Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001001
Câu 1. Hàm
√ số nào sau√đây đồng biến trên R?
A. y = x2 + x + 1 − x2 − x + 1.
B. y = tan x.
C. y = x4 + 3x2 + 2.
D. y = x2 .
x
Câu 2. Giá trị nhỏ nhất của hàm số y = 2
trên tập xác định của nó là
x +1
1
1
A. min y = − .
B. min y = −1.
C. min y = 0.
D. min y = .
R
R
R
R
2
2
Câu 3. Cho a > 1; 0 < x < y. Bất đẳng thức nào sau đây là đúng?
A. ln x > ln y.
B. log x > log y.
C. log 1 x > log 1 y.
a
D. loga x > loga y.
a
3
, ((ℵ) có đỉnh thuộc (S ) và đáy
2
là đường trịn nằm hồn tồn trên (S )), hãy tìm diện tích xung quanh của (ℵ) khi thể tích của (ℵ)lớn
nhất.
√
√
√
4 3π
2π
C.
B. 2 3π.
.
D. 4 3π.
A. √ .
3
3
Câu 4. Trong các hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R =
Câu R5. Công thức nào sai?
A. R sin x = − cos x + C.
C. cos x = sin x + C.
R
B. R e x = e x + C.
D. a x = a x . ln a + C.
1
là đúng?
x
B. Hàm số đồng biến trên R.
D. Hàm số nghịch biến trên R.
Câu 6. Kết luận nào sau đây về tính đơn điệu của hàm số y =
A. Hàm số nghịch biến trên (0; +∞).
C. Hàm số đồng biến trên (−∞; 0) ∪ (0; +∞).
Câu 7. Cho hàm số y = ax+b
có đồ thị là đường cong trong hình bên. Tọa độ giao điểm của đồ thị hàm
cx+d
số đã cho và trục hoành là
A. (0; 2).
B. (−2; 0).
C. (2; 0).
D. (0; −2).
Câu 8. Trên khoảng (0; +∞), đạo hàm của hàm số y = log3 x là:
A. y′ = x ln1 3 .
B. y′ = − x ln1 3 .
C. y′ = 1x .
D. y′ =
ln 3
.
x
Câu 9. Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn |z + 2i| = 1 là một
đường trịn. Tâm của đường trịn đó có tọa độ là
A. (2; 0).
B. (0; −2).
C. (0; 2).
D. (−2; 0).
Câu 10. Trong không gian Oxyz, cho hai điểm M(1; −1; −1) và N(5; 5; 1). Đường thẳng MN có phương
trình là:
Câu 11. Xét các số phức z thỏa mãn
z2 − 3 − 4i
= 2|z|. Gọi M và m lần lượt là giá trị lớn nhất và giá trị
nhỏ nhất của |z|. Giá trị của M 2 + m2√bằng
A. 28.
B. 18 + 4 6.
C. 14.
√
D. 11 + 4 6.
Câu 12. Cho tập hợp A có 15 phần tử. Số tập con gồm hai phần tử của A bằng
A. 210.
B. 225.
C. 30.
D. 105.
Câu 13. Cho cấp số nhân (un ) với u1 = 3 và công bội q = −2. Số hạng thứ 7 của cấp số nhân đó là
A. −192.
B. 384.
C. −384.
D. 192.
Trang 1/5 Mã đề 001001
Câu 14. Trong không gian Oxyz, cho mặt phẳng (P) : x − 3y + 5z − 2 = 0. Điểm nào dưới đây thuộc
mặt phẳng (P)?
A. M(0 ; 0 ; 2).
B. N(1 ; 1 ; 7).
C. P(4 ; −1 ; 3).
D. Q(4 ; 4 ; 2).
Câu 15. Cho hàm số y = f (x) xác định trên tập R và có f ′ (x) = x2 − 5x + 4. Khẳng định nào sau đây
đúng?
A. Hàm số đã cho nghịch biến trên khoảng (1; 4).
B. Hàm số đã cho đồng biến trên khoảng (1; 4).
C. Hàm số đã cho đồng biến trên khoảng (−∞; 3).
D. Hàm số đã cho nghịch biến trên khoảng (3; +∞).
Câu 16. Họ tất cả các nguyên hàm của hàm số f (x) = 5x4 + cos x là
A. 5x5 − sin x + C.
B. x5 + sin x + C.
C. 5x5 + sin x + C.
D. x5 − sin x + C.
Câu 17. Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn
phương án dưới đây. Hỏi hàm số đó là hàm số nào?
A. .
B. . .
C. .
D. .
x−2
y
x−1
Câu 18. Trong không gian với hệ toạ độ Oxyz Cho đường thẳng d :
=
=
và điểm
1
−1
2
A(2 ; 0 ; 3). Toạ độ điểm A′ đối xứng với A qua đường thẳng d tương ứng là
10
4 5
2
4 5
8
2 7
A. ( ; − ; ).
B. ( ; − ; ).
C. ( ; − ; ).
D. (2 ; −3 ; 1).
2
3 3
3
3 3
3
3 3
Câu 19. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z2 |.
√
√
√
√
3
2
B. P =
A. P = 3.
.
C. P =
.
D. P = 2.
2
2
Câu 20. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x + y − 5 = 0.
B. x + y − 8 = 0.
C. x − y + 4 = 0.
D. x − y + 8 = 0.
z−z
=2?
Câu 21. Tìm tập hợp các điểm M biểu diễn số phức z sao cho
z − 2i
A. Một đường thẳng.
B. Một Elip.
C. Một Parabol.
D. Một đường tròn.
Câu 22. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng
(H) là
A. π.
B. 2π.
C. 4π.
D. 3π.
Câu 23. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. (x + 1)2 + (y − 2)2 = 125.
B. (x − 5)2 + (y − 4)2 = 125.
C. (x − 1)2 + (y − 4)2 = 125.
D. x = 2.
Câu 24. Cho các số phức z thoả mãn (1 + z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Parabol.
B. Đường tròn.
C. Một đường thẳng.
D. Hai đường thẳng.
−2 − 3i
z + 1
= 1.
Câu 25. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện