Tải bản đầy đủ (.pdf) (14 trang)

Các phép toán cơ bản trong xử lý ảnh

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (431.75 KB, 14 trang )

1
HanoiUniversityofScienceandTechnology SchoolofElectronicsandTelecommunications
2Dsystemsandmathematicalpreliminaries
**0
1/2012
Introduction
1/27
Twodimensionalsystems
&
Mathematicalpreliminaries
HanoiUniversityofScienceandTechnology SchoolofElectronicsandTelecommunications
2Dsystemsandmathematicalpreliminaries
**0
1/2012
Introduction
2/27
1. Notationsanddefinitions
2. Linearsystemsandshiftinvariance
3. FourierTransform
4. ZTransformorLaurentseries
5. Matrixtheoryandresults
6. BlockmatricesandKroneckerproducts
7. Randomsignals
8. Someresultsfromestimationtheory
9. Someresultsfrominformationtheory
2
HanoiUniversityofScienceandTechnology SchoolofElectronicsandTelecommunications
2Dsystemsandmathematicalpreliminaries
**0
1/2012
Introduction


3/27
1. Notationsanddefinitions
Ø1Dand2Dfunctions
ü1D:
),(x
d
 )(n
d

),(ng
),(xf
ü2D:
),,( yx
d

),( nm
d

),,( nmg),,( yxf
ØSeparableformsof2Dfunctions
üDirac:
üKronecker:
ürect(x,y),sinc(x,y),comb(x,y)
)()(),( yxyx
d d d
× =
)()(),( nmnm
d d d
× =
ØSpecialfunctions

üDiracdelta:
üShifting:
üScaling:
üKroneckerdelta:
üShifting:
üRectangle:
üSignum:
üSinc:
üComb:
üTriagle:
1)(lim;0,0)(
0
= ¹ =
ò
+
-
®

e
e
e
d d
 dxxxx
)(')'()'( xfdxxxxf = -
ò
+
-

e
e

d

a
x
ax
)(
)(

d
d
=
î
í
ì
=
¹
=
01
00
)(
n
n
x
d

)()()( nfmnmf = -
å
¥
¥ -


d

ï
î
ï
í
ì
>
£
=
2/10
2/11
)(
x
x
xrect
ï
î
ï
í
ì
< -
=
>
=
01
00
01
)(
x

x
x
xsign
å
¥
¥ -
- = )()( nxxcom b
d

x
x
xc

p
p
sin
)(sin =
ï
î
ï
í
ì
>
£ -
=
10
11
)(
x
xx

xtri
HanoiUniversityofScienceandTechnology SchoolofElectronicsandTelecommunications
2Dsystemsandmathematicalpreliminaries
**0
1/2012
Introduction
4/27
2. Linearsystemsandshiftinvariance
Ø2Dlinearsystems
[]
× H
[ ]
),(),( nmxnmy H =
),( nmx
üLinearsuperpositionproperty:
üImpulseresponse:
üImpulseresponseiscalledPSF:Inputandoutputarepositivequantities
üIngeneral:Impulseresponsecantakenegativeorcomplexvalues
üRegionofsupport(RoS)ofimpulseresponse
üFiniteimpulseresponse(FIR)andinfiniteimpulseresponse(IIR):When
RoSisfiniteorinfinite
[ ]
)','()', ';,( nnmmnmnmh - - H =
d

[ ] [ ] [ ]
),(),(),(),(),(),(
221122112211
nmyanmyanmxanmxanmxanmxa + = H + H = + H
3

HanoiUniversityofScienceandTechnology SchoolofElectronicsandTelecommunications
2Dsystemsandmathematicalpreliminaries
**0
1/2012
Introduction
5/27
ỉOutputofalinearsystem:
[ ]






