Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn tập toán thptqg 6 (451)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (148.82 KB, 12 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

n−1
Câu 1. Tính lim 2
n +2
A. 3.

B. 1.

C. 2.

D. 0.

Câu 2. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 2.
C. 3.
D. 4.
1 − 2n
bằng?
Câu 3. [1] Tính lim
3n + 1
1
2


2
A. .
B. .
C. − .
D. 1.
3
3
3
!
x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
Câu 4. [3] Cho hàm số f (x) = ln 2017 − ln
x
2016
2017
4035
A.
.
B.
.
C. 2017.
D.
.
2017
2018
2018
Câu 5. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 2.
B. −2.
C. −4.

D. 4.


Câu 6. Phần thực √
và phần ảo của số phức
√ z = 2 − 1 − 3i lần lượt l√

A. Phần thực là √2 − 1, phần ảo là √
3.
B. Phần thực là 2, √
phần ảo là 1 − √
3.
C. Phần thực là 2 − 1, phần ảo là − 3.
D. Phần thực là 1 − 2, phần ảo là − 3.
Câu 7. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 7.
B. 5.

C. 0.

D. 9.

Câu 8. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một nguyên
hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
B. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. F(x) = G(x) trên khoảng (a; b).
Câu 9. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu

A. f (x) có giới hạn hữu hạn khi x → a.
B. lim+ f (x) = lim− f (x) = a.
x→a
x→a
C. lim f (x) = f (a).
D. lim+ f (x) = lim− f (x) = +∞.
x→a

x3 − 1
Câu 10. Tính lim
x→1 x − 1
A. 3.
B. −∞.

x→a

x→a

C. +∞.

D. 0.

Câu 11. Cho
Z hai hàm yZ= f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
B. Nếu

f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
C. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Câu 12. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; −1).
B. (−∞; 1).
C. (1; +∞).

D. (−1; 1).
Trang 1/10 Mã đề 1


Câu 13. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường



√ thẳng BD bằng
abc b2 + c2

a b2 + c2
b a2 + c2
c a2 + b2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 14. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −12.
B. −9.
C. −15.
D. −5.
Câu 15. Khối đa diện đều loại {3; 3} có số đỉnh
A. 3.
B. 5.

C. 2.

D. 4.

2

Câu 16. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2√
D. m = ± 3.
A. m = ±1.
B. m = ±3.
C. m = ± 2.

Câu 17. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm tứ diện đều.
B. Năm hình chóp tam giác đều, khơng có tứ diện đều.
C. Một tứ diện đều và bốn hình chóp tam giác đều.
D. Bốn tứ diện đều và một hình chóp tam giác đều.
Câu 18. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là 1.
B. Phần thực là −1, phần ảo là 4.
C. Phần thực là 4, phần ảo là −1.
D. Phần thực là −1, phần ảo là −4.
Câu 19. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 1.
B. e2016 .
C. 0.
D. 22016 .
Câu 20. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Khơng có.
B. Có hai.
C. Có một hoặc hai.
D. Có một.

Câu 21. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m < 3.
C. m ≤ 3.
D. m ≥ 3.
Câu 22. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
= .
A. lim [ f (x) − g(x)] = a − b.
B. lim
x→+∞
x→+∞ g(x)
b
C. lim [ f (x)g(x)] = ab.
D. lim [ f (x) + g(x)] = a + b.
x→+∞

x→+∞

Câu 23. [2-c] Giá trị lớn nhất của hàm số y = ln(x + x + 2) trên đoạn [1; 3] là
A. ln 14.
B. ln 4.
C. ln 10.
D. ln 12.
2

Câu 24. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt

phẳng ACC 0 A0 bằng
ab
1
1
ab
A. 2
.
C. √
.
D. √
.
.
B. √
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
Câu 25. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 8 m.
B. 16 m.
C. 12 m.
D. 24 m.
log7 16
Câu 26. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. 4.

B. 2.
C. −2.
D. −4.
Trang 2/10 Mã đề 1



Câu 27. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
D. − .
A. 3.
B. −3.
C. .
3
3
Câu 28. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất khơng thay đổi?
A. 102.016.000.
B. 102.424.000.
C. 102.016.000.
D. 102.423.000.
Câu 29. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là

. Khi đó thể tích khối lăng trụ là
4




a3 3
a3 3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
6
36
12
24
Câu 30. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
A. .
B.

