Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn tập toán thptqg 6 (357)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (149.75 KB, 12 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai mặt.
B. Năm mặt.
C. Ba mặt.
Câu 2. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
C. f (x) liên tục trên K.

D. Bốn mặt.

B. f (x) có giá trị lớn nhất trên K.
D. f (x) xác định trên K.

x2
Câu 3. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 0.
B. M = , m = 0.
C. M = e, m = .
D. M = e, m = 1.


e
e
Câu 4. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm tứ diện đều.
B. Bốn tứ diện đều và một hình chóp tam giác đều.
C. Một tứ diện đều và bốn hình chóp tam giác đều.
D. Năm hình chóp tam giác đều, khơng có tứ diện đều.
Câu 5. Tính lim
A. +∞.

x→1

x3 − 1
x−1

B. 0.

C. −∞.

D. 3.

Câu 6. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là
3
3
2a 3
a3
a3

4a 3
.
B.
.
C.
.
D.
.
A.
3
3
3
6
Câu 7. Mệnh đề nào sau đây sai?
Z
A. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

B. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
!0
Z
C.
f (x)dx = f (x).
D. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
Câu 8. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều rộng
bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 1200 cm2 .
C. 120 cm2 .

D. 160 cm2 .
1
Câu 9. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2) ∪ (−1; +∞). B. −2 < m < −1.
C. −2 ≤ m ≤ −1.
D. (−∞; −2] ∪ [−1; +∞).
1
Câu 10. Hàm số y = x + có giá trị cực đại là
x
A. 2.
B. 1.
C. −1.
D. −2.
Câu 11. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tứ giác.
B. Một hình chóp tam giác và một hình chóp tứ giác.
Trang 1/10 Mã đề 1


C. Hai hình chóp tam giác.
D. Một hình chóp tứ giác và một hình chóp ngũ giác.

Câu 12. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. Vô số.
C. 62.

D. 64.
Câu 13. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 3 lần.
B. Tăng gấp 27 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 18 lần.
Câu 14. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là −4.
B. Phần thực là −3, phần ảo là −4.
C. Phần thực là 3, phần ảo là 4.
D. Phần thực là −3, phần ảo là 4.


Câu 15. [12215d] Tìm m để phương trình 4 x+
3
9
A. 0 ≤ m ≤ .
B. 0 ≤ m ≤ .
4
4

1−x2



− 4.2 x+

1−x2


− 3m + 4 = 0 có nghiệm

C. m ≥ 0.

3
D. 0 < m ≤ .
4

1

Câu 16. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (1; +∞).
B. D = R \ {1}.
C. D = R.

D. D = (−∞; 1).

Câu 17. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


3
3
a 6
a3 3
a3 3
a 2
.
B.

.
C.
.
D.
.
A.
16
48
24
48
Câu 18. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 12.
B. ln 10.
C. ln 4.
D. ln 14.
Câu 19. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; 8).
B. A(−4; −8)(.
C. A(4; −8).
D. A(−4; 8).
!
1
1
1
Câu 20. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3

A. 0.
B. 2.
C. 1.
D. .
2
Câu 21. Khối đa diện đều loại {5; 3} có số cạnh
A. 8.
B. 12.

x2 + 3x + 5
Câu 22. Tính giới hạn lim
x→−∞
4x − 1
1
A. .
B. 1.
4
!4x
!2−x
2
3
Câu 23. Tập các số x thỏa mãn


#
" 3
! 2
2
2
A. −∞; .

B. − ; +∞ .
5
3

C. 20.

D. 30.

C. 0.

1
D. − .
4

"

!
2
C.
; +∞ .
5

Câu 24. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (2; +∞).
C. R.

#
2
D. −∞; .

3
D. (0; 2).

Câu 25. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 0).
B. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số đồng biến trên khoảng (1; 2).
D. Hàm số nghịch biến trên khoảng (0; 1).
Trang 2/10 Mã đề 1


!
3n + 2
2
Câu 26. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 4.
B. 5.
C. 3.
D. 2.
Câu 27. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45√◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là
10a3 3
A.
.
B. 10a3 .
C. 20a3 .
D. 40a3 .