- - H = H =
ồồ
)','()','(),(),(
' '
nnmmnmxnmxnmy
m n

d

[ ]
ồồ ồồ
= - - H = ị
' '' '
)',',()','()','()','(),(
m nm n
nmnmhnmxnnmmnmxnmy

d
ỉSpatiallyinvariantorshiftinvariantsystem:
[ ]
)0,0,(),( nmhnm = H
d

[ ]
)0,0','()','()',',( nnmmhnnmmnmnmh - - = - - H =
d

)','()',',( nnmmhnmnmh - - = ị
ỹTheshapeofimpulseresponsedoesnotchangeastheimpulse
responsemovesaboutthe(m,n)plan
ỹDiscreteconvolution:
),(*),()','()','(),(
' '
nmxnmhnmxnnmmhnmy
m n
= - - =
ồồ
ỹContinuousconvolution:
'')','()','(),(*),(),( dydxxxfyyxxhyxfyxhyxg
ũ ũ
Ơ
Ơ -
Ơ
Ơ -
- - = =
ốExp.2.1
HanoiUniversityofScienceandTechnology SchoolofElectronicsandTelecommunications

2Dsystemsandmathematicalpreliminaries
**0
1/2012
Introduction
6/27
3. Fouriertransform
ỉFTofa1Dfunction:f(x)
[ ]
[ ]
ũ
ũ
Ơ +
Ơ -
- -

Ơ -
-
= =
= =

x x x
x
px
px

deFFxf
dxexfxfF
xj
xj
211

2
)()()(:
)()()(:
ỉFTofa2Dfunction:f(x,y)
[ ]
[ ]
ũ ũ
ũ ũ
Ơ +
Ơ -
Ơ +
Ơ -
+
- -

Ơ -

Ơ -
+ -
= =
= =
21
)(2
2121
11
)(2
21
21
21
),(),(),(:

), (),(),(:

x x x x x x
x x
x x p
x x p

ddeFFyxf
dxdyeyxfyxfF
yxj
yxj
4
HanoiUniversityofScienceandTechnology SchoolofElectronicsandTelecommunications
2Dsystemsandmathematicalpreliminaries
**0
1/2012
Introduction
7/27
Performingachangeofvariables:
ỉPropertiesofFT
ỹSpatialfrequencies
ỹUniqueness
ỹSeparability
ũ ũ ũ ũ

Ơ -
-

Ơ -
-


Ơ -

Ơ -
+ -






= = dyedxeyxfdxdyeyxfF
yjxjyxj
2121
22)(2
21
),(),(),(

px px x x p
x x
ỹFrequencyresponseandeigenfunctionsofshiftinvariantsystems
),( yxh
FH
F
ũ ũ

Ơ -

Ơ -
+

- - = '')','(),(
)''(2
21
yddxeyyxxhyxg
yxj
x x p

',' yyyxxx - = - =
)(2
21
:where
yxj
e

x x p
+
= F
)(2
21
21
),(),(
yxj
eyxg

x x p
x x

+
H = ị
HanoiUniversityofScienceandTechnology SchoolofElectronicsandTelecommunications

2Dsystemsandmathematicalpreliminaries
**0
1/2012
Introduction
8/27
ỹConvolutiontheorem
ỹInnerproductpreservation
),(F),(),G(),(*),(),(
212121

x x x x x x
ì H = ị = yxfyxhyxg
ỹCorrelationbetween2realfunctions
ũ ũ

Ơ -

Ơ -
+ + = ã = '')','()','(),(),(),( dydxyyxxfyxhyxfyxhyxc
Performingachangeofvariables:
),F(),(),(C),(),(),(
212121

x x x x x x
ì - - H = ị ã - - = yxfyxhyxc
ũ ũ ũ ũ

Ơ -

Ơ -


Ơ -

Ơ -
= =
2121
*
21
*
),(H),(F),(),(
x x x x x x
dddxdyyxhyxfI
Settingh=fốParsevalenergyconservationformula
ũ ũ ũ ũ