.
C. a.
D. .
2
2
3
Câu 31.√Biểu thức nào sau đây √
khơng có nghĩa
−3
A. (− 2)0 .
B.
−1.
C. (−1)−1 .
D. 0−1 .
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
Câu 32. [3-1132d] Cho dãy số (un ) với un =
n2 + 1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = 1.
1
C. lim un = 0.
D. lim un = .
2
Câu 33. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a

a3 15
a3 5
a3 15

a3
A.
.
B.
.
C.
.
D.
.
5
25
25
3
Câu 34. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).
B. (4; +∞).
C. [6, 5; +∞).
D. (4; 6, 5].
x+3
Câu 35. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 2.
B. 3.
C. Vô số.
D. 1.
x
Câu 36.
√ Tính diện tích hình phẳng giới hạn bởi các đường y = xe , y = 0, x = 1.

3
3
1
A.
.
B. .
C. .
D. 1.
2
2
2
Câu 37. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh đề nào dưới đây đúng?

A. Hàm số nghịch biến trên khoảng (1; +∞).
!
1
C. Hàm số nghịch biến trên khoảng ; 1 .
3

!
1
B. Hàm số đồng biến trên khoảng ; 1 .
3

!
1
D. Hàm số nghịch biến trên khoảng −∞; .
3
tan x + m
Câu 38. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =

nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. [0; +∞).
B. (−∞; 0] ∪ (1; +∞). C. (1; +∞).
D. (−∞; −1) ∪ (1; +∞).
Trang 3/10 Mã đề 1


Câu 39. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 4 − 2 ln 2.
B. −2 + 2 ln 2.
C. 1.

D. e.

Câu 40. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.
C. 3 mặt.
D. 9 mặt.
Câu 41. Hàm số nào sau đây khơng có cực trị
1
A. y = x3 − 3x.
B. y = x + .
x

C. y = x4 − 2x + 1.


D. y =

x−2
.
2x + 1

x+2
Câu 42. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. Vô số.
B. 2.
C. 1.
D. 3.
Câu 43. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên khoảng (−2; 1).
B. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
C. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 44. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
√ S H ⊥ (ABCD), S A =
√a 5. Thể tích khối chóp3 S .ABCD là
3
3
2a 3
4a 3

4a
2a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 45. Trong các khẳng định sau, khẳng định nào sai?√
A. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
B. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
C. Cả ba đáp án trên.
D. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
q
2
Câu 46. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [0; 4].
C. m ∈ [0; 2].
D. m ∈ [−1; 0].
Câu 47. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó

là:
A. 48cm3 .
B. 84cm3 .
C. 64cm3 .
D. 91cm3 .
Câu 48. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (I) sai.

B. Câu (III) sai.

2n − 3
bằng
Câu 49. Tính lim 2
2n + 3n + 1
A. +∞.
B. 0.

C. Câu (II) sai.

D. Khơng có câu nào
sai.

C. −∞.

D. 1.


Câu 50. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là

10a3 3
3
3
3
A. 40a .
B. 20a .
C. 10a .
D.
.
3
Trang 4/10 Mã đề 1


9x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9x + 3
1
B. −1.
C. .
D. 2.
2

Câu 51. [2-c] Cho hàm số f (x) =
A. 1.

Câu 52. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog
A. 5.


B. 25.


a

5



C.

bằng
D.

5.

1
.
5

Câu 53. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 3, 55.
B. 15, 36.
C. 24.
D. 20.
log 2x


x2
1 − 2 log 2x
1 − 4 ln 2x
B. y0 =
.
C. y0 =
.
3
x
2x3 ln 10

Câu 54. [3-1229d] Đạo hàm của hàm số y =
A. y0 =

2x3

1
.
ln 10

D. y0 =

1 − 2 ln 2x
.
x3 ln 10

Câu 55. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.

D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 56. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 27cm3 .
B. 64cm3 .
C. 46cm3 .
D. 72cm3 .

