TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 3.
B. 2.
1
3|x−1|
= 3m − 2 có nghiệm duy
C. 4.
D. 1.
q
2
Câu 2. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [−1; 0].
C. m ∈ [0; 1].
D. m ∈ [0; 4].
Câu 3. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).
B. (II) và (III).
C. (I) và (II).
D. Cả ba mệnh đề.
1
Câu 4. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2] ∪ [−1; +∞). B. −2 < m < −1.
C. (−∞; −2) ∪ (−1; +∞). D. −2 ≤ m ≤ −1.
Câu 5. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m > .
C. m ≤ .
D. m ≥ .
4
4
4
4
Câu 6. Tính thể tích khối lập phương
biết tổng diện tích tất cả các mặt bằng 18.
√
A. 9.
B. 3 3.
C. 8.
D. 27.
Câu 7. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
n2 + n + 1
A. un =
.
B.
u
=
.
n
n2
(n + 1)2
C. un =
1 − 2n
.
5n + n2
D. un =
n2 − 2
.
5n − 3n2
Câu 8. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−3; 1].
B. (−∞; −3].
C. [−1; 3].
D. [1; +∞).
Câu 9. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 11.
B. 12.
C. 4.
D. 10.
2
Câu 10. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2√
A. m = ±3.
B. m = ±1.
C. m = ± 2.
D. m = ± 3.
Câu 11. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là
√
√
a3 3
a3 3
2a3 3
3
A.
.
B.
.
C. a 3.
D.
.
3
6
3
Trang 1/10 Mã đề 1
Câu 12. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng
√
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2
3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3
√
√
2 3
A. 3.
B.
.
C. 2.
D. 1.
3
Câu 13.
Z [1233d-2] Mệnh đề nào sau đây sai?
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
B.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
C.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
D.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
A.
!
5 − 12x
= 2 có bao nhiêu nghiệm thực?
Câu 14. [2] Phương trình log x 4 log2
12x − 8
A. Vô nghiệm.
B. 3.
C. 2.
D. 1.
√
Câu 15. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√
√
√ tích khối chóp S .ABC3 √
a 2
a3 6
a3 6
a3 6
.
B.
.
C.
.
D.
.
A.
18
6
36
6
x+2
Câu 16. Tính lim
bằng?
x→2
x
A. 3.
B. 1.
C. 0.
D. 2.
Câu 17. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
A. aα bα = (ab)α .
B. aαβ = (aα )β .
C. aα+β = aα .aβ .
D.
α
aα
= aβ .
β
a
!
x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
Câu 18. [3] Cho hàm số f (x) = ln 2017 − ln
x
2016
4035
2017
A.
.
B. 2017.
C.
.
D.
.
2017
2018
2018
Câu 19. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√
√ là
3
3
3
3
8a 3
4a 3
8a 3
a 3
A.
.
B.
.
C.
.
D.
.
9
9
3
9
Câu 20. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng
√
√
√
√
a 3
a 3
2a 3
A. a 3.
B.
.
C.
.
D.
.
3
2
2
Câu 21. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 2.
B. 0, 5.
C. 0, 3.
D. 0, 4.
d = 300 .
Câu 22. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên CC = 3a. Thể tích V của khối lăng trụ đã cho. √
√
√
3a3 3
a3 3
3
3
A. V = 3a 3.
B. V = 6a .
C. V =
.
D. V =
.
2
2
Trang 2/10 Mã đề 1
Câu 23. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A.
.
B. −7.
C. −2.
D. −4.
27
Câu 24. Khối đa diện đều loại {3; 5} có số mặt
A. 30.
B. 20.
C. 12.
D. 8.
Câu 25. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. .
B. 9.
C. 6.
D. .
2
2
Câu 26. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 2).
B. (0; 2).
C. (0; +∞).
D. (−∞; 0) và (2; +∞).
Câu 27. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 20, 128 triệu đồng. B. 70, 128 triệu đồng. C. 3, 5 triệu đồng.
