Free LATEX
BÀI TẬP TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút
Mã đề thi 1
!
!
!
1
2
2016
4x
. Tính tổng T = f
+f
+ ··· + f
Câu 1. [3] Cho hàm số f (x) = x
4 +2
2017
2017
2017
2016
A. T =
.
B. T = 2017.
C. T = 1008.
D. T = 2016.
2017
1
Câu 2. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R \ {1}.
B. D = (−∞; 1).
C. D = R.
D. D = (1; +∞).
Câu 3. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
√ S .ABCD là
√ phẳng vng góc với (ABCD). Thể tích khối chóp
3
√
a
a3 2
a3 3
3
D.
A.
.
B.
.
C. a3 3.
.
2
4
2
[ = 60◦ , S A ⊥ (ABCD). Biết
Câu 4. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
rằng khoảng
√
√ cách từ A đến cạnh 3S√C là a. Thể tích khối chóp S .ABCD là
3
√
a 3
a 2
a3 2
3
A.
.
B.
.
C. a 3.
.
D.
6
4
12
Câu 5. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B. Số đỉnh của khối chóp bằng số mặt của khối chóp.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh của khối chóp bằng số mặt của khối chóp.
Câu 6. Tính lim
x→2
A. 2.
x+2
bằng?
x
B. 1.
C. 0.
D. 3.
Câu 7. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 9 năm.
B. 7 năm.
C. 10 năm.
D. 8 năm.
Câu 8. √
Thể tích của tứ diện đều cạnh
√ bằng a
√
a3 2
a3 2
a3 2
A.
.
B.
.
C.
.
2
12
4
Câu 9. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba mặt.
B. Năm mặt.
C. Hai mặt.
√
a3 2
D.
.
6
D. Bốn mặt.
2
Câu 10. Tính lim
A. 0.
2n − 1
3n6 + n4
B.
2
.
3
C. 1.
D. 2.
1
Câu 11. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. − .
B. .
C. −3.
D. 3.
3
3
2mx + 1
1
Câu 12. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 1.
B. −2.
C. 0.
D. −5.
Trang 1/10 Mã đề 1
Câu 13. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Tăng lên (n − 1) lần. B. Giảm đi n lần.
C. Không thay đổi.
D. Tăng lên n lần.
Câu 14. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 3ac
3b + 2ac
.
B.
.
C.
.
A.
c+2
c+1
c+2
D.
3b + 2ac
.
c+3
x
Câu 15. Tính diện tích hình phẳng giới hạn bởi các đường
√ y = xe , y = 0, x = 1.
3
1
3
A. .
B. 1.
C.
.
D. .
2
2
2
Câu 16. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 10.
C. 30.
D. 12.
Câu 17. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −3.
B. 0.
C. 3.
D. −6.
1
Câu 18. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 1.
B. 3.
C. 4.
D. 2.
Câu 19. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 24.
B. 22.
C. 23.
D. 21.
Câu 20. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
Thể tích khối chóp S .ABC√là
vng góc
√ với đáy và S C = a 3.3 √
√
3
a 6
a 3
a3 3
2a3 6
A.
.
B.
.
C.
.
D.
.
12
2
4
9
Câu 21. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.
B. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
C. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
√
D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
Câu 22. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 8 m.
B. 12 m.
C. 24 m.
D. 16 m.
Câu 23. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 1.
B. 3.
Câu 24. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều.
C. 4.
D. 2.
C. Khối 20 mặt đều.
D. Khối 12 mặt đều.
Trang 2/10 Mã đề 1
Câu 25. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√
√
√
√ thẳng BD bằng
a b2 + c2
abc b2 + c2
b a2 + c2
c a2 + b2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 26. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 27. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2
A. 6.
B. 4.
C. 2.
Câu 28. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 24.
Câu 29. Khối đa diện đều loại {5; 3} có số đỉnh
A. 8.
B. 12.
3
Z
6
3x + 1
1
. Tính
f (x)dx.
0
D. −1.
ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
C. S = 135.
D. S = 32.
C. 20.
D. 30.
x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
4035
2016
C.
.
D.
.
2018
2017
!
Câu 30. [3] Cho hàm số f (x) = ln 2017 − ln
A. 2017.
B.
2017
.
2018
Câu 31. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 5 mặt.
C. 6 mặt.
D. 4 mặt.
1
Câu 32. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2] ∪ [−1; +∞). B. −2 ≤ m ≤ −1.