Câu 57. Thể tích của khối lập phương có cạnh bằng a 2

3


2a
2
C. V = a3 2.
D.
A. V = 2a3 .
B. 2a3 2.
.
3
Câu 58. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
9
23
5
13
A.
.
B. −

.
C. − .
D.
.
25
100
16
100
Câu 59. Khối đa diện đều loại {3; 4} có số cạnh
A. 12.
B. 10.
x+2
Câu 60. Tính lim
bằng?
x→2
x
A. 1.
B. 3.

C. 6.

D. 8.

C. 2.

D. 0.

Câu 61. Mệnh đề nào sau đây sai?
Z
A. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì


f (x)dx = F(x) + C.

B. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
C. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
!0
Z
D.
f (x)dx = f (x).
Câu 62. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) =
.
B. f 0 (0) = 1.
C. f 0 (0) = ln 10.
ln 10
!2x−1
!2−x
3
3
Câu 63. Tập các số x thỏa mãn


5
5
A. (+∞; −∞).
B. [1; +∞).
C. [3; +∞).

D. f 0 (0) = 10.


D. (−∞; 1].
Trang 5/10 Mã đề 1


Câu 64. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 6%.
B. 0, 8%.
C. 0, 7%.
D. 0, 5%.
Câu 65. Khối đa diện đều loại {4; 3} có số đỉnh
A. 8.
B. 10.

C. 4.

D. 6.

Câu 66.
đề nào sau đây sai?
Z [1233d-2] Mệnh
Z
A.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z

B.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
Z
C.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
D.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Câu 67. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (II) và (III).

B. (I) và (II).

C. (I) và (III).

D. Cả ba mệnh đề.

Câu 68. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?

A. 11 năm.
B. 10 năm.
C. 12 năm.
D. 13 năm.
 π π
Câu 69. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 7.
B. −1.
C. 1.
D. 3.

Câu 70. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
" nhỏ! nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
5
5
B.
;3 .
C. [3; 4).
D. (1; 2).
A. 2; .
2
2
Câu 71. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −2.
B. m = −1.
C. m = −3.

D. m = 0.


Câu 72. Cho hình chóp S .ABCD có đáy ABCD là hình thang vuông tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt phẳng vng góc với (ABCD).
Thể tích khối chóp

√ S .ABCD là
3
3
3

a 3
a 2
a 3
A.
.
B. a3 3.
C.
.
D.
.
2
2
4
Câu 73. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 5 mặt.
C. 6 mặt.
D. 4 mặt.
Câu 74. Khối đa diện đều loại {3; 3} có số cạnh
A. 8.

B. 4.

C. 6.

D. 5.
Trang 6/10 Mã đề 1


Câu 75. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD
√ là

3
3
3
3
8a 3
a 3
8a 3
4a 3
.
B.
.
C.
.
D.
.
A.
9

3
9
9
Câu 76. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


3
3
a 3
a 6
a3 3
a3 2
A.
.
B.
.
C.
.
D.
.
24
48
48
16
√3
4
Câu 77. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
7

2
5
5
A. a 3 .
B. a 3 .
C. a 3 .
D. a 8 .
!
1
1
1
Câu 78. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
C. .
D. +∞.
A. 2.
B. .
2
2
Câu 79. Tính mơ đun của số phức z√biết (1 + 2i)z2 = 3 + 4i. √

4
A. |z| = 5.
B. |z| = 5.
C. |z| = 2 5.
D. |z| = 5.

Câu 80. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 = 2 x . ln 2.
B. y0 =
.
C. y0 = x
.
D. y0 = 2 x . ln x.
ln 2
2 . ln x
Câu 81. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B. a3 .
C.
.
D.
.
12
6
24
Câu 82. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.

C. Khối lập phương.
D. Khối bát diện đều.
[ = 60◦ , S A ⊥ (ABCD).
Câu 83. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√chóp S .ABCD là
√ S C là a. Thể tích khối
3
3
3

a 3
a 2
a 2
A.
.
B.
.
C.
.
D. a3 3.
4
6
12
x−3 x−2
Câu 84. [12212d] Số nghiệm của phương trình 2 .3 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. 2.
C. 3.
D. Vô nghiệm.