D. 50, 7 triệu đồng.
Câu 28. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 4.
B. 1.
C. 2.
1
3|x−1|
= 3m − 2 có nghiệm duy
D. 3.
Câu 29. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. 3.
C. 2.
D. Vô nghiệm.
9t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9t + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 2.
B. Vô số.
C. 1.
D. 0.
√
√
Câu 31. Phần thực√và phần ảo của số √
phức z = 2 − 1 − 3i lần lượt √l
√
A. Phần thực là √2, phần ảo là 1 − √3.
B. Phần thực là 2 −√1, phần ảo là − √3.
C. Phần thực là 2 − 1, phần ảo là 3.
D. Phần thực là 1 − 2, phần ảo là − 3.
Câu 30. [4] Xét hàm số f (t) =
Câu 32. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog
A. 25.
B. 5.
√
a
5
bằng
1
C. .
5
√
D.
5.
Câu 33. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD), S D = a 5. Thể tích khối
√ chóp S .ABCD là
√
√
3
√
a 15
a3 6
a3 5
3
A. a 6.
B.
.
C.
.
D.
.
3
3
3
Câu 34. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
!
! của A lên BC là
8
7
5
A.
; 0; 0 .
B.
; 0; 0 .
C.
; 0; 0 .
D. (2; 0; 0).
3
3
3
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = e − 1.
C. xy0 = −ey − 1.
D. xy0 = −ey + 1.
Câu 35. [3-12217d] Cho hàm số y = ln
A. xy0 = ey + 1.
Câu 36. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 3.
B. 2.
C. 1.
D. 0.
Trang 3/10 Mã đề 1
Câu 37. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 1587 m.
C. 25 m.
D. 27 m.
!2x−1
!2−x
3
3
≤
là
Câu 38. Tập các số x thỏa mãn
5
5
A. [1; +∞).
B. (−∞; 1].
C. (+∞; −∞).
D. [3; +∞).
Câu 39. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 1; m = 1.
B. M = e−2 − 2; m = 1.
C. M = e−2 + 2; m = 1.
D. M = e2 − 2; m = e−2 + 2.
Câu 40. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) trên khoảng (a; b).
B. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. Cả ba câu trên đều sai.
Câu 41. Tính lim
A. 1.
cos n + sin n
n2 + 1
B. −∞.
C. +∞.
D. 0.
un
Câu 42. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 0.
B. −∞.
C. 1.
D. +∞.
Câu 43. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 4}.
B. {3; 3}.
C. {4; 3}.
D. {5; 3}.
x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
Câu 44. [4-1212d] Cho hai hàm số y =
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. [−3; +∞).
C. (−3; +∞).
D. (−∞; −3].
Câu 45. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a
√
a3 5
a3 15
a3 15
a3
A.
.
B.
.
C.
.
D.
.
25
5
25
3
x−1
Câu 46. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
B thuộc (C), đoạn thẳng AB có độ dài bằng
√
√ đều ABI có hai đỉnh A, √
A. 2 2.
B. 2 3.
C. 2.
D. 6.
Câu 47. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 1.
B. 2.
C. 5.
D. 3.
Câu 48. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 9 mặt.
C. 7 mặt.
D. 8 mặt.
Câu 49. Khối đa diện đều loại {4; 3} có số đỉnh
A. 4.
B. 10.
D. 8.
C. 6.
Câu 50. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 3
a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
12
12
4
6
Trang 4/10 Mã đề 1
Câu 51. Hàm số y =
A. x = 0.
x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 1.
C. x = 3.
D. x = 2.
Câu 52. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1637
1728
1079
23
A.
.
B.
.
C.
.
D.
.
4913
4913
4913
68
Câu 53. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 24.
B. 20.
C. 3, 55.
D. 15, 36.
Câu 54. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 0.
B. +∞.
C. 1.
4
√3
D. 2.
Câu 55. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
2
5
5
7
A. a 3 .
B. a 8 .
C. a 3 .
D. a 3 .
1
Câu 56. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 1) và (3; +∞). B. (−∞; 3).