3
Câu 28. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.423.000.
C. 102.016.000.
D. 102.424.000.
x−3
bằng?
Câu 29. [1] Tính lim
x→3 x + 3
A. 1.
B. 0.
C. +∞.
D. −∞.
2
2
2
1 + 2 + ··· + n
Câu 30. [3-1133d] Tính lim
n3
2
1
A. .
B. 0.
C. .
D. +∞.
3

3
x2 − 5x + 6
Câu 31. Tính giới hạn lim
x→2
x−2
A. 5.
B. −1.
C. 0.
D. 1.
Câu 32. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 0.
B. +∞.

C. 1.

D. 2.

π
Câu 33. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.

A. T = 3 3 + 1.
B. T = 2.
C. T = 4.
D. T = 2 3.
1

. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 34. [3-12217d] Cho hàm số y = ln
x+1
0
y
0
y
A. xy = −e − 1.
B. xy = −e + 1.
C. xy0 = ey + 1.
D. xy0 = ey − 1.

Câu 35. Thể tích của khối lập phương có cạnh bằng a 2 √


2a3 2
A. V = a3 2.
B. V = 2a3 .
C.
.
D. 2a3 2.
3
0 0
0 0 0
Câu 36. Mặt phẳng (AB C ) chia khối lăng trụ ABC.A B C thành các khối đa diện nào?
A. Hai khối chóp tam giác.
B. Một khối chóp tam giác, một khối chóp ngữ giác.
C. Một khối chóp tam giác, một khối chóp tứ giác.
D. Hai khối chóp tứ giác.
Câu 37. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là

A. 1.
B. 2.
C. Vô nghiệm.

D. 3.

Câu 38. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
log7 16
Câu 39. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. 4.
B. −4.
C. 2.
D. −2.
Trang 3/10 Mã đề 1


Câu 40. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
!2x−1
!2−x

3
3
Câu 41. Tập các số x thỏa mãn


5
5
A. [1; +∞).
B. (+∞; −∞).
C. (−∞; 1].
D. [3; +∞).
Câu 42.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nào sai?
A.
Z
C.

( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
Z
f (x)g(x)dx =
f (x)dx g(x)dx.

k f (x)dx = f

B.
Z
D.


f (x)dx, k ∈ R, k , 0.
Z
Z
( f (x) + g(x))dx =
f (x)dx + g(x)dx.

Câu 43. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≥ 0.
B. m ≤ 0.
C. − < m < 0.
D. m > − .
4
4
Câu 44. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng 2n.
B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số mặt của khối chóp bằng số cạnh của khối chóp.
D. Số mặt của khối chóp bằng 2n+1.
Câu 45. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD

√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng


a 2

a 2
.
B. 2a 2.
C. a 2.
D.
.
A.
2
4
Câu 46. Khối đa diện đều loại {5; 3} có số mặt
A. 20.
B. 8.
C. 12.
D. 30.
Câu 47. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (2; 2).
B. (0; −2).
C. (−1; −7).

D. (1; −3).

Câu 48. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − 2 .
B. − .
C. − .
D. −e.
e

e
2e
Câu 49. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 8%.
B. 0, 6%.
C. 0, 7%.
D. 0, 5%.
2n − 3
Câu 50. Tính lim 2
bằng
2n + 3n + 1
A. −∞.
B. +∞.
C. 0.
D. 1.
Câu 51. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√M + m
√ của hàm số. Khi đó tổng

A. 8 3.
B. 8 2.
C. 16.
D. 7 3.
Câu 52. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −2.
B. 4.
C. 2.


D. −4.
Trang 4/10 Mã đề 1


√3
4
Câu 53. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
7
5
2
A. a 8 .
B. a 3 .
C. a 3 .
D. a 3 .
ln x p 2
1
Câu 54. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
1
1
8
A. .
B. .
C. .
D. .

3
9
3
9
Câu 55. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD

√ là
8a3 3
8a3 3
4a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
9
3
9
9
Câu 56. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. .
B. −2.

C. − .
D. 2.
2
2
5
Câu 57. Tính lim
n+3
A. 2.
B. 1.
C. 3.
D. 0.
x+3
nghịch biến trên khoảng
Câu 58. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x−m
(0; +∞)?
A. 2.
B. 1.
C. Vô số.
D. 3.
0 0 0 0
0
Câu 59.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 3
a 6
A.

