Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001
Câu 1. Đồ thị hàm số nào sau đây nhận trục tung là trục đối xứng?
A. y = −x4 + 3x2 − 2.
B. y = x3 .
2
C. y = x − 2x + 2.
D. y = x3 − 2x2 + 3x + 2.
Câu 2. Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + 5 = 0. Tọa độ của một véc
tơ pháp tuyến của (P) là
A. (2; −1; 2).
B. (−2; 1; 2).
C. (2; −1; −2).
D. (−2; −1; 2).
Câu R3. Kết quả nào đúng?
A. sin2 x cos x = cos2 x. sin x + C.
R
sin3 x
+ C.
C. sin2 x cos x = −
3
sin2 x cos x = −cos2 x. sin x + C.
R
sin3 x
D. sin2 x cos x =
+ C.
3
B.
R
Câu 4. Tìm tất cả các giá trị của tham số m để hàm số y = (1 − m)x4 + 3x2 chỉ có cực tiểu mà khơng có
cực đại
A. m < 1.
B. m ≤ 1.
C. m ≥ 1.
D. m > 1.
Câu 5. √Cho hai√ số thực a, bthỏa√ mãn √a > b > 0. Kết luận nào sau đây là sai?
√5
√
A. a− 3 < b− 3 .
B. a 2 > b 2 .
C. ea > eb .
D. 5 a < b.
Câu 6. Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1). Tìm tọa độ điểm M ′ đối xứng với M qua
mặt phẳng Oxz?
A. M ′ (−2; −3; −1).
B. M ′ (2; 3; 1).
C. M ′ (2; −3; −1).
D. M ′ (−2; 3; 1).
Câu 7. Tập nghiệm của bất phương trình log(x − 2) > 0 là
A. (2; 3).
B. (−∞; 3).
C. (3; +∞).
D. (12; +∞).
Câu 8. Trong không gian Oxyz, mặt phẳng (P) : x + y + z + 1 = 0 có một vectơ pháp tuyến là:
−
−
−
−
A. →
n3 = (1; 1; 1).
B. →
n4 = (1; 1; −1).
C. →
n1 = (−1; 1; 1).
D. →
n2 = (1; −1; 1).
Câu 9. Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng
A. 90◦ .
B. 30◦ .
C. 45◦ .
D. 60◦ .
Câu 10. Cho khối nón có đình S , chiều cao bằng 8 và thể tích bằng 800π
. Gọi A và B là hai điểm thuộc
3
đường tròn đáy sao cho AB = 12,
đường tròn đáy đến mặt √
phẳng (S AB) bằng
√ khoảng cách từ tâm của
A. 245 .
B. 4 2.
C. 245 .
D. 8 2.
Câu 11. Cho hàm số f (x) liên tục trên R. Gọi
R 2 F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn
F(4) + G(4) = 4 và F(0) + G(0) = 1. Khi đó 0 f (2x)dx bằng
A. 23 .
B. 3.
C. 43 .
D. 6.
Câu 12. Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R). Gọi d là khoảng cách từ O đến (P). Khẳng
định nào dưới đây đúng?
A. d = R.
B. d > R.
C. d = 0.
D. d < R.
Câu 13. Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) và mặt phẳng (P) : 2x+2y−z+9 = 0.
Đường thẳng d đi qua A và có vectơ chỉ phương ⃗u = (3; 4; −4) cắt (P) tại B. Điểm M thay đổi trong (P)
sao cho M ln nhìn đoạn AB dưới góc 90o . Khi độ dài MB lớn nhất, đường thẳng MB đi qua điểm nào
trong các điểm sau?
A. K(3; 0; 15).
B. H(−2; −1; 3).
C. J(−3; 2; 7).
D. I(−1; −2; 3).
Trang 1/5 Mã đề 001
Câu 14. Cho khối lăng trụ đứng ABC.A′ B′C ′ √
có đáy ABC là tam giác vng cân tại A,AB = a. Biết
3
khoảng cách từ A đến mặt phẳng (A′ BC) bằng
a. Tính thể tích của khối lăng trụ ABC.A′ B′C ′
3
√
√
a3 2
a3
a3 2
a3
A.
.
B. .
C.
.
D. .
6
6
2
2
Câu 15. Tính thể tích V của khối trịn xoay khi quay hình phẳng giới hạn bởi đồ thị (C) : y = 4 − x2 và
trục hoành quanh trục Ox.
7π
512π
22π
4
A. V =
.
B. V =
.