C. (1; +∞).
D. (1; 3).
π π
3
Câu 57. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. −1.
B. 7.
C. 3.
D. 1.
log 2x
Câu 58. [1229d] Đạo hàm của hàm số y =
là
x2
1 − 4 ln 2x
1
1 − 2 log 2x
1 − 2 ln 2x
A. y0 =
.
B. y0 = 3
.
C. y0 =
.
.
D. y0 = 3
3
3
2x ln 10
2x ln 10
x
x ln 10
2n − 3
Câu 59. Tính lim 2
bằng
2n + 3n + 1
A. +∞.
B. 0.
C. −∞.
D. 1.
Câu 60. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|
√
√
√
√
12 17
A. 34.
B.
.
C. 5.
D. 68.
17
Câu 61. Dãy số nào sau đây có giới hạn khác 0?
1
n+1
sin n
1
A. .
B.
.
C.
.
D. √ .
n
n
n
n
√
Câu 62. [1] Biết log6 a = 2 thì log6 a bằng
A. 6.
B. 4.
C. 36.
D. 108.
Câu 63. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = 3S h.
C. V = S h.
D. V = S h.
2
3
log(mx)
Câu 64. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m ≤ 0.
B. m < 0 ∨ m = 4.
C. m < 0.
D. m < 0 ∨ m > 4.
Câu 65. Khối đa diện đều loại {3; 5} có số cạnh
A. 20.
B. 12.
C. 8.
D. 30.
Câu 66. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = (0; +∞).
B. D = R \ {0}.
C. D = R.
D. D = R \ {1}.
Trang 5/10 Mã đề 1
Câu 67. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
!
1
C. Hàm số nghịch biến trên khoảng ; 1 .
3
!
1
B. Hàm số nghịch biến trên khoảng −∞; .
! 3
1
D. Hàm số đồng biến trên khoảng ; 1 .
3
Câu 68. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 8.
B. 3.
C. 4.
D. 6.
p
ln x
1
Câu 69. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
8
1
8
B. .
C. .
D. .
A. .
9
9
3
3
Câu 70. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai mặt.
B. Bốn mặt.
C. Ba mặt.
D. Năm mặt.
Câu 71. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = −18.
B. y(−2) = 22.
C. y(−2) = 6.
D. y(−2) = 2.
Câu 72. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.423.000.
C. 102.424.000.
D. 102.016.000.
Câu 73. Khối đa diện đều loại {5; 3} có số mặt
A. 30.
B. 8.
C. 12.
D. 20.
Câu 74. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
3
3
a 6
a3 6
a3 3
a 6
.
B.
.
C.
.
D.
.
A.
24
48
8
24
Câu 75. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.
B. f (x) có giá trị nhỏ nhất trên K.
C. f (x) có giá trị lớn nhất trên K.
D. f (x) liên tục trên K.
Câu 76. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 77. Cho hai hàm y = f (x), y = g(x)
Z có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =
g0 (x)dx.
Z
Z
0
B. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Câu 78. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trang 6/10 Mã đề 1
Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Cả hai đều đúng.
C. Chỉ có (II) đúng.
D. Cả hai đều sai.
Câu 79. Bát diện đều thuộc loại
A. {3; 3}.
B. {3; 4}.
C. {5; 3}.
D. {4; 3}.
Câu 80. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
x2
Câu 81. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
B. M = e, m = 0.
C. M = e, m = 1.
D. M = e, m = .
A. M = , m = 0.
e
e
[ = 60◦ , S O
Câu 82. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.√Khoảng cách từ O đến (S
√ BC) bằng
√
a 57
2a 57
a 57
A.
.
B.
.
C.
.
D. a 57.
19
19
17
2
2n − 1
Câu 83. Tính lim 6
3n + n4
2
A. .
B. 2.
C. 1.
D. 0.
3
Câu 84. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
B. − 2 .
A. − .
C. − .
2e
e
e
Câu 85.
Z Các khẳng định nào sau
Z đây là sai?