.
B.
.
C.
.
D.
.
7
2
2
3
Câu 60. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = loga 2.
B. log2 a =
.
C. log2 a = − loga 2.
D. log2 a =
.
loga 2
log2 a

Câu 61. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là


3
3


a3 5
a
6
a
15
A.
.
B. a3 6.
C.
.
D.
.
3
3
3
Câu 62. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.
C. Khối lập phương.
D. Khối bát diện đều.
Câu 63. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 3ac
3b + 2ac
3b + 2ac
A.
.
B.
.
C.

.
D.
.
c+1
c+2
c+2
c+3
Câu 64. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 0.
B. 3.
C. −3.
D. −6.

Câu 65. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



a 38
3a 38
3a 58
3a
A.
.
B.
.
C.
.
D.

.
29
29
29
29
3a
Câu 66. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a
2a
a 2
a
A. .
B.
.
C.
.
D. .
4
3
3
3
Trang 5/10 Mã đề 1


Câu 67. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là

A. (−∞; 6, 5).
B. (4; 6, 5].
C. [6, 5; +∞).

D. (4; +∞).

Câu 68. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
√ góc với đáy, S C = a3 3. Thể tích khối chóp S .ABCD là

3
3
a 3
3
a
a
A.
.
B.
.
C. a3 .
D.
.
3
3
9
Câu 69. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −12.

B. −15.
C. −9.
D. −5.
Câu 70. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Nhị thập diện đều. B. Bát diện đều.
C. Tứ diện đều.

D. Thập nhị diện đều.

Câu 71. Hàm số y = 2x + 3x + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (0; 1).
B. (−∞; 0) và (1; +∞). C. (−∞; −1) và (0; +∞). D. (−1; 0).
3

2

Câu 72. Khối đa diện đều loại {3; 3} có số mặt
A. 2.
B. 3.
Câu 73. [1] Tập xác định của hàm số y = 2
A. D = (0; +∞).
B. D = R.

x−1

C. 4.

D. 5.

C. D = R \ {1}.


D. D = R \ {0}.



Câu 74. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp đôi.
C. Tăng gấp 4 lần.
D. Tăng gấp 6 lần.
Câu 75. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
ab
1
.
B. √
.
C. √
.
D. 2
.
A. √
a + b2
2 a2 + b2
a2 + b2
a2 + b2
3

2
Câu 76. Giá
√ x − 3x − 3x + 2


√ trị cực đại của hàm số y =
B. −3 + 4 2.
C. −3 − 4 2.
D. 3 − 4 2.
A. 3 + 4 2.
Câu 77. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là 1.
B. Phần thực là −1, phần ảo là −4.
C. Phần thực là 4, phần ảo là −1.
D. Phần thực là −1, phần ảo là 4.
Câu 78. [1] !Tập xác định của hàm số y != log3 (2x + 1) là
!
1
1
1
A. −∞; .
B. − ; +∞ .
C.
; +∞ .
2
2
2

!
1

D. −∞; − .
2

Câu 79. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (2; 4; 6).
C. (2; 4; 4).
D. (1; 3; 2).

Câu 80. [1] Biết log6 a = 2 thì log6 a bằng
A. 36.
B. 6.
C. 108.
D. 4.


Câu 81. Phần thực và √
phần ảo của số phức
√ z = 2 − 1 − 3i lần lượt √l

A. Phần thực là 1√− 2, phần ảo là − √3.
B. Phần thực là √2 − 1, phần ảo là √3.
C. Phần thực là 2 − 1, phần ảo là − 3.
D. Phần thực là 2, phần ảo là 1 − 3.
Câu 82. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 + 2e
1 − 2e
.

B. m =
.
C. m =
.
A. m =
4e + 2
4 − 2e
4 − 2e
Câu 83. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.
C. Khối bát diện đều.

D. m =

1 + 2e
.
4e + 2

D. Khối lập phương.
Trang 6/10 Mã đề 1


Câu 84. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
2mx + 1
1

Câu 85. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 0.
B. −2.
C. −5.
D. 1.
9x
Câu 86. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. 1.
B. −1.
C. 2.
D. .
2
2
2x
Câu 87. [2-c] Giá trị nhỏ nhất của hàm số y = (x − 2)e trên đoạn [−1; 2] là
A. −2e2 .
B. 2e4 .
C. 2e2 .
D. −e2 .
log 2x
Câu 88. [1229d] Đạo hàm của hàm số y =

x2
1 − 4 ln 2x

1 − 2 ln 2x
1
1 − 2 log 2x
A. y0 =
.
B. y0 = 3
.
C. y0 = 3
.
D. y0 =
.
3
2x ln 10
x ln 10
2x ln 10
x3
Câu 89. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 9.