Ơ -

Ơ -

Ơ -

Ơ -
=
21
2
21
2
),(F),(
x x x x
dddxdyyxf

5
HanoiUniversityofScienceandTechnology SchoolofElectronicsandTelecommunications
2Dsystemsandmathematicalpreliminaries
**0
1/2012
Introduction
9/27
üFouriertransformpairs
comb(x,y)
tri(x,y)
rect(x,y)
1
),( yxf ),(F
21

x x

),( yx
d

yljxkj
ee

p p
 22 ± ±
2010
22
x p x p
 yjxj
ee

± ±
),(
21
lk m m
x x d

),(
00
yyxx ± ±
d

)(
22
yx
e
+ -
p

)(
2
2
2
1
y
e
+ -
x p

),(s
21


x x
inc
),(s
21
2

x x
inc
),(
21

x x
comb
HanoiUniversityofScienceandTechnology SchoolofElectronicsandTelecommunications
2Dsystemsandmathematicalpreliminaries
**0
1/2012
Introduction
10/27
Innerproduct
Spatialcorrelation
Multiplication
Convolution
Modulation
Shifting
Scaling
Separability
Conjungation
Linearity

Rotation
Propertyof2DFT FouriertransformFunction
),F(
21
)(2
2010

x x
x x p
 yxj
e
+ ±
)()(
21
yfxf
),( yxf ± ±
),(F),(H),(G
212121

x x x x x x
× =
),(),(
2211
yxfayxfa +
),(F),(F
21222111

x x x x
 aa +
),(

*
yxf ),(F
21
*

x x
- -
)( F)(F
2211

x x

),( yxf
),( byaxf
[ ]
abba /)/,/(F
21

x x

),(
00
yyxxf ± ±
),(
)(2
21
yxfe
yxj
h h p
+ ±

),(F
2211

h x h x
m m
),(),(),( yxfyxhyxg * =
),(),(),( yxfyxhyxg × =
),(F),(H),( G
212121

x x x x x x
* =
),(),(),( yxfyxhyxc · = ),(F),(H),(C
212121

x x x x x x
× - - =
ò ò

¥ -

¥ -
= dxdyyxhyxfI ),(),(
*
ò ò

¥ -

¥ -
2121

*
21
),(H),(F
x x x x x x
 dd
),(F
2
2
1
1

x x
m m
),(F
21

x x
6
HanoiUniversityofScienceandTechnology SchoolofElectronicsandTelecommunications
2Dsystemsandmathematicalpreliminaries
**0
1/2012
Introduction
11/27
Theevaluationofatand yieldsFTof
4. ZTransformorLaurentseries
ỉFouriertransformofsequences(Fourierseries):Selfreading
ỉGeneralizationofFTseries:Ztransform
ỹFor2Dsequencex(m,n):
wherez

1
,z
2
arecomplexvariables
ồ ồ

-Ơ =

-Ơ =
- -
=
m n
nm
zznmxzzX
2121
),(),(
ỹRegionofconverge(RoC):thisseriesconvergesuniformlyinthisregion
ỹZtransformofaLSIsystemiscalledtransferfunction
),(
),(
),(
),(),(),(
21
21
21
212121
zzX
zzY
zzH
zzXzzHzzY

= ị
=
ỉInverseZtransform:
11where,),(
)2(
1
),(
21
2
1
1
2
1
121
2
= = =
ũũ
- -
zzdzdzzzzzX
j
nmx
nm

p

),(
21
zzX
1
1


w
j
ez =
2
2

w
j
ez =
),( nmx
HanoiUniversityofScienceandTechnology SchoolofElectronicsandTelecommunications
2Dsystemsandmathematicalpreliminaries
**0
1/2012
Introduction
12/27
ỉPropertiesof2DZtransform
Multiplication
Convolution
Modulation
Shifting
Separability
Conjungation
Linearity
Rotation
Property FouriertransformFunction
),(
2121
00

zzXzz
nm
)()(
21
nxmx
),( nmx - -
),(),(
2121
zzFzzH ì
),(),(
2211
nmxanmxa +
),(),(
21222111
zzX azzXa +
),(
*
nmX
),(
*
2
*
1
*
zzX
)( F)(F
2211

x x


),( yxf
),(
00
nnmmx
),( nmxba
nm
),(),( nmxnmh *
),(),( nmynmx
),(
1
2
1
1
- -
zzX
),(F
21

x x







b
z
a
z

X
21
,
ũ ũ
















1 2
'
2
2
'
1
1
'
2
'