C. (−∞; −2) ∪ (−1; +∞). D. −2 < m < −1.
Câu 33. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = − loga 2.
B. log2 a =
.
C. log2 a = loga 2.
D. log2 a =
.
log2 a
loga 2
Câu 34. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n2 lần.
C. 2n3 lần.
D. n3 lần.
Câu 35. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
.
A. 1.
B. 2.
C.
2
D.
1
.
2
Câu 36. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim f (x) = f (a).
B. lim+ f (x) = lim− f (x) = a.
x→a
C. lim+ f (x) = lim− f (x) = +∞.
x→a
x→a
x→a
x→a
D. f (x) có giới hạn hữu hạn khi x → a.
Câu 37. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −9.
B. −15.
C. −5.
D. −12.
2
2
sin x
Câu 38. [3-c] Giá trị nhỏ nhất √
và giá trị lớn nhất của hàm số f (x)
+ 2cos x lần
√ =2
√ lượt là
A. 2 và 3.
B. 2 và 3.
C. 2 và 2 2.
D. 2 2 và 3.
Trang 3/10 Mã đề 1
Câu 39. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng
√
√
√
√
a 3
2a 3
a 3
B.
.
C.
.
D.
.
A. a 3.
2
2
3
x+2
Câu 40. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 2.
B. 3.
C. Vô số.
D. 1.
Câu 41. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó,√các kích
√ thước của hình hộp là
A. 6, 12, 24.
B. 2 3, 4 3, 38.
C. 2, 4, 8.
D. 8, 16, 32.
Câu 42. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp đôi.
B. Tăng gấp 4 lần.
C. Tăng gấp 8 lần.
D. Tăng gấp 6 lần.
Câu 43. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của√|z + 2 + i|
√
√
√
12 17
.
B. 68.
C. 5.
D. 34.
A.
17
√
Câu 44. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là √
3
√
a3 3
a3
a 3
.
B.
.
C. a3 3.
D.
.
A.
12
3
4
Z 2
ln(x + 1)
Câu 45. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. −3.
B. 1.
C. 0.
D. 3.
Câu 46.
bằng 1 là:
√ Thể tích của khối lăng trụ tam giác đều có cạnh √
3
3
3
.
B. .
C.
.
A.
4
4
12
√
3
D.
.
2
Câu 47. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tứ giác.
B. Một khối chóp tam giác, một khối chóp ngữ giác.
C. Một khối chóp tam giác, một khối chóp tứ giác.
D. Hai khối chóp tam giác.
Câu 48. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; −1) và (0; +∞). B. (−1; 0).
C. (−∞; 0) và (1; +∞). D. (0; 1).
Câu 49. Tính giới hạn lim
A. 0.
2n + 1
3n + 2
2
B. .
3
Câu 50. Bát diện đều thuộc loại
A. {3; 4}.
B. {4; 3}.
C.
1
.
2
C. {3; 3}.
D.
3
.
2
D. {5; 3}.
Câu 51. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là
√
√
a3
a3 3
a3 3
3
A.
.
B. a .
C.
.
D.
.
3
2
6
Trang 4/10 Mã đề 1
Câu 52. Mệnh đề nào sau đây sai?
A. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
B. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Z
C. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z
D.
f (x)dx = f (x).
Câu 53. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (1; 2).
B. (−∞; +∞).
C. [−1; 2).
4
Câu 54. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 :
5
5
2
A. a 3 .
B. a 8 .
C. a 3 .
Câu 55. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
C. f (x) có giá trị lớn nhất trên K.
x+1
bằng
Câu 56. Tính lim
x→−∞ 6x − 2
1
1
A. .
B. .
2
3
Câu 57. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = 1 − ln x.
f (x)dx = F(x) + C.
D. [1; 2].
√3
a2 bằng
7
D. a 3 .
B. f (x) xác định trên K.
D. f (x) có giá trị nhỏ nhất trên K.
C.
1
.
6
C. y0 = ln x − 1.
Câu 58. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.
C. V = S h.
2
3
D. 1.
D. y0 = 1 + ln x.
D. V = 3S h.
Câu 59. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.
B. 16π.
C. V = 4π.
D. 8π.
Câu 60. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = −18.
B. y(−2) = 2.
C. y(−2) = 22.
D. y(−2) = 6.
Câu 61. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 4}.
