m + 4 = 0 có nghiệm
3
D. 0 ≤ m ≤ .
4
Trang 3/10 Mã đề 1
Câu 38. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {5; 3}.
B. {4; 3}.
C. {3; 3}.
D. {3; 4}.
√
Câu 39. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
√
√
√
a 38
3a 38
3a
3a 58
A.
.
B.
.
C.
.
D.
.
29
29
29
29
2n + 1
Câu 40. Tính giới hạn lim
3n + 2
2
1
3
A. .
B. .
C. 0.
D. .
3
2
2
3
2
Câu 41. Hàm số y = x − 3x + 3x − 4 có bao nhiêu cực trị?
A. 0.
B. 3.
C. 1.
D. 2.
Câu 42. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A = a 5. Thể tích khối chóp √
S .ABCD là
√
4a3
2a3
4a3 3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 43. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 2ac
3b + 3ac
3b + 3ac
.
B.
.
C.
.
D.
.
A.
c+2
c+2
c+3
c+1
Câu 44. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là −1.
B. Phần thực là 4, phần ảo là 1.
C. Phần thực là −1, phần ảo là 4.
D. Phần thực là −1, phần ảo là −4.
t
9
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
Câu 45. [4] Xét hàm số f (t) = t
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 2.
B. 1.
C. 0.
D. Vô số.
Câu 46. Dãy số
!n nào có giới hạn bằng 0?
−2
.
B. un = n2 − 4n.
A. un =
3
n3 − 3n
C. un =
.
n+1
!n
6
D. un =
.
5
Câu 47. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 5.
B. 0.
C. 9.
D. 7.
Câu 48. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. 9.
B. .
C. 6.
D. .
2
2
3
2
Câu 49. Tìm m để hàm số y = mx + 3x + 12x + 2 đạt cực đại tại x = 2
A. m = −3.
B. m = 0.
C. m = −1.
D. m = −2.
Câu 50. Dãy số nào sau đây có giới hạn là 0?
n2 + n + 1
n2 − 2
A. un =
.
B.
u
=
.
n
(n + 1)2
5n − 3n2
Câu 51. Khối đa diện đều loại {3; 5} có số mặt
A. 20.
B. 30.
C. un =
C. 8.
1 − 2n
.
5n + n2
D. un =
n2 − 3n
.
n2
D. 12.
Câu 52. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
A. 2a 6.
B. a 6.
C.
.
D. a 3.
2
Trang 4/10 Mã đề 1
Câu 53. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị nhỏ nhất của biểu thức P = x + 2y thuộc tập nào dưới
" đây?
!
"
!
5
5
A. [3; 4).
B. (1; 2).
C.
;3 .
D. 2; .
2
2
√
ab.
Câu 54. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 72cm3 .
B. 27cm3 .
C. 64cm3 .
D. 46cm3 .
Câu 55. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng
√
√
√
a 2
a 2
.
B.
.
C. a 3.
D. a 2.
A.
2
3
Câu 56. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 4.
C. 8.
D. 6.
1
Câu 57. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (−∞; 1).
B. D = (1; +∞).
C. D = R.
D. D = R \ {1}.
Câu 58. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|
√
√
√
√
12 17
.
C. 34.
B.
D. 5.
A. 68.
17
x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
Câu 59. [4-1212d] Cho hai hàm số y =
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−3; +∞).
B. [−3; +∞).
C. (−∞; −3).
D. (−∞; −3].
x+3
Câu 60. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 2.
B. Vô số.
C. 3.
D. 1.
Câu 61. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 8 đỉnh, 10 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
d = 60◦ . Đường chéo
Câu 62. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
0
0 0
0 0
◦
BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
√
a3 6
2a3 6
4a3 6
3
.
B. a 6.
C.
.
D.
.
A.
3
3
3
Câu 63. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên khoảng (−2; 1).
B. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
Câu 64. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; −1) và (0; +∞). B. (0; 1).
C. (−1; 0).
D. (−∞; 0) và (1; +∞).
Câu 65. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 72.
B. 0, 8.
C. −7, 2.
D. 7, 2.
Câu 66. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m > 0.
B. m , 0.
C. m = 0.
D. m < 0.
Trang 5/10 Mã đề 1
Câu 67. Tính lim
x→+∞
A.
1
.
3
x+1
bằng
4x + 3
B. 1.
C. 3.
D.
1
.
4
2
Câu 68. [2] Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2
A. m = ±3.
B. m = ± 2.
C. m = ± 3.
D. m = ±1.
Câu 69. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (2; 4; 6).
C. (1; 3; 2).
D. (2; 4; 4).
Câu 70. Tính lim
A. 3.
5
n+3
B. 1.
C. 2.
D. 0.
Câu 71. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 23.
C. 21.
D. 24.
Câu 72. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
1
1
ab
.
B. √
.
C. √
.
D. √
.
A. 2
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
Câu 73. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp
√ là√
D. 8, 16, 32.
A. 6, 12, 24.
B. 2, 4, 8.
C. 2 3, 4 3, 38.
Câu 74. [1] Tính lim
x→3
x−3
bằng?
x+3
B. −∞.
D. +∞.
π π
3
Câu 75. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. −1.