1
'
2
2
'
1
1
2
),(,
2
1
C C
z
dz
z
dz
zzY
z
z
z
z
X
j
p
7
HanoiUniversityofScienceandTechnology SchoolofElectronicsandTelecommunications
2Dsystemsandmathematicalpreliminaries
**0
1/2012
Introduction

13/27
ỉCausality
ỹCausal:Impulseresponseforanditstransferfunction
musthaveaonesidedLaurentseries
0)( =nh 0 <n

Ơ
=
-
=
0
)()(
n
n
znhzH
ỹAnticausal:Impulseresponseforanditstransferfunction
musthaveaonesidedLaurentseries
0)( =nh
0 n
ỹNoncausal:Neithercausaloranticausal
ỉStability:Outputremainsuniformlyboundedforanyboundedinput
Ơ <

Ơ
=0
)(
n
nh
ỉCausalandstablesystem:polesofH(z)mustlieinsidetheunitcircle
ỉ2Dcase: RoCofmustincludetheunitcircles

ồồ
Ơ <
m n
nmh ),(
),(
21
zzH
HanoiUniversityofScienceandTechnology SchoolofElectronicsandTelecommunications
2Dsystemsandmathematicalpreliminaries
**0
1/2012
Introduction
14/27
5. Matrixtheoryandresults
ỉVectorsandmatrices
ỹColumnvectorofsizeN:
NnnuU á = = 1),(
ỹRowvectorofsizeM:
MmmuU á = = 1),(
ỹMatrixAofsizeMxNcontainingMrows,Ncolumns













=
),()2,(),1,(
),2()2,2(),1,2(
),1()2,1(),1,1(
NMaMa Ma
Naaa
Naaa
A
L
L
L
L
ỹIndexnotation:
{ }
1,0),,( - Ê Ê =

NnmnmaA
NN
ỹAnimageisusuallyvisualizedasamatrix
ốExp.2.2
8
HanoiUniversityofScienceandTechnology SchoolofElectronicsandTelecommunications
2Dsystemsandmathematicalpreliminaries
**0
1/2012
Introduction
15/27
ØRowandcolumnordering

üRoworderedvector(rowstacking)
[ ]
T
T
NMxMxNxxNxxxx ),( ,),1,(),2( ,),1,2(),,1( ,),2,1(),1,1( L =
[ ]
T
T
NMxMxMxxMxxxx ),( ,),,1()2,( ,),2,1(),1,( ,),1,2(),1,1( L =
üColumnorderedvector(columnstacking)
ØMatrixtheorydefinitions
{ }
),( nmaA =
üMatrix:
üTranspose:
{ }
),( mnaA
T
=
{ }
),(
**
nmaA =
üComplexconjungate:
{ }
)( nmI - =
d
üConjungatetranspose:
üIdentitymatrix:
üNullmatrix:

{ }
0 =O
{ }
),(
**
mnaA
T
=
üMatrixaddition:
{ }
),(),( nmbnmaBA + = +
:A,B:Samedimension
üScalarmultiplication:
{ }
),( nmaA
a a
=
üMatrixmultiplication:
å
=
=
K
k
nkbkmanmc
1
),(),(),(
A:MxK,B:KxN,C:MxN
HanoiUniversityofScienceandTechnology SchoolofElectronicsandTelecommunications
2Dsystemsandmathematicalpreliminaries
**0

1/2012
Introduction
16/27
üVectorinnerproduct:
å
= = )()(,
**
nynxYXYX
T
:Scalarquantity,ifequal0
èXandYareorthogonal
üVectorouterproduct:
{ }
)()( nymxXY
T
=
:X:Mx1,Y:Nx1,XY
T
:MxN
üSymmetric:
T
AA =
ü Hermitian:
T
AA
*
=
:RealsymmetricmatrixisHermitan.Eigenvaluesarereal
üDeterminant:
A

