Free LATEX
BÀI TẬP TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 18 lần.
B. Tăng gấp 27 lần.
C. Tăng gấp 3 lần.
D. Tăng gấp 9 lần.
Câu 2.
các khẳng định sau, khẳng định nào sai?
Z Trong
u0 (x)
A.
dx = log |u(x)| + C.
u(x)
B. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
C. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
D. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
x+1
Câu 3. Tính lim
bằng
x→−∞ 6x − 2
1
1
A. .
B. .
6
3
C.
1
.
2
D. 1.
!
!
!
1
2
2016
4x
Câu 4. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
.
D. T = 2017.
A. T = 2016.
B. T = 1008.
C. T =
2017
7n2 − 2n3 + 1
Câu 5. Tính lim 3
3n + 2n2 + 1
2
B. 1.
A. - .
3
C.
7
.
3
D. 0.
Câu 6. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ nhất
của |z + 2 + i|
√
√
√
√
12 17
A. 68.
B.
.
C. 5.
D. 34.
17
9x
Câu 7. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
D. −1.
A. 1.
B. 2.
C. .
2
Câu 8. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một nguyên
hàm của f (x) trên khoảng (a; b). Khi đó
A. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
B. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
C. F(x) = G(x) trên khoảng (a; b).
D. Cả ba câu trên đều sai.
Câu 9. Phát biểu nào sau đây là sai?
1
A. lim = 0.
n
C. lim qn = 0 (|q| > 1).
Câu 10. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 30.
B. lim un = c (un = c là hằng số).
1
D. lim k = 0.
n
C. 12.
D. 10.
Trang 1/10 Mã đề 1
Câu 11. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e2 .
B. −2e2 .
C. 2e4 .
D. −e2 .
Câu 12. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 6).
C. (2; 4; 3).
D. (2; 4; 4).
Câu 13. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
ab
1
.
B. √
.
C. √
.
D. 2
A. √
.
a + b2
a2 + b2
2 a2 + b2
a2 + b2
Câu 14. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đơi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 13 năm.
C. 12 năm.
D. 11 năm.
Câu 15.√Thể tích của tứ diện đều √
cạnh bằng a
√
√
3
3
a 2
a 2
a3 2
a3 2
A.
.
B.
.
C.
.
D.
.
6
2
12
4
Câu 16. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng
hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√
√ là
√
3
3
3
3
a 3
4a 3
8a 3
8a 3
.
B.
.
C.
.
D.
.
A.
9
9
9
3
Câu 17. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 3.
B. T = e + .
C. T = e + 1.
D. T = 4 + .
e
e
Câu 18. [2]√Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8
B. m = ± 3.
C. m = ±3.
D. m = ±1.
A. m = ± 2.
Câu 19. Khối lập phương thuộc loại
A. {4; 3}.
B. {3; 4}.
C. {3; 3}.
D. {5; 3}.
x2 − 5x + 6
x→2
x−2
B. 0.
Câu 20. Tính giới hạn lim
A. 1.
C. −1.
D. 5.
1
Câu 21. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 1) và (3; +∞). B. (1; +∞).
C. (1; 3).
D. (−∞; 3).
Câu 22. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 3.
C. 4.
D. 2.
Câu 23. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
A. −2.
B. 2.
C. .
2
1
D. − .
2
Câu 24. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 7, 2.
B. 72.
C. −7, 2.
D. 0, 8.
Câu 25. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 5.
D. 8.
C. 4.
Trang 2/10 Mã đề 1
Câu 26. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm hình chóp tam giác đều, khơng có tứ diện đều.
B. Một tứ diện đều và bốn hình chóp tam giác đều.
C. Bốn tứ diện đều và một hình chóp tam giác đều.
D. Năm tứ diện đều.
Câu 27. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −2.
B. 4.
C. 2.
x+2
bằng?
Câu 28. Tính lim
x→2
x
A. 1.
B. 0.
C. 3.
D. −4.
D. 2.
Câu 29. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 2; m = 1.
B. M = e2 − 2; m = e−2 + 2.
C. M = e−2 − 2; m = 1.
D. M = e−2 + 1; m = 1.
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
Câu 30. [3-1132d] Cho dãy số (un ) với un =
n2 + 1
1
A. lim un = .
B. lim un = 1.
2
C. lim un = 0.
D. Dãy số un khơng có giới hạn khi n → +∞.
2
Câu 31. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số nghịch biến trên khoảng (−∞; 0).