4x + 1
bằng?
Câu 85. [1] Tính lim
x→−∞ x + 1
A. −4.
B. −1.
C. 4.
D. 2.
Câu 86. Khối chóp ngũ giác có số cạnh là
A. 10 cạnh.
B. 12 cạnh.

C. 9 cạnh.

D. 11 cạnh.

4x
1
2
2016
Câu 87. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T =

.
B. T = 1008.
C. T = 2017.
D. T = 2016.
2017
Câu 88. Khối đa diện đều loại {3; 5} có số cạnh
A. 12.
B. 20.
C. 30.
D. 8.
!
1
1
1
Câu 89. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 2.
B. 0.
C. .
D. 1.
2
!

!

!


Trang 7/10 Mã đề 1


Câu 90. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = −18.
B. y(−2) = 6.
C. y(−2) = 2.
D. y(−2) = 22.
Câu 91. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim− f (x) = f (b).
B. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim+ f (x) = f (a) và lim− f (x) = f (b).
D. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a

x→b

x→a

x→b

Câu 92. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e2 − 2; m = e−2 + 2.

B. M = e−2 + 1; m = 1.
C. M = e−2 − 2; m = 1.
D. M = e−2 + 2; m = 1.


Câu 93. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã



√ cho là
πa3 3
πa3 3
πa3 6
πa3 3
.
B. V =
.
C. V =
.
D. V =
.
A. V =
3
6
2
6
Câu 94. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 8π.

B. V = 4π.
C. 16π.
D. 32π.

Câu 95. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
a
2a
5a
8a
A. .
B.
.
C.
.
D.
.
9
9
9
9
Câu 96. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.
C. Khối 20 mặt đều.
D. Khối tứ diện đều.
[ = 60◦ , S O
Câu 97. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.√Khoảng cách từ O đến (S
√ BC) bằng



2a 57
a 57
a 57
A. a 57.
B.
.
C.
.
D.
.
19
19
17
Câu 98. Giá trị của lim (3x2 − 2x + 1)
x→1
A. +∞.
B. 2.
C. 1.
D. 3.
x−2
Câu 99. Tính lim
x→+∞ x + 3
2
A. −3.
B. 1.
C. 2.
D. − .
3

Câu 100. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 5 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 6 cạnh, 6 mặt.
Câu 101. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 8 cạnh, 4 mặt. B. 3 đỉnh, 3 cạnh, 3 mặt. C. 4 đỉnh, 6 cạnh, 4 mặt. D. 6 đỉnh, 6 cạnh, 4 mặt.
Câu 102. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 7 mặt.
B. 6 mặt.
C. 9 mặt.

D. 8 mặt.

Câu 103. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối tứ diện đều.

D. Khối bát diện đều.

C. Khối 12 mặt đều.

Câu 104. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng




a 3
2a 3
a 3
A. a 3.
B.

.
C.
.
D.
.
3
2
2
Trang 8/10 Mã đề 1


Câu 105. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách √
từ C đến đường thẳng BB0 bằng 2, khoảng
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2
3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3
A.
.
B. 1.
C. 3.
D. 2.
3
Câu 106. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích

hình hộp
√ đã cho
√ là 1728. Khi đó, các kích thước của hình hộp là
A. 2 3, 4 3, 38.
B. 6, 12, 24.
C. 8, 16, 32.
D. 2, 4, 8.
Câu 107. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 + 2 sin 2x.
B. 1 − sin 2x.
C. −1 + 2 sin 2x.
D. −1 + sin x cos x.
x
x−3 x−2 x−1
+
+
+
và y = |x + 2| − x − m (m là tham
Câu 108. [4-1213d] Cho hai hàm số y =
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2).
B. (2; +∞).
C. (−∞; 2].
D. [2; +∞).
un
Câu 109. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng

vn
A. 0.
B. +∞.
C. 1.
D. −∞.
Câu 110. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
C. T = e + 3.
D. T = 4 + .
A. T = e + 1.
B. T = e + .
e
e
Câu 111.
√ min |z − 1 − i|.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
A. 10.
B. 2.
C. 1.
D. 2.
Câu 112. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Hai mặt.
B. Ba mặt.
C. Một mặt.