üRankofA:Numberofindependentrowsorcolumns
üInversematrix:
IAAAA = =
- - 11
:Squarematrixonly
üSingular:A
1
doesnotexistand
0 =A
üEigenvalues:allrootsof
k

l

0 = - IA
k

l
üEigenvectors:allsolutionsof
k
F 0, ¹ F F = F
kkkk
A
l
9
HanoiUniversityofScienceandTechnology SchoolofElectronicsandTelecommunications
2Dsystemsandmathematicalpreliminaries
**0
1/2012
Introduction

17/27
ØTransposeandconjungaterules
[ ]
[ ]
[ ] [ ]
[ ]
**
*
1
1
*
*
.4
.3
.2
.1
BAAB
AA
ABAB
AA
T
T
TT
T
TT
=
=
=
=
-

-
ØToeplitzandcirculantmatrices
ú
ú
ú
ú
û
ù
ê
ê
ê
ê
ë
é
=
-
-
+ - -
+ - -
0121
12
2101
110
,,,
,,
,
tttt
tt
tttt
ttt

A
N
N
N
L
L
L
L
ØCirculantmatrixC
ú
ú
ú
ú
ú
ú
û
ù
ê
ê
ê
ê
ê
ê
ë
é
=
-
- -
-
0121

2
2101
1210
,,,
,,
,,
cccc 
c
cccc
cccc
C
N
NN
N
L
L
L
L
CisalsoToeplitzandc(m,n)=c((mn)moduloN)
èExp.2.3
èExp.2.4
t(i,j)=t
ij
:Constantelementsalongthe
maindiagonalandsubdiagonal
HanoiUniversityofScienceandTechnology SchoolofElectronicsandTelecommunications
2Dsystemsandmathematicalpreliminaries
**0
1/2012
Introduction

18/27
whereandareeigenvaluesandeigenvectorsofR
üOtherform,whichisthesetofeigenvalueequations
ØOrthogonalandunitarymatrices
üOrthogonalmatrix:
üUnitarymatrix:
IAAAAAA
TTT
= = =
- ***1
or
èExp.2.5a
ØDiagonalforms
üIfRisHermitianmatrix,thereexistsaunitarymatrixΦsuchthat
whereΛisadiagonalmatrixcontainingeigenvaluesofR
L = F RΦ
*T
L = ΦRΦ
Nk
kk
,,2,1,ΦRΦ
k
L = =
l

{ }
k

l


k
Φ
èExp.2.5b
IAAAAAA
TTT
= = =
-
or
1
10
HanoiUniversityofScienceandTechnology SchoolofElectronicsandTelecommunications
2Dsystemsandmathematicalpreliminaries
**0
1/2012
Introduction
19/27
Ø isblockToeplitzifisToeplitzor
6. BlockmatricesandKroneckerproducts
ØBlockmatricesofsize:eachelementisamatrixitself
ú
ú
ú
ú
ú
û
ù
ê
ê
ê
ê

ê
ë
é
= À
nmmm
n
n
AAA
AAA
AAA
,2,1,
,22,21,2
,12 ,11,1
,
,
,
L
L
L
L
wherearematrices
ji
A
,
)(, jiji
AA
-
=
Ø isblockcirculantifiscirculant
nmAA

njiji
= =
-
,
)ulomod)((,
èExp.2.6
èExp.2.7
ØKroneckerproducts:A:M
1
xM
2
,B:N
1
xN
2
:
ØSeparableoperations:selfreading
{ }
BnmaBA ),( = Ä
qp ´
À
ji
A
,
À
ji
A
,
nm´
HanoiUniversityofScienceandTechnology SchoolofElectronicsandTelecommunications

2Dsystemsandmathematicalpreliminaries
**0
1/2012
Introduction
20/27
ü isanNx1vector
7. Randomsignals
ØDefinitions:givenasequenceofrandomvariablesu(n)
üMean:
üVariance:
üCovariance:
üCrosscovariance:
üAutocorrelation:
üCrosscorrelation:
[ ]
)()()( nuEnn
u
= =
m m