D. Hàm số đồng biến trên khoảng (1; 2).
π π
3
Câu 32. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 7.
B. 3.
C. 1.
D. −1.
Câu 33. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 16π.
B. 8π.
C. V = 4π.
D. 32π.
Câu 34. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
2n − 3
bằng
Câu 35. Tính lim 2
2n + 3n + 1
A. 1.
B. 0.
C. +∞.
D. −∞.
Câu 36. Bát diện đều thuộc loại
A. {3; 3}.
B. {4; 3}.
C. {5; 3}.
D. {3; 4}.
Câu 37. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −1.
B. m = −2.
C. m = −3.
D. m = 0.
Câu 38. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√M + m
√ của hàm số. Khi đó tổng
√
B. 8 2.
C. 16.
D. 8 3.
A. 7 3.
√
Câu 39. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) √
bằng
√
√
a 38
3a 38
3a
3a 58
A.
.
B.
.
C.
.
D.
.
29
29
29
29
Trang 3/10 Mã đề 1
Câu 40. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
.
C. f 0 (0) = ln 10.
A. f 0 (0) = 10.
B. f 0 (0) =
ln 10
D. f 0 (0) = 1.
Câu 41. Cho
√ số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
B. |z| = 17.
C. |z| = 17.
D. |z| = 10.
A. |z| = 10.
Câu 42.
! định nào sau đây là sai?
Z Các khẳng
0
Z
f (x)dx = f (x).
A.
Z
C.
B.
f (x)dx = F(x) +C ⇒
Z
f (u)dx = F(u) +C. D.
Câu 43. [1-c] Giá trị của biểu thức
A. 2.
B. −4.
log7 16
log7 15 − log7
15
30
Z
Z
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.
Z
k f (x)dx = k
f (x)dx, k là hằng số.
bằng
C. −2.
2
Câu 44. Tính mơ đun của số phức z biết
√ (1 + 2i)z = 3 + 4i. √
C. |z| = 5.
A. |z| = 5.
B. |z| = 2 5.
D. 4.
D. |z| =
√4
5.
Câu 45. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên khoảng (−2; 1).
B. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
Câu 46. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
B.
.
C. 1.
A. .
2
2
√
Câu 47. √
Thể tích của khối lập phương có cạnh bằng a 2
√
2a3 2
A.
.
B. V = 2a3 .
C. 2a3 2.
3
D. 2.
√
D. V = a3 2.
Câu 48. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là
√
3
10a
3
A. 20a3 .
B. 40a3 .
C. 10a3 .
D.
.
3
1
Câu 49. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 3.
B. 2.
C. 1.
D. 4.
Câu 50. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
100.(1, 01)3
100.1, 03
A. m =
triệu.
B. m =
triệu.
3
3
120.(1, 12)3
(1, 01)3
C. m =
triệu.
D.
m
=
triệu.
(1, 12)3 − 1
(1, 01)3 − 1
Câu 51. [1] Tính lim
x→3
A. −∞.
x−3
bằng?
x+3
B. +∞.
C. 0.
D. 1.
Trang 4/10 Mã đề 1
Câu 52. Tính lim
x→1
A. 3.
x3 − 1
x−1
B. 0.
C. −∞.
D. +∞.
Câu 53. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
√ góc với đáy, S C = a3 √3. Thể tích khối chóp S .ABCD là
3
a 3
a3
a 3
.
B.
.
C. a3 .
D.
.
A.
9
3
3
Câu 54. Trong các khẳng định sau, khẳng định nào sai?√
A. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
B. Cả ba đáp án trên.
C. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
D. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
Câu 55. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = (−2; 1).
B. D = [2; 1].
C. D = R.
2
D. D = R \ {1; 2}.
Câu 56. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −2 ≤ m ≤ 2.
B. m ≤ 3.
C. m ≥ 3.
D. −3 ≤ m ≤ 3.
Câu 57. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 16 tháng.
B. 15 tháng.
C. 17 tháng.
D. 18 tháng.
x+1
Câu 58. Tính lim
bằng
x→+∞ 4x + 3
1
B. 3.
A. .
4
C. 1.
D.