B. 1.
C. 3.
D. 7.
A. 1.
Câu 76. Khối lập phương thuộc loại
A. {3; 4}.
B. {5; 3}.
C. 0.
C. {3; 3}.
D. {4; 3}.
Câu 77. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 27 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 3 lần.
Câu 78. Bát diện đều thuộc loại
A. {3; 3}.
B. {4; 3}.
C. {3; 4}.
Câu 79. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.
C. f (x) liên tục trên K.
B. f (x) có giá trị lớn nhất trên K.
D. f (x) có giá trị nhỏ nhất trên K.
D. {5; 3}.
Câu 80. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 1.
B. 22016 .
C. e2016 .
D. 0.
Câu 81. Hàm số nào sau đây khơng có cực trị
x−2
1
A. y = x + .
B. y =
.
x
2x + 1
C. y = x3 − 3x.
D. y = x4 − 2x + 1.
Trang 6/10 Mã đề 1
Câu 82. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 12 năm.
C. 13 năm.
D. 10 năm.
Câu 83. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 2.
2−n
Câu 84. Giá trị của giới hạn lim
bằng
n+1
A. 2.
B. −1.
C. 3.
D. 4.
C. 1.
D. 0.
1
Câu 85. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 0 < m ≤ 1.
C. 0 ≤ m ≤ 1.
D. 2 ≤ m ≤ 3.
Câu 86. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim− f (x) = f (b).
B. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→b
x→a
x→b
C. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a
x→b
x→a
x→b
D. lim− f (x) = f (a) và lim+ f (x) = f (b).
Câu 87. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
C. Cả ba đáp án trên.
√
D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
Câu 88. Dãy
!n số nào sau đây có giới
!n hạn là 0?
1
5
B.
.
A. − .
3
3
!n
5
C.
.
3
!n
4
D.
.
e
Câu 89. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng BD và S C bằng
√
√
√
√
a 6
a 6
a 6
A. a 6.
.
C.
.
D.
.
B.
2
3
6
Câu 90. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
1
ab
ab
A. √
.
B. √
.
C. 2
.
D. √
.
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
√
x2 + 3x + 5
Câu 91. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. 0.
B. − .
C. .
D. 1.
4
4
Z 1
6
2
3
. Tính
f (x)dx.
Câu 92. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
0
3x + 1
A. 4.
B. 6.
Câu 93. Khối đa diện đều loại {5; 3} có số đỉnh
A. 20.
B. 30.
C. 2.
D. −1.
C. 8.
D. 12.
Câu 94. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Trang 7/10 Mã đề 1
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 95. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là
√
√
√
a3 3
a3 2
a3 3
2
.
B. 2a 2.
C.
.
D.
.
A.
24
12
24
Câu 96. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 84cm3 .
B. 91cm3 .
C. 64cm3 .
D. 48cm3 .
Câu 97. Tính lim
x→3
A. −3.
x2 − 9
x−3
B. +∞.
C. 6.
Câu 98. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 6 mặt.
C. 10 mặt.
D. 3.
D. 4 mặt.
Câu 99. Tính thể tích khối lập phương biết tổng diện tích √
tất cả các mặt bằng 18.
A. 9.
B. 27.
C. 3 3.
D. 8.
log 2x
Câu 100. [3-1229d] Đạo hàm của hàm số y =
là
x2
1 − 2 log 2x
1 − 2 ln 2x
1 − 4 ln 2x
1
A. y0 =
.
C. y0 =
.
D. y0 = 3
.
.
B. y0 = 3
3
3
x
x ln 10
2x ln 10
2x ln 10
Câu 101.
[1233d-2] MệnhZđề nào sau đây
Z
Z sai?
A.
Z
B.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
D.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
C.
π
Câu 102. [2-c] Giá trị lớn nhất của hàm số y = e cos x trên đoạn 0; là
2
√
3 π6
1 π3
A.
e .
B. 1.
C. e .
2
2
1
Câu 103. [1] Giá trị của biểu thức log √3
bằng
10
1
C. −3.
A. 3.
B. .
3
√
√
Câu 104. Tìm giá trị lớn nhất của
hàm
số
y
=
x
+
3
+
6−
√
√x
A. 3.
B. 2 3.
C. 2 + 3.
x
Câu 105. [1] Tính lim
A. 0.
1 − n2
bằng?
2n2 + 1
1
B. .
2
1
C. − .
2
Câu 106. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).
B. (4; 6, 5].
C. [6, 5; +∞).
√
2 π4
D.
e .
2
1
D. − .
3
√
D. 3 2.
D.
1
.
3
D. (4; +∞).
3
Câu 107. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e5 .
B. e3 .
C. e.
D. e2 .
Câu 108. Xét hai câu sau
Trang 8/10 Mã đề 1
Z
(I)
( f (x) + g(x))dx =
Z
f (x)dx +
Z
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên đúng. B. Cả hai câu trên sai.