[
]
2
2
2
)()()()( nnuEnn
u

m s s
- = =

[ ] [ ]
[
]
{
}
)'()'()()()',()'(),(
**
nnunnuEnnrnunuCov
u

m m
- - = =
[ ] [ ]
[
]
{
}
)'()'()()()',()'(),(
*
*
nnvnnuEnnrnvnuCov
vuuv

m m
- - = =
[
]
)'()()',()()()',()',(
**
nnnnrnunuEnnanna

uu

m m
- = = =
[ ]
)'()()',()()()',(
*
*
nnnnrnvnuEnna
vuuvuv

m m
- = =
ØForvectorofsizeNx1:u
[ ]
{ }
)(nE
m
= = μu
ü isanNxNmatrix
[ ]
[
]
{ }
)',())((
**
nnrECov
T
= = = - - = RRμuμuu
u

ü isanNxNmatrix
[ ]
[
]
{ }
)',())((,
*
*
nnrECov
uv
T
= = - - =
uvvu
Rμvμuvu
11
HanoiUniversityofScienceandTechnology SchoolofElectronicsandTelecommunications
2Dsystemsandmathematicalpreliminaries
**0
1/2012
Introduction
21/27
ỉGaussianrandomprocess:thejointprobabilitydensityofanyfinitesub
sequenceisaGaussiandistribution
ỉStationaryprocess
ỉGaussianornormaldistribution:forstandardnormaldistribution
ù

ù
ý


ù

ù


- -
=
2
2
2
2
2
1
)(

s
m
ps

u
u
eup
1and0
2
= =
s m
ỹu(n)isstrictsensestationary:jointdensityofanypartial
sequenceisthesameasthatoftheshifted
sequenceforanyintegermandanylengthk
{ }

kllu Ê Ê1),(
{ }
klmlu Ê Ê + 1),(
ỹu(n)iswidesensestationary:
[ ]
constnuE = =
m
)(
[
]
)'()',()'()(
*
nnrnnrnunuE - = =
ỹSymmetry:
ỹNonnegativity:
',)',()',(
*
nnnnrnnr " =
nnxnxnnrnx
n n
" ạ
ồồ
,)(,0)'()',() (
'
*
HanoiUniversityofScienceandTechnology SchoolofElectronicsandTelecommunications
2Dsystemsandmathematicalpreliminaries
**0
1/2012
Introduction

22/27
ỉMarkovprocess
ỹMarkovporpthorderMarkov
ỹGaussianMarkovpsequence
[ ] [ ]
npnununuEnununuE " - - = - - )(,),1(|)()2(),1(|)( L L
ỹCovariancefunctionofafirstorderstationaryMarkovsequenceu(n)
nnr
n
" < = ,1)(
r r
ỹToeplitzcovariancematrix
















=
-

-
1,,,
1,
,,1
1
12

r r
r
r
r r r
L
L
L
L
N
N
R
[ ] [ ]
npnununuprobnununuprob " - - = - - )(,),1(|)()2() ,1(|)( L L
12
HanoiUniversityofScienceandTechnology SchoolofElectronicsandTelecommunications
2Dsystemsandmathematicalpreliminaries
**0
1/2012
Introduction
23/27
ỉOrthogonalityandindependence
ỹxandyareindependent:
nypxpyxp

yxyx
" < = ,1)()(),(
,

r
ỹx(n)andy(n)randomsequencesareindependent:x(n)andy(n)are
independentforeverynandn
ỹxandyareorthogonal:
[ ]
0
*
=xyE
ỹxandyareuncorrelated:or
[ ]
[ ]
( )
[ ]
( )
**
EEE yxxy =
[
]
0))((E
*
= - -
yx
yx
m m
ỉKarhunenLoevetransform(KLT)
ỹ isacomplexrandomsequencewith

{ }
Nnnx Ê Ê1),( R
ỹ isanNxNunitarymatrix,whichreducestoitsdiagonalform
R
ỹKLTof:
x
xy
*T
=
ỹPropertyofKLT:
[ ] [ ]
{ }
Rxxyy = = =
TT ****
EE
[ ]
)()()(E
*
lklyky
k
- = ị
d l
HanoiUniversityofScienceandTechnology SchoolofElectronicsandTelecommunications
2Dsystemsandmathematicalpreliminaries
**0
1/2012
Introduction
24/27
8. Someresultsfromestimationtheory
ỉMeansquareestimates(MSE)