B. {4; 3}.
C. {5; 3}.
D. {3; 3}.
Câu 62. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 25 triệu đồng.
B. 3, 03 triệu đồng.
C. 2, 22 triệu đồng.
D. 2, 20 triệu đồng.
Câu 63. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC) một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √
√
a3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
4
12
4
8
Câu 64. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
A. a 6.
B.
.
C. 2a 6.
D. a 3.
2
Trang 5/10 Mã đề 1
Câu 65. Cho I =
Z
3
x
√
dx =
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = −2.
B. P = 28.
a
a
+ b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
d
d
C. P = 4.
D. P = 16.
Câu 66. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A = a 5. Thể tích khối chóp √
S .ABCD là
√
3
3
3
2a
4a 3
2a3 3
4a
.
B.
.
C.
.
D.
.
A.
3
3
3
3
Câu 67. Cho hàm số y = x3 − 2x2 + x + 1.
! Mệnh đề nào dưới đây đúng?
!
1
1
A. Hàm số đồng biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng ; 1 .
3
3
!
1
C. Hàm số nghịch biến trên khoảng −∞; .
D. Hàm số nghịch biến trên khoảng (1; +∞).
3
√
√
Câu 68. Phần thực√và phần ảo của số phức
z
=
2
−
1
−
3i lần lượt √l
√
√
A. Phần thực là √2 − 1, phần ảo là −√ 3.
B. Phần thực là 2 −√1, phần ảo là √
3.
C. Phần thực là 2, phần ảo là 1 − 3.
D. Phần thực là 1 − 2, phần ảo là − 3.
[ = 60◦ , S O
Câu 69. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.√Khoảng cách từ A đến (S BC) bằng
√
√
a 57
2a 57
a 57
A.
.
B.
.
C. a 57.
D.
.
17
19
19
Câu 70. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e−2 + 2; m = 1.
C. M = e2 − 2; m = e−2 + 2.
D. M = e−2 + 1; m = 1.
Câu 71. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 16 tháng.
B. 17 tháng.
C. 18 tháng.
D. 15 tháng.
√
Câu 72. Thể tích của khối lập phương có cạnh bằng a 2
√
√
√
2a3 2
3
3
3
A. V = a 2.
B. V = 2a .
C. 2a 2.
D.
.
3
Câu 73. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 9 mặt.
C. 3 mặt.
Câu 74. [3-1229d] Đạo hàm của hàm số y =
1 − 2 ln 2x
1
A. y0 = 3
.
B. y0 = 3
.
x ln 10
2x ln 10
log 2x
là
x2
1 − 4 ln 2x
C. y0 =
.
2x3 ln 10
D. 6 mặt.
D. y0 =
1 − 2 log 2x
.
x3
Câu 75. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [1; +∞).
B. [−1; 3].
C. [−3; 1].
D. (−∞; −3].
Câu 76. Khẳng định nào sau đây đúng?
A. Hình lăng trụ tứ giác đều là hình lập phương.
B. Hình lăng trụ đứng là hình lăng trụ đều.
C. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
Trang 6/10 Mã đề 1
√
Câu 77. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
C. 3.
D. .
A. −3.
B. − .
3
3
2
2
Câu 78. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a + b + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. 6.
B. .
C. .
D. 9.
2
2
Câu 79. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
a3 3
a3 6
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
24
24
48
8
2
Câu 80. Tính
√ mơ đun của số phức z√biết (1 + 2i)z = 3 + 4i. √4
A. |z| = 2 5.
B. |z| = 5.
C. |z| = 5.
D. |z| = 5.
Câu 81. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.
√
√
√
√
5 13
.
D. 26.
A. 2 13.
B. 2.
C.
13
Câu 82.
√ Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
A. 3 3.
B. 27.
C. 9.
D. 8.
1
Câu 83. Hàm số y = x + có giá trị cực đại là
x
A. 1.
B. 2.
C. −2.
D. −1.
Câu 84. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của hình chóp S .ABCD với√mặt phẳng (AIC) có diện√tích là
√
2
11a2
a2 5
a2 7
a 2
.
B.
.
C.
.
D.
.
A.
4
32
16
8
Câu 85. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 1.
B. +∞.
Câu 86. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 2.
2n − 3
Câu 87. Tính lim 2
bằng
2n + 3n + 1
A. −∞.
B. 1.
C. 2.
D. 3.
C. 3.
D. 4.
C. 0.
D. +∞.
a
1
Câu 88. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 1.