C. Chỉ có (II) đúng.
Câu 109. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (1; +∞).
B. (−∞; −1).
C. (−1; 1).
D. Chỉ có (I) đúng.
D. (−∞; 1).
3
2
x
Câu 110. [2]
√ Tìm m để giá trị lớn nhất của hàm số y = 2x + (m√ + 1)2 trên [0; 1] bằng 8
A. m = ± 3.
B. m = ±1.
C. m = ± 2.
D. m = ±3.
π
Câu 111. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3
√
trị của biểu √
thức T = a + b 3.
√
A. T = 3 3 + 1.
B. T = 2.
C. T = 2 3.
D. T = 4.
Câu 112. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 8.
C. 5.
D. 4.
Câu 113. Khối đa diện đều loại {5; 3} có số cạnh
A. 20.
B. 8.
C. 12.
D. 30.
1
Câu 114. Hàm số y = x + có giá trị cực đại là
x
A. 2.
B. −1.
C. −2.
D. 1.
x−3 x−2 x−1
x
Câu 115. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [2; +∞).
B. (2; +∞).
C. (−∞; 2).
D. (−∞; 2].
Câu 116. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Một tứ diện đều và bốn hình chóp tam giác đều.
B. Năm hình chóp tam giác đều, khơng có tứ diện đều.
C. Năm tứ diện đều.
D. Bốn tứ diện đều và một hình chóp tam giác đều.
Câu 117. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. −2 + 2 ln 2.
B. 1.
C. 4 − 2 ln 2.
!4x
!2−x
2
3
Câu 118. Tập các số x thỏa mãn
≤
là
3
2
"
!
#
"
!
2
2
2
A.
; +∞ .
B. −∞; .
C. − ; +∞ .
5
3
3
!
x+1
Câu 119. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) +
x
4035
2017
A. 2017.
B.
.
C.
.
2018
2018
√
Câu 120. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. − .
B. −3.
C. .
3
3
D. e.
#
2
D. −∞; .
5
f 0 (2) + · · · + f 0 (2017)
D.
2016
.
2017
D. 3.
Trang 9/10 Mã đề 1
Câu 121. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un
B. Nếu lim un
C. Nếu lim un
D. Nếu lim un
!
un
= −∞.
= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
vn
= +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
= a > 0 và lim vn = 0 thì lim
= +∞.
vn !
un
= 0.
= a , 0 và lim vn = ±∞ thì lim
vn
Câu 122. [1] Giá trị của biểu thức 9log3 12 bằng
A. 24.
B. 2.
C. 4.
D. 144.
Câu 123. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 6.
C. 10.
D. 12.
√
Câu 124. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√
√ cho là
√
√
πa3 3
πa3 6
πa3 3
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
3
6
2
6
Câu 125. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 0.
B. Không tồn tại.
C. 9.
D. 13.
Câu 126. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
x
9
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
Câu 127. [2-c] Cho hàm số f (x) = x
9 +3
1
B. 2.
C. −1.
D. 1.
A. .
2
Câu 128. Phát biểu nào sau đây là sai?
1
A. lim un = c (Với un = c là hằng số).
B. lim √ = 0.
n
1
C. lim qn = 1 với |q| > 1.
D. lim k = 0 với k > 1.
n
!
1
1
1
Câu 129. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
B. +∞.
C. 2.
D. .
A. .
2
2
1 + 2 + ··· + n
Câu 130. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. lim un = .
B. lim un = 0.
2
C. lim un = 1.
D. Dãy số un khơng có giới hạn khi n → +∞.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
D
2. A
3.
D
4.
5.
7. A
C
8.
B
10.
B
11. A
12.
13. A
14.
15.
17.
B
21.
20.
D
D
D
D
28.
29.
C
30.
D
32.
B
C
B
34. A
36.
35. A
37.
D
40. A
41. A
42. A
43. A
44. A
45. A
46. A
47.
C
48.
D
49.
B
50.
51. A
53.
D
38. A
39. A
C
55. A
C
52.
B
54.
B
56.
B
58.
59.
D
C
B
60.
61. A
62.
63.
C
64.
65.
C
66.
67.
D
26.
C
31.
B
24. A
27.
57.
C
22.
C
25.
33.
B
18.
C
23.
D
16. A
C
19.
D
6.
C
9.
B
D
68.
1
C
B
C
B
D
69.
70.
B
71. A
72.
73. A
74.
75.
C
D
78.
79.
C
80.
C
B
83.
D
85. A
D
82.
B
84.
B
86. A
87.
D
88.
89.
D
90.
91.
B
76.
B
77. A
81.
D
B
D
92. A
B
93. A
94.
95.
D
B
C
96.
97.
C
98.
B
99.
C
100.
B
101.
B
D
103.
105.
C
D
104.
D
106.
107. A
109.
102.
108. A
C
110.
111.
D
112. A
113.
D
114.
115. A
C
C
116. A
117.
D
118.
C
C
119.
C
120.
121.
C
122.
123.
D
D
124. A
126.
125. A
127.
129.
B
D
128.
130. A
C
2
D
C