ỹ isarealrandomsequenceandxisarealrandomvariable
{ }
Nnny Ê Ê1),(
ỹ iscalledtheoptimummeansquareestimateofxiftheMSEisminimized

x






- =

2
2
)( xxE

e
s
Thatmeans:
( ) ( )
[ ]

x x x
ũ

Ơ -

= = = dpNyyyxEyxEx

yx
)()(,),2(),1(||
|
L
ỹIfxandy(n)areindependent,thensimplyismeanofxbecause:

x
( )
[ ]
( )
xEyxEExE = =







|
ỹForzeromeanGaussianrandomvariables,becomeslineariny(n)

x

=

=
N
n
nynx
1

)()(
a
13
HanoiUniversityofScienceandTechnology SchoolofElectronicsandTelecommunications
2Dsystemsandmathematicalpreliminaries
**0
1/2012
Introduction
25/27
ØTheorthogonalprinciples
üFromMSEtheory:errorvectorisorthogonaltoeveryrandomvariable
i.e forany
( )
)(,),2(),1()( Nyyygyg L =
0)()(
2
=
ú
û
ù
ê
ë
é
-
Ù
ygxxE
üOrthogonalityprincipleisusefulinlinearestimatesincethecond.meanis
difficulttoevaluateèfindingthatminimizestheMSE.Thatis:
)(n
a


[ ] [ ]
NnnxyEnykyEk
N
k
,,1,)()()()(
1
L = =
å
=

a
Inmatrixform:
xyy
rRα
1 -
=
TheminimizedMSEisgiven:
xy
T
x
rα - =
22

s s
e
Ifxandy(n)arenonzeromeanrandomvariables:
[ ]
)()()(
1

nnynxx
y
N
n
x
x

m a m m
- = - = -
å
=
Ù Ù
Ù
èProve
HanoiUniversityofScienceandTechnology SchoolofElectronicsandTelecommunications
2Dsystemsandmathematicalpreliminaries
**0
1/2012
Introduction
26/27
9. Someresultsfrominformationtheory
ØInformation:Thereisasourcegeneratingadiscretesetofindependent
message(e.ggraylevel)r
k
,withprobabilitiesp
k
.Sincep
k
≤1è
kk

pI
2
log - =
ØEntropy:Definedasaverageinfogeneratedbythesource(bit/message)
å
=
- =
L
k
kk
ppH
1
2
log
üForagivenL,maxentropyofasourceisdeterminedforuniform
distribution,i.e
L
LL
H
L
k
p
k
2
1
2
log
1
log
1

max = - =
å
=
LkLp
k
,,1,/1 L = =
èExp.2.13
BinarysourceèL=2.Thenp
1
=p,p
2
=1p,
10 £ £ p
Entropyis: èH
max
=?
)1(log)1(log)(
22
pppppHH - - - - = =
14
HanoiUniversityofScienceandTechnology SchoolofElectronicsandTelecommunications
2Dsystemsandmathematicalpreliminaries
**0
1/2012
Introduction
27/27
ỉRatedistortionfunction(RDF)
ỹRDFofarandomvariablexgivesminaveragerateR
D
requiredto

represent(orcode)itforafixeddistortionD
ỹx:Gaussianwithy:reproducedvalueMSE(xy):Distortionmeasure
2

s

[
]
2
)( yxED - =
ThenRDFofxisdefinedas:
( )














=
ù

ù



>
Ê
=
D
D
DD
R
D
2
2
2
22
2
log
2
1
,0max
0
/log
2
1

s
s
s s
ỹMeansquaredistortionforGaussianvariables
andtheirreproducedvalues isdefinedas:
{ }

)1(,),1(),0( -Nxxx L
{ }
)1(,),1(),0( -Nyyy L
[ ]

-
=
- =
1
0
2
)()(
1
N
k
kykxE
N
D

×