1
.
3
x−3 x−2 x−1
x
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2).
B. (−∞; 2].
C. [2; +∞).
D. (2; +∞).
Câu 59. [4-1213d] Cho hai hàm số y =
Câu 60. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 2.
B. 1.
C. 6.
D. −1.
Câu 61. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
0 0
(AB0C) và
√ (A C D) bằng
√
√
√
2a 3
a 3
a 3
A.
.
B.
.
C. a 3.
.
D.
2
3
2
1
Câu 62. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. − .
B. 3.
C. .
D. −3.
3
3
3
Câu 63. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e2 .
B. e5 .
C. e3 .
D. e.
Câu 64. Dãy
!n số nào sau đây có giới
!n hạn là 0?
5
1
A. − .
B.
.
3
3
!n
4
D.
.
e
!n
5
C.
.
3
Trang 5/10 Mã đề 1
3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng
√
a
a
a 2
2a
A. .
B. .
C.
.
D.
.
4
3
3
3
1
Câu 66. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 2 ≤ m ≤ 3.
C. 0 ≤ m ≤ 1.
D. 0 < m ≤ 1.
Câu 65. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
Câu 67. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của hình chóp S .ABCD với√mặt phẳng (AIC) có diện√tích là
√
11a2
a2 2
a2 7
a2 5
.
B.
.
C.
.
D.
.
A.
16
32
4
8
Câu 68. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp là
√
√
A. 6, 12, 24.
B. 8, 16, 32.
C. 2, 4, 8.
D. 2 3, 4 3, 38.
Câu 69. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
36
12
24
6
Câu 70. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
a
2a
5a
8a
A.
.
B. .
C.
.
D.
.
9
9
9
9
Câu 71. Khối đa diện đều loại {5; 3} có số mặt
A. 12.
B. 30.
C. 8.
D. 20.
Câu 72. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 0.
B. 1.
C. 22016 .
D. e2016 .
log2 240 log2 15
−
+ log2 1 bằng
Câu 73. [1-c] Giá trị biểu thức
log3,75 2 log60 2
A. −8.
B. 3.
C. 4.
D. 1.
Câu 74. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có hai.
B. Có một.
C. Khơng có.
D. Có một hoặc hai.
Câu 75. Giá trị lớn nhất của hàm số y =
A. −2.
B. 0.
2mx + 1
1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
C. −5.
D. 1.
Câu 76. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
A. lim [ f (x) + g(x)] = a + b.
x→+∞
C. lim [ f (x)g(x)] = ab.
x→+∞
x→+∞
f (x) a
= .
x→+∞ g(x)
b
D. lim [ f (x) − g(x)] = a − b.
B. lim
x→+∞
Trang 6/10 Mã đề 1
Câu 77. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
B. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
D. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
!
1
1
1
Câu 78. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
A. 2.
B. .
C. +∞.
D. .
2
2
Câu 79. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; −8)(.
B. A(4; −8).
C. A(−4; 8).
D. A(4; 8).
Câu 80. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là −1.
B. Phần thực là 4, phần ảo là 1.
C. Phần thực là −1, phần ảo là −4.
D. Phần thực là −1, phần ảo là 4.
Câu 81. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 3.
B. 2e + 1.
C. .
e
Câu 82. Tứ diện đều thuộc loại
A. {3; 4}.
B. {3; 3}.
C. {5; 3}.
D. 2e.
D. {4; 3}.
Câu 83. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 3.
B. 4.
C. 1.
D. 2.
t
9
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
+ m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 2.
B. Vơ số.
C. 0.
D. 1.
Câu 84. [4] Xét hàm số f (t) =
9t
Câu 85. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
.
27
Câu 86. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là
√
√
√
3
2a 3
a3 3
4a3 3
5a3 3
A.
.
B.
.
C.
.
D.
.
3
2
3
3
1 − n2
Câu 87. [1] Tính lim 2
bằng?
2n + 1
1
1
1
A. 0.
B. .
C. .
D. − .
3
2
2
A. −4.
B. −2.
C. −7.
D.
Trang 7/10 Mã đề 1
√
√
4n2 + 1 − n + 2
bằng
2n − 3
B. 1.
Câu 88. Tính lim
3
C. 2.
D. +∞.
A. .
2
Câu 89. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là
√
√
a3 15
a3 5
a3 6
3
A.