D. Bốn mặt.

Câu 113. Giá trị cực đại của hàm số y = x3 − 3x + 4 là

A. −1.
B. 1.
C. 2.

D. 6.

Câu 114. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có hai.
B. Có một.
C. Có vơ số.
D. Khơng có.
Câu 115. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 − 2e
1 − 2e
A. m =
.
B. m =
.
C. m =
.
4 − 2e
4e + 2
4e + 2

D. m =

1 + 2e
.

4 − 2e

Câu 116.
√ Thể tích của tứ diện đều
√cạnh bằng a
3
3
a 2
a 2
A.
.
B.
.
2
6



a3 2
a3 2
C.
.
D.
.
4
12
1
Câu 117. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; 3).

B. (−∞; 3).
C. (1; +∞).
D. (−∞; 1) và (3; +∞).
Câu 118. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
Thể tích khối chóp S .ABC√là
vng góc

√ với đáy và S C = a 3.3 √
3
a 3
a 6
a3 3
2a3 6
A.
.
B.
.
C.
.
D.
.
2
12
4
9
Trang 9/10 Mã đề 1


Câu 119. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và

S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a 6
a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
24
48
8
24
Câu 120. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lăng trụ.
B. Hình chóp.
C. Hình lập phương.
D. Hình tam giác.
Câu 121. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m = 0.
B. m > 0.

C. m < 0.
Câu 122. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 8.
C. 6.
2−n
bằng
Câu 123. Giá trị của giới hạn lim
n+1
A. −1.
B. 2.
C. 1.
!4x
!2−x
2
3
Câu 124. Tập các số x thỏa mãn


2
"
!
" 3 !
#
2
2
2
A. − ; +∞ .
B.
; +∞ .

C. −∞; .
3
5
3
Câu 125. [12210d] Xét các số thực dương x, y thỏa mãn log3

D. m , 0.
D. 10.
D. 0.

#
2
D. −∞; .
5

1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ
x + 2y

nhất Pmin của P√ = x + y.



2 11 − 3
18 11 − 29
9 11 − 19
9 11 + 19
. B. Pmin =
.
C. Pmin =

. D. Pmin =
.
A. Pmin =
9
3
21
9
Câu 126. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
1
ab
A. 2
.
C. √
.
D. √
.
.
B. √
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
Câu 127. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≤ 3.
B. −3 ≤ m ≤ 3.
C. −2 ≤ m ≤ 2.

D. m ≥ 3.
Câu 128. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
x2 − 9
Câu 129. Tính lim
x→3 x − 3
A. +∞.
B. 3.

C. 6.

D. −3.

Câu 130. Khối đa diện đều loại {3; 5} có số mặt
A. 20.
B. 8.

C. 30.

D. 12.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN

BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
D

1.
C

3.
5.

D

8.

C

C
B

10. A
12.

B

13.

B

6.


7.
11.

4.

B

9.

D

2.

14. A

C
D

15.

D

16. A

17.

C

18.


C

19.

C

20.

C

D

21.

22.

23. A
25.

B

24.

D

26.

D

27.


C

28.

29.

C

30.

31.

D

33.
35.

C
B

37.

C

34.

D

36.


D

38.

C
C

40.

41.

D

42.

43.

D

44.

49.

C
B

51. A
53.
57.


B
C

46.

D

48.

D

50.

B

52.

B

54.

B

55.

C
D

D


47.

B

32.

39.

45. A

B

D

D

56. A
58.

B

59. A

B

60.

C


61.

B

62.

C

63.

B

64.

C

65. A
67.

66. A
B

68.
1

C


69.


70.

C

71. A

B

72. A

73.

D

74.

C

75.

D

76.

C

77.

B


78. A

79.

B

80. A

81. A

82.

83. A

84.
C

85.
87.

D

90. A

C

D

95.
C


96.
B

99.

100.

B

101.

102.

C
B

105.

106.

B

107.
D

110.

C
D

C

109. A

C

112.

B

103. A

104.
108.

C

97.

98.

111.
D

C

113.

114. A


D

115.

116.

D

D

119. A
D

122.

C

117.

B

120.

121.

C

D

123. A


124. A
128.

C

92.

93. A

126.

C

88.

89.

118.

B

86. A

B

91.

D


B

125.

B

127.

B

129.

C

130. A

2

C



×