Z
D. −e.
!0
f (x)dx = f (x).
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C. B.
Z
Z
Z
Z
C.
k f (x)dx = k
f (x)dx, k là hằng số.
D.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.
A.
Câu 86. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.
C. Khối 20 mặt đều.
D. Khối bát diện đều.
Câu 87. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối tứ diện đều.
C. Khối 12 mặt đều.
D. Khối bát diện đều.
Câu 88. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e2 .
B. 2e4 .
C. −2e2 .
D. −e2 .
Câu 89. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m = 0.
B. m > 0.
C. m < 0.
D. m , 0.
Câu 90. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 0.
B. 9.
C. 13.
D. Khơng tồn tại.
Câu 91. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lăng trụ.
B. Hình tam giác.
C. Hình chóp.
D. Hình lập phương.
Câu 92. [1] !Tập xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
A.
; +∞ .
B. −∞; .
C. −∞; − .
2
2
2
!
1
D. − ; +∞ .
2
Câu 93. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = (−2; 1).
B. D = R \ {1; 2}.
C. D = [2; 1].
D. D = R.
2
Trang 7/10 Mã đề 1
x+2
Câu 94. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 1.
B. 2.
C. Vô số.
D. 3.
1 + 2 + ··· + n
Câu 95. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
A. lim un = 1.
B. lim un = 0.
1
D. Dãy số un khơng có giới hạn khi n → +∞.
C. lim un = .
2
Câu 96. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
B. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!
un
= +∞.
C. Nếu lim un = a > 0 và lim vn = 0 thì lim
vn !
un
D. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
Câu 97.
các khẳng định sau, khẳng định nào sai?
Z Trong
u0 (x)
dx = log |u(x)| + C.
A.
u(x)
B. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
C. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
D. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
d = 60◦ . Đường chéo
Câu 98. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
3
√
2a3 6
4a
6
a3 6
.
B.
.
C. a3 6.
D.
.
A.
3
3
3
Câu 99. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp là
√
√
A. 8, 16, 32.
B. 2, 4, 8.
C. 6, 12, 24.
D. 2 3, 4 3, 38.
Câu 100.
Trong các khẳng định sau, khẳng định nào sai?Z
Z
dx = x + C, C là hằng số.
A.
Z
C.
1
dx = ln |x| + C, C là hằng số.
x
B.
Z
D.
xα dx =
xα+1
+ C, C là hằng số.
α+1
0dx = C, C là hằng số.
Câu 101. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 3.
B. 4.
Câu 102. Giá trị của lim (3x2 − 2x + 1)
x→1
A. +∞.
B. 2.
C. 1.
D. 2.
C. 1.
D. 3.
Trang 8/10 Mã đề 1
√
√
4n2 + 1 − n + 2
bằng
Câu 103. Tính lim
2n − 3
3
C. 1.
D. 2.
A. +∞.
B. .
2
Câu 104. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 13.
B. 13.
C. 2020.
D. log2 2020.
Câu 105. Khối đa diện đều loại {3; 4} có số đỉnh
A. 8.
B. 10.
C. 6.
D. 4.
Câu 106. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m > 3.
C. m < 3.
D. m ≤ 3.
Câu 107. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 5 mặt.
B. 4 mặt.
C. 6 mặt.
D. 3 mặt.
Câu 108. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Tăng lên n lần.
B. Giảm đi n lần.
C. Tăng lên (n − 1) lần. D. Không thay đổi.
Câu 109. Phát biểu nào sau đây là sai?
A. lim un = c (un = c là hằng số).
C. lim qn = 0 (|q| > 1).
1
= 0.
nk
1
D. lim = 0.
n
B. lim
2
2
sin x
Câu 110.
+ 2cos x √
lần lượt là
√ trị lớn nhất của hàm số f (x) = 2
√ [3-c] Giá trị nhỏ nhất và giá
B. 2 và 2 2.
C. 2 và 3.
D. 2 2 và 3.
A. 2 và 3.
x+1
Câu 111. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. 3.