.
B.
.
C. a 6.
D.
.
3
3
3
Câu 90. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 4}.
C. {3; 3}.
D. {5; 3}.
Câu 91. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 14 năm.
B. 10 năm.
C. 12 năm.
D. 11 năm.
Câu 92.
đề nào sai? Z
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh Z
A.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
B.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
Z
Z
Z
Z
C.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
D.
f (x)g(x)dx =
f (x)dx g(x)dx.
ln x p 2
1
Câu 93. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
8
8
1
A. .
B. .
C. .
D. .
3
3
9
9
1 − xy
Câu 94. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.
√
√
√
9 11 + 19
2 11 − 3
9 11 − 19
18 11 − 29
A. Pmin =
. B. Pmin =
.
C. Pmin =
. D. Pmin =
.
9
3
9
21
Câu 95. Dãy số nào có giới hạn bằng 0?
!n
!n
6
n3 − 3n
−2
2
A. un = n − 4n.
B. un =
.
C. un =
.
D. un =
.
n+1
3
5
n−1
Câu 96. Tính lim 2
n +2
A. 3.
B. 2.
C. 1.
D. 0.
Câu 97. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 15, 36.
B. 24.
C. 3, 55.
D. 20.
2
x −9
Câu 98. Tính lim
x→3 x − 3
A. −3.
B. 3.
C. +∞.
D. 6.
√
Câu 99. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị nhỏ nhất của biểu thức P = x + 2y thuộc tập nào dưới
" đây?
!
"
!
5
5
A. [3; 4).
B. (1; 2).
C. 2; .
D.
;3 .
2
2
√
√
Câu 100.
Tìm
giá
trị
lớn
nhất
của
hàm
số
y
=
x
+
3
+
6−x
√
√
√
A. 3 2.
B. 2 3.
C. 3.
D. 2 + 3.
Trang 8/10 Mã đề 1
Câu 101. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. .
B. .
C. 6.
D. 9.
2
2
Câu 102. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị lớn nhất trên K.
B. f (x) có giá trị nhỏ nhất trên K.
C. f (x) liên tục trên K.
D. f (x) xác định trên K.
Câu 103. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
1
B. 25.
C. 5.
A. .
5
√
√
D.
5.
6
Câu 104. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2 f (x3 ) − √
. Tính
3x
+
1
Z 1
f (x)dx.
0
A. 6.
B. −1.
C. 4.
D. 2.
Câu 105. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.
B. 24.
C. 23.
D. 22.
√
√
Câu 106. Phần thực
√ và phần ảo của số phức
√ z = 2 − 1 − 3i lần lượt√l
√
B. Phần thực là 2, √
phần ảo là 1 − √
3.
A. Phần thực là √2 − 1, phần ảo là −√ 3.
D. Phần thực là 1 − 2, phần ảo là − 3.
C. Phần thực là 2 − 1, phần ảo là 3.
√
x2 + 3x + 5
Câu 107. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. − .
B. 0.
C. .
D. 1.
4
4
Câu 108. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên đúng. B. Cả hai câu trên sai.
C. Chỉ có (I) đúng.
D. Chỉ có (II) đúng.
Câu 109. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 1.
B. 0.
C. 2.
D. +∞.
Câu 110. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích khối chóp S .ABCD là
√
√
3
3
√
2a
a3 3
3
a
3
A.
.
B. a3 3.
C.
.
D.
.
3
3
6
log 2x
là
Câu 111. [3-1229d] Đạo hàm của hàm số y =
x2
1
1 − 2 ln 2x
1 − 4 ln 2x
1 − 2 log 2x
A. y0 = 3
.
B. y0 = 3
.
C. y0 =
.
D. y0 =
.
3
2x ln 10
x ln 10
2x ln 10
x3
Câu 112. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa
√ hai đường thẳng BD và S C bằng
√
√
√
a 6
a 6
a 6
A.
.
B. a 6.
C.
.
D.
.
3
6
2
Trang 9/10 Mã đề 1
Câu 113. Khối đa diện đều loại {3; 4} có số cạnh
A. 12.
B. 8.
C. 6.
D. 10.
[ = 60◦ , S O
Câu 114. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ Khoảng cách từ A đến (S BC) bằng
√
√ với mặt đáy và S O = a.