B. 7.

C. 5.

D. 0.

Câu 90. Khối đa diện đều loại {4; 3} có số mặt
A. 8.
B. 10.


C. 12.

D. 6.

Câu 91. Dãy! số nào có giới hạn bằng 0?
n
6
.
B. un = n2 − 4n.
A. un =
5

n3 − 3n
C. un =
.
n+1

!n
−2
D. un =
.
3

Câu 92. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một hoặc hai.
B. Khơng có.
C. Có hai.
D. Có một.

Câu 93. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (1; +∞).
B. (−1; 1).
C. (−∞; 1).
log2 240 log2 15

+ log2 1 bằng
Câu 94. [1-c] Giá trị biểu thức
log3,75 2 log60 2
A. 3.
B. 1.
C. 4.
Câu 95. Hàm số nào sau đây khơng có cực trị
1
B. y = x4 − 2x + 1.
A. y = x + .
x
Câu 96. Xét hai khẳng đinh sau

C. y = x3 − 3x.

D. (−∞; −1).

D. −8.
D. y =

x−2
.
2x + 1


(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều đúng.
B. Chỉ có (II) đúng.

C. Chỉ có (I) đúng.

D. Cả hai đều sai.

Câu 97. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + sin x cos x.
B. 1 + 2 sin 2x.
C. −1 + 2 sin 2x.
D. 1 − sin 2x.
Z 1
Câu 98. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

A. 1.

B.

1
.
2

C. 0.


D.

1
.
4
Trang 7/10 Mã đề 1


Câu 99. Cho hàm số y = x3 − 2x2 + x + 1.
! Mệnh đề nào dưới đây đúng?
!
1
1
B. Hàm số nghịch biến trên khoảng −∞; .
A. Hàm số đồng biến trên khoảng ; 1 .
3
3
!
1
C. Hàm số nghịch biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng (1; +∞).
3
Câu 100. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m < .
C. m ≥ .

D. m > .
4
4
4
4
x−2
Câu 101. Tính lim
x→+∞ x + 3
2
A. 1.
B. 2.
C. −3.
D. − .
3
1
Câu 102. [1] Giá trị của biểu thức log √3
bằng
10
1
1
D. − .
A. −3.
B. 3.
C. .
3
3
2
2n − 1
Câu 103. Tính lim 6
3n + n4

2
A. 2.
B. 0.
C. .
D. 1.
3
Câu 104. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa hai đường thẳng S B và√AD bằng



a 2
a 2
A. a 3.
B.
.
C. a 2.
D.
.
2
3
Câu 105. Dãy số nào sau đây có giới hạn khác 0?
1
sin n
1
n+1
.
B. .
C.
.

D. √ .
A.
n
n
n
n
Câu 106. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
.
C. 2.
D. .
A. 1.
B.
2
2
t
9
Câu 107. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao
9 + m2
cho f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 1.
B. Vô số.
C. 0.
D. 2.
 π
Câu 108. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2



3 π6
2 π4
1 π
A. 1.
B.
e .
C.
e .
D. e 3 .
2
2
2
Câu 109. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó
Q0 là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số
lượng vi khuẩn đạt 100.000 con?
A. 20.
B. 15, 36.
C. 24.
D. 3, 55.
Câu 110. Khối đa diện đều loại {3; 5} có số cạnh
A. 20.
B. 12.

C. 8.

D. 30.

6
Câu 111. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2 f (x3 ) − √

. Tính
3x
+
1
Z 1
f (x)dx.
0

A. 6.

B. −1.

C. 4.

D. 2.
Trang 8/10 Mã đề 1


Câu 112. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1134 m.
B. 2400 m.
C. 6510 m.
D. 1202 m.
tan x + m
nghịch biến trên khoảng
Câu 113. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
m tan x + 1
 π
0; .