B. 1.
C. .
D. .
3
4
Câu 112. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 16π.
B. V = 4π.
C. 8π.
D. 32π.
Câu 113. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(4; 8).
C. A(4; −8).
D. A(−4; −8)(.
Câu 114. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có hai.
B. Có vơ số.
C. Có một.
D. Khơng có.
Câu 115. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 3.
B. .
C. 2e.
D. 2e + 1.
e
Câu 116. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥
Câu 117. Cho hình chóp S .ABC có BAC
(ABC). Thể
√
√ tích khối chóp S .ABC là
√
3
√
a 3
a3 3
a3 2
2
A.
.
B. 2a 2.
C.
.
D.
.
24
12
24
Trang 9/10 Mã đề 1
Câu 118. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 20 .(3)30
C 20 .(3)20
C 10 .(3)40
C 40 .(3)10
B. 50 50 .
C. 50 50 .
D. 50 50 .
A. 50 50 .
4
4
4
4
!
1
1
1
Câu 119. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
A. +∞.
B. .
C. 2.
D. .
2
2
3
2
Câu 120. Tập xác định của hàm số f (x) = −x + 3x − 2 là
A. [1; 2].
B. (−∞; +∞).
C. [−1; 2).
D. (1; 2).
2
Câu 121. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 5.
B. 2.
C. 4.
D. 3.
Câu 122. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối lập phương.
B. Khối tứ diện đều.
D. Khối bát diện đều.
C. Khối 12 mặt đều.
Câu 123. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ Thể tích khối chóp S 3.ABC
√ là
√
√
a3 2
a 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
6
12
4
Câu 124. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
ab
1
1
A. 2
.
B. √
.
C. √
.
D. √
.
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử
Câu 125. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
của S bằng
A. 4.
B. 3.
C. 2.
D. 5.
x−2
Câu 126. Tính lim
x→+∞ x + 3
2
A. − .
B. −3.
C. 1.
D. 2.
3
Câu 127. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −4.
B. 2.
C. −2.
D. 4.
Câu 128. Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
A. Thập nhị diện đều. B. Nhị thập diện đều. C. Bát diện đều.
D. Tứ diện đều.
Câu 129. Cho hình chóp S .ABCD có√đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
√a 5. Thể tích khối chóp3 S .ABCD là
√ S H ⊥ (ABCD), S A =
3
3
2a 3
4a 3
4a
2a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
a
1
Câu 130. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 2.
B. 1.
C. 7.
D. 4.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
D
2.
3.
C
4.
5.
C
6.
7.
C
8. A
9.
B
10.
11. A
C
15. A
D
17.
19. A
D
18.
D
20.
23.
C
24.
25.
D
28.
B
D
B
34. A
36.
B
37.
D
B
40.
D
42. A
43.
D
44.
C
B
49.
D
38. A
41.
51.
B
32. A
C
45.
C
30. A
C
33.
B
26.
27. A
29.
C
16.
22.
47.
B
D
C
39.
B
14.
21.
35.
D
12.
13.
31.
B
D
B
D
46.
B
48.
B
50. A
B
52. A
53.
D
54. A
55. A
56. A
57.
D
58.
D
59.
B
60.
B
61.
B
62.
B
64.
B
63.
C
65.
67.
D
66.
68.
C
1
C
B
69. A
70.
C
71. A
72.
C
73.
74. A
C
75.
D
76.
C
77.
D
78.
C
79.
B
80. A
81.
B
82. A
D
83.
84. A
85. A
87.
86. A
D
89.
91.
90. A
D
93.
94.
C
97. A
C
99.
101. A
C
98.
C
100.
B
102.
B
C
104. A
105.
C
106. A
108.
B
109.
D
113.
114. A
116.
126.
C
B
D
B
D
119.
C
121.
C
123.
C
125. A
C
128. A
130.
B
117.
B
122.
124.
D
115. A
118.
120.
B
110.
C
111.
B
96.
103.
107.
D
92.
B
95.
D
88.
B
C
2
127.
C
129.
C