C. V =
.
D. V = .
2
15
3
5
ax + b
Câu 16. Cho hàm số y =
có đồ thị là đường cong trong hình vẽ bên. Tọa độ giao điểm của đồ thị
cx + d
hàm số đã cho và trục hoành là
A. (2 ; 0).
B. (0 ; 3). .
C. (0 ; −2).
D. (3; 0 ).
z
= 1. Biết rằng tập hợp các điểm biểu diễn số phức zlà một đường
Câu 17. Cho số phức zthỏa mãn
i + 2
trịn (C). Tính bán kính rcủa đường
√
√ trịn (C).
A. r = 1.
B. r = 3.
C. r = 5.
D. r = 2.
Câu 18. Trên mặt phẳng tọa độ, cho M(2; 3) là điểm biểu diễn số phức z. Phần thực của z bằng
A. 3.
B. −2.
C. −3.
D. 2.
Câu 19. Cho số phức z thỏa mãn |z| = 4. Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường trịn. Tính bán kính r của đường trịn đó.
A. r = 5.
B. r = 20.
C. r = 22.
D. r = 4.
z
Câu 20. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu là
w
số thuần ảo thì mệnh đề nào sau đây đúng?
A. Tam giác OAB là tam giác nhọn.
B. Tam giác OAB là tam giác vuông.
C. Tam giác OAB là tam giác cân.
D. Tam giác OAB là tam giác đều.
Câu 21. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. (x − 1)2 + (y − 4)2 = 125.
B. (x + 1)2 + (y − 2)2 = 125.
C. x = 2.
D. (x − 5)2 + (y − 4)2 = 125.
Câu 22. Cho các số phức z thoả mãn (1 + z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Parabol.
B. Đường tròn.
C. Hai đường thẳng.
D. Một đường thẳng.
Câu 23. Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của √
z1 , z2 và số phức w =
√ x + iy trên mặt phẳng phức.
√ Để tam giác MNP
√ đều là số phức k là
A. w = 1 + √27i hoặcw = 1 − √ 27i.
B. w = √
27 − i hoặcw = 27√+ i.
C. w = 1 + 27 hoặcw = 1 − 27.
D. w = − 27 − i hoặcw = − 27 + i.
z+i+1
Câu 24. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
là số thuần ảo?
z + z + 2i
A. Một Elip.
B. Một đường thẳng.
C. Một đường tròn.
D. Một Parabol.
Câu 25. (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M ′ . Số phức ω = (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N ′ . Biết rằng M, M ′ , N, N ′ là bốn đỉnh của hình chữ nhật. Tìm
1
9 9
9
giá trị nhỏ nhất của ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5|.
2
2 2
2
1
4
1
2
A. .
B. √ .
C. √ .
D. √ .
2
13
2
5
Câu 26. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt
là
A. 5 và 3.
B. 10 và 4.
C. 5 và 4.
D. 4 và 3.
Trang 2/5 Mã đề 001
Câu 27. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z√2 |.
√
√
√
3
2
.
B. P =
.
C. P = 2.
D. P = 3.
A. P =
2
2
z
Câu 28. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu là
w
số thuần ảo thì mệnh đề nào sau đây đúng?
A. Tam giác OAB là tam giác cân.
B. Tam giác OAB là tam giác đều.
C. Tam giác OAB là tam giác nhọn.
D. Tam giác OAB là tam giác vuông.
z − z
=2?
Câu 29. Tìm tập hợp các điểm M biểu diễn số phức z sao cho
z − 2i
A. Một Elip.
B. Một đường thẳng.
C. Một Parabol.
D. Một đường tròn.
Câu 30. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng
5π
5π
A. 5π.
B. 25π.
C. .
D. .
2
4
Câu 31. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. 3π.
B. π.
C. 4π.
D. 2π.
Câu 32. Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0.
Tính giá trị của biểu thức a + b.
A. 2.
B. 0.
C. 1.
D. −1.
Câu 33. Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 0; 1),B(2; 1; 0),C(3; 2; 1). Hãy tìm tọa độ
−−→ −−→
−−→
điểm M sao cho: 2AM = BM + 5AC.
A. (10; 9; 2).
B. (9; 10; 2).
C. (10; 9; 9).
D. (9; 2; 10).
→
−
Câu 34. Trong không gian với hệ trục tọa độ Oxyz, cho ⃗a = (1; 2; 0), b = (2; −1; 1),⃗c = (1; −1; 0). Phát
biểu nào sau đây sai?