4
A. [0; +∞).
B. (1; +∞).
C. (−∞; 0] ∪ (1; +∞). D. (−∞; −1) ∪ (1; +∞).
Câu 114. Tứ diện đều thuộc loại
A. {4; 3}.
B. {5; 3}.

C. {3; 4}.

D. {3; 3}.

2
x
Câu 115. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m
2
√ + 1)2 trên [0; 1] bằng √
A. m = ±3.
B. m = ±1.
C. m = ± 3.
D. m = ± 2.

Câu 116. Khối đa diện đều loại {3; 4} có số đỉnh
A. 8.
B. 6.
C. 4.
D. 10.
Z 2
ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b

Câu 117. Cho
x2
1
A. 0.
B. 1.
C. 3.
D. −3.
Câu 118. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Khơng thay đổi.
B. Tăng lên n lần.
C. Tăng lên (n − 1) lần. D. Giảm đi n lần.
Câu 119. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt phẳng vng góc với (ABCD).
Thể tích khối chóp
√ S .ABCD là

3
3
3

a 3
a 3
a 2
C.
A.
.
B. a3 3.
.
D.

.
2
4
2
Câu 120. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (−∞; +∞).
B. [1; 2].
C. (1; 2).
D. [−1; 2).
Câu 121. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 91cm3 .
B. 48cm3 .
C. 64cm3 .
D. 84cm3 .
Câu 122. Bát diện đều thuộc loại
A. {3; 3}.
B. {3; 4}.

C. {5; 3}.

D. {4; 3}.

Câu 123.
√ Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
B. 27.
C. 8.
D. 9.
A. 3 3.
Câu 124. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?

A. 0.
B. 3.
C. 1.

D. 2.

Câu 125. [1225d] Tìm tham số thực m để phương trình log2 (5 − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m ≥ 3.
C. m < 3.
D. m > 3.
x

Câu 126. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
13
23
5
9
A.
.
B. −
.
C. − .
D.
.
100
100
16

25
Câu 127. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
Trang 9/10 Mã đề 1


1 + 2 + ··· + n
Câu 128. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. lim un = .
B. lim un = 0.
2
C. Dãy số un khơng có giới hạn khi n → +∞.
D. lim un = 1.
Câu 129.
[1233d-2] MệnhZđề nào sau đây
Z
Z sai?
[ f (x) + g(x)]dx =

A.

f (x)dx +

g(x)dx, với mọi f (x), g(x) liên tục trên R.


Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
C.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
D.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
B.

d = 300 .
Câu 130. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V của khối lăng trụ đã cho. √

3
3

a
3a
3
3
A. V = 6a3 .
B. V = 3a3 3.

.
D. V =
.
C. V =
2
2
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
C

1.
3. A

2.

C

4.

C

5.

D


6. A

7.

D

8.

D
D

9.

C

10.

11.

C

12.

13.

14.

B


15. A
D

20.

21.

D
B

25.

D

27.

D

24.

D

26. A
28.

C
B

30.


31.

B

32. A

33.

D

D
C
D

38.
B

40.

41. A

B

42.

43.

D
B


46.

C

48.

C
C

49.

C

50.

51.

C

52. A

53.

D

54.

55. A

56.


57.

D

58.

59.

D

60.

61.

D
B
D
B

62. A

C
B

65.

C

44. A


45. A

67.

C

36.

37. A

63.

D

34.

C

35.

C

22.

29.

47.

D


18.

19. A

39.

D

16. A

17.

23.

C

64.
D

B
1

C

66.

B

68.


B


70.

69. A
71.

D

D
C

72.

73.

B

74. A

75.

B

76.

B


78.

B

77.
79.

C

80.

B

81.

C

82. A

83.

C

84.

85. A
D

88.


D

91.

D
C

99.

C

96.

B

98.

B

100. A
102.

101. A
B

104.

105. A
107.


D

D
B

106.

C

108.

C

110.

B

111.

C
B

114.

115.

B

116.


117.

D

112.

113.

C
D
B

118.

D

119. A

D

120. A

121.

122.

C

123. A


B

124. A
B

126.

127. A
129.

D

94.

97.

125.

D

92. A

B

95.

109.

B


90.

89. A

103.

B

86. A

87.

93.

D

B

128. A
C

130.

2

C




×