B. 7.
C. 2.
D. 4.
Câu 89. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối bát diện đều.
C. Khối lập phương.
D. Khối lăng trụ tam giác.
√
√
Câu 90.
Tìm
giá
trị
lớn
nhất
của
hàm
số
y
=
x
+
3
+
6 −√x
√
√
A. 3 2.
B. 2 3.
C. 2 + 3.
D. 3.
Câu 91. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
Trang 7/10 Mã đề 1
(III) lim qn = +∞ nếu |q| > 1.
A. 0.
B. 2.
C. 3.
D. 1.
Câu 92. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể
√ tích khối chóp S .ABCD là
3
10a 3
.
C. 40a3 .
D. 20a3 .
A. 10a3 .
B.
3
Câu 93. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α α
α
A. a b = (ab) .
B. a
αβ
α β
α+β
= (a ) .
C. a
α
β
= a .a .
α
aα
D. β = a β .
a
2
Câu 94. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
2
1
A. 2 .
B. 3 .
C. 3 .
e
e
2e
D.
1
√ .
2 e
Câu 95. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là −1.
B. Phần thực là 4, phần ảo là 1.
C. Phần thực là −1, phần ảo là −4.
D. Phần thực là −1, phần ảo là 4.
log 2x
là
Câu 96. [1229d] Đạo hàm của hàm số y =
x2
1 − 2 ln 2x
1 − 2 log 2x
1
.
C. y0 = 3
.
A. y0 =
.
B. y0 = 3
3
x
2x ln 10
x ln 10
D. y0 =
1 − 4 ln 2x
.
2x3 ln 10
Câu 97.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
[ f (x) + g(x)]dx =
A.
Z
B.
[ f (x) − g(x)]dx =
f (x)dx +
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
f (x)dx −
g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
D.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
C.
Câu 98. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là −4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là 3, phần ảo là −4.
D. Phần thực là −3, phần ảo là 4.
Câu 99. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
C.
.
D. 5.
A. 7.
B. .
2
2
Câu 100.
có nghĩa
√ Biểu thức nào sau đây không
−3
−1
A.
−1.
B. (−1) .
C. 0−1 .
√
D. (− 2)0 .
Câu 101. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 387 m.
C. 1587 m.
D. 25 m.
Câu 102.
Trong các khẳng định sau, khẳng định nào sai?Z
Z
1
A.
dx = ln |x| + C, C là hằng số.
B.
dx = x + C, C là hằng số.
x
Z
Z
xα+1
α
C.
x dx =
+ C, C là hằng số.
D.
0dx = C, C là hằng số.
α+1
Trang 8/10 Mã đề 1
Câu 103. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
√
Câu 104. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√
√
√ tích khối chóp S .ABC3 √
3
a 6
a3 2
a3 6
a 6
.
B.
.
C.
.
D.
.
A.
36
18
6
6
Câu 105. [1] Giá trị của biểu thức 9log3 12 bằng
A. 2.
B. 4.
Câu 106. Dãy số nào sau đây có giới hạn là 0?
1 − 2n
n2 + n + 1
A. un =
.
B.
u
=
.
n
5n + n2
(n + 1)2
C. 24.
C. un =
D. 144.
n2 − 3n
.
n2
D. un =
n2 − 2
.
5n − 3n2
Câu 107. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√
√ là
3
3
3
3
8a 3
4a 3
8a 3
a 3
A.
.
B.
.
C.
.
D.
.
9
9
3
9
Câu 108. Hàm số nào sau đây khơng có cực trị
x−2
1
B. y =
.
C. y = x3 − 3x.
D. y = x4 − 2x + 1.
A. y = x + .
x
2x + 1
Câu 109. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
a
8a
2a
5a
.
B. .
C.
.
D.
.
A.
9
9
9
9
√
Câu 110. Xác định phần ảo của số phức z = ( 2 + 3i)2 √
√
A. −7.
B. 7.
C. 6 2.
D. −6 2.
Câu 111. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 0).
B. Hàm số đồng biến trên khoảng (1; 2).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng (0; 1).
Câu 112. Phát biểu nào sau đây là sai?
1
A. lim √ = 0.
n
C. lim un = c (Với un = c là hằng số).
1
= 0 với k > 1.
nk
D. lim qn = 1 với |q| > 1.
B. lim
Câu 113. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S√B bằng
a 3
a
a
A.