√
a 57
2a 57
a 57
.
B.
.
C. a 57.
D.
.
A.
19
17
19
Câu 115. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −5.
B. Không tồn tại.
C. −3.
D. −7.
Câu 116. Khối đa diện đều loại {4; 3} có số đỉnh
A. 6.
B. 8.
D. 4.
Câu 117. Dãy số nào sau đây có giới hạn là 0?
n2 + n + 1
1 − 2n
A. un =
.
B.
u
=
.
n
5n + n2
(n + 1)2
C. 10.
C. un =
n2 − 3n
.
n2
D. un =
n2 − 2
.
5n − 3n2
√
Câu 118. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√
√
√
√ cho là
3
πa3 3
πa3 3
πa3 6
πa 3
.
B. V =
.
C. V =
.
D. V =
.
A. V =
6
2
3
6
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥
Câu 119. Cho hình chóp S .ABC có BAC
(ABC). Thể tích khối chóp S .ABC√là
√
√
√
a3 3
a3 3
a3 2
2
B.
.
C.
.
D.
.
A. 2a 2.
12
24
24
Câu 120. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim+ f (x) = f (b).
B. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→b
C. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a
x→b
D. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a
x→a
x→b
x→b
q
2
Câu 121. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 2].
C. m ∈ [0; 1].
D. m ∈ [−1; 0].
√
Câu 122. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là
√
√
√
a3 3
a3 3
a3
3
A.
.
B. a 3.
C.
.
D.
.
4
3
12
Câu 123. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
ab
1
A. √
.
B. √
.
C. 2
.
D. √
.
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
Câu 124. Khối đa diện đều loại {3; 5} có số cạnh
A. 12.
B. 30.
C. 20.
Câu 125. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m < 0.
B. m , 0.
C. m > 0.
D. 8.
D. m = 0.
Câu 126. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Tăng lên n lần.
B. Giảm đi n lần.
C. Tăng lên (n − 1) lần. D. Không thay đổi.
Trang 10/10 Mã đề 1
Câu 127. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 5
a3 3
a3 5
A.
.
B.
.
C.
.
D.
.
4
6
12
12
Câu 128. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 212 triệu.
B. 220 triệu.
C. 210 triệu.
D. 216 triệu.
3
2
Câu 129. Giá
√
√ trị cực đại của hàm số√y = x − 3x − 3x + 2
B. 3 − 4 2.
C. −3 − 4 2.
A. 3 + 4 2.
√
D. −3 + 4 2.
[ = 60◦ , S O
Câu 130. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S√BC) bằng
√
a 57
a 57
2a 57
A.
.
B.
.
C.
.
D. a 57.
17
19
19
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 11/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
2. A
B
3. A
4.
B
5. A
6.
B
7. A
8. A
9.
10.
C
D
11.
12.
13.
C
14.
15.
C
16. A
C
B
C
17. A
18. A
19. A
20.
C
21. A
22.
C
23. A
24.
C
25. A
26.
27. A
28.
29.
C
D
30. A
31. A
34.
B
32.
B
36.
D
C
35.
B
37.
B
38.
C
39.
D
40.
C
41. A
42.
C
43.
B
B
44.
D
45.
46.
D
47.
C
49.
C
51.
C
48. A
50.
D
52. A
53.
54. A
55.
56.
D
D
C
57. A
58. A
59.
60.
C
62. A
C
61.
B
63.
B
65.
D
66. A
67.
D
68. A
69.
64.
B
1
B
70. A
71. A
72. A
73. A
74.
76.
D
B
75.
B
77.
B
78. A
79.
80. A
81. A
82.
D
83. A
B
84. A
85.
B
86.
B
87.
D
88.
B
89.
D
D
90.
D
91.
92.
D
93.
C
95.
C
94.
B
96.
D
97. A
98.
D
99.
100. A
D
101.
B
B
102.
C
103.
104.
C
105.
D
106. A
107. A
108. A
109.
B
110. A
111.
B
112.
114.
116.
113. A
C
D
115.
B
118.
117. A
C
D
120.
122.
B
C
119.
D
121.
D
123. A
124.
B
125.
126.
B
127.
D
129.
D
128. A
130.
B
2
B