.
B. .
C. .
D. a.
2
3
2
Câu 114. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 21.
B. P = −21.
C. P = −10.
D. P = 10.
Câu 115. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un
A. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
B. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
Trang 9/10 Mã đề 1
!
un
C. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
!
un
= −∞.
D. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
vn
Câu 116. Khối đa diện đều loại {3; 5} có số đỉnh
A. 12.
B. 20.
cos n + sin n
Câu 117. Tính lim
n2 + 1
A. −∞.
B. 1.
x+1
bằng
Câu 118. Tính lim
x→+∞ 4x + 3
1
A. 1.
B. .
4
Câu 119. Khối chóp ngũ giác có số cạnh là
A. 9 cạnh.
B. 12 cạnh.
C. 8.
D. 30.
C. +∞.
D. 0.
C. 3.
D.
C. 10 cạnh.
D. 11 cạnh.
1
.
3
Câu 120. ZCho hai hàmZy = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
f (x)dx =
A. Nếu
Z
B. Nếu
Z
g(x)dx thì f (x) , g(x), ∀x ∈ R.
f 0 (x)dx =
Z
f (x)dx =
Z
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
D. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
C. Nếu
7n2 − 2n3 + 1
Câu 121. Tính lim 3
3n + 2n2 + 1
2
7
A. - .
B. .
3
3
C. 1.
D. 0.
Câu 122. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = ln 10.
B. f 0 (0) = 1.
C. f 0 (0) = 10.
Câu 123. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 + 2 sin 2x.
B. −1 + 2 sin 2x.
C. −1 + sin x cos x.
D. f 0 (0) =
1
.
ln 10
D. 1 − sin 2x.
3
2
x
Câu 124. [2]
√ Tìm m để giá trị lớn nhất của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng 8√
A. m = ± 2.
B. m = ±3.
C. m = ±1.
D. m = ± 3.
Câu 125. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 − 2e
1 + 2e
1 − 2e
.
B. m =
.
C. m =
.
D. m =
.
A. m =
4 − 2e
4 − 2e
4e + 2
4e + 2
!
1
1
1
Câu 126. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
A. 2.
B. .
C. .
D. +∞.
2
2
Câu 127. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 128. Tứ diện đều thuộc loại
A. {4; 3}.
B. {5; 3}.
C. {3; 4}.
D. {3; 3}.
Trang 10/10 Mã đề 1
x2 − 9
Câu 129. Tính lim
x→3 x − 3
A. 6.
B. −3.
C. 3.
D. +∞.
Câu 130. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√
√ Thể tích khối chóp S 3.ABC
√ là
√
3
a 3
a 3
a3 3
a3 2
A.
.
B.
.
C.
.
D.
.
12
4
6
12
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 11/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
D
3.
5.
4.
8.
9. A
12.
C
C
13.
B
14.
15.
B
16.
17. A
20. A
B
D
22.
D
D
23.
B
24.
25.
B
26.
27.
B
28.
C
29.
B
32.
33.
D
34.
37.
D
38.
39.
D
40. A
41. A
42.
43. A
44.
45. A
46. A
C
48.
D
C
B
B
50. A
B
52. A
C
B
55. A
57.
D
54.
C
56.
C
58.
60. A
62.
D
36. A
B
51.
D
B
D
47.
B
30.
31.
53.
D
18. A
21.
49.
B
10. A
11. A
35.
B
6. A
B
7. A
19.
D
2.
C
1.
B
61.
C
63.
C
D
64. A
65.
66. A
67.
B
68. A
69.
B
1
C
70. A
71. A
72.
C
74. A
75.
C
76.
77.
79.
D
78.
D
B
80.
B
C
81.
C
82. A
83.
C
84.
D
85.
C
86.
D
87.
C
88.
89. A
91.
90. A
D
92.
B
D
93.
94. A
95. A
C
96.
97.
99.
B
98.
D
B
D
100.
C
101. A
102.
C
103. A
104.
105.
D
106. A
107. A
108.
109.
111.
D
112.
113.
D
114.
C
117.
118.
C
120.
121. A
123.
D
B
B
C
122. A
B
124. A
125.
127.
C
116. A
D
119.
B
110.
C
115.
B
D
126. A
128.
C
129. A
130. A
2
D