Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn thi thpt 10 (52)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (149.12 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Tính√mơ đun của số phức z biết (1 + 2i)z2 = 3 + 4i. √
4
A. |z| = 2 5.
B. |z| = 5.
C. |z| = 5.

D. |z| =

Câu 2. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + 2 sin 2x.
B. 1 + 2 sin 2x.
C. −1 + sin x cos x.

D. 1 − sin 2x.

Câu 3. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m , 0.
B. m > 0.
C. m = 0.

D. m < 0.



5.

Câu 4. [12221d] Tính tổng tất cả các nghiệm của phương trình x + 1 = 2 log2 (2 x + 3) − log2 (2020 − 21−x )
A. 2020.
B. log2 13.
C. 13.
D. log2 2020.
Câu 5. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ√C đến đường thẳng BB0 bằng 2, khoảng
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3
A. 1.
B.
.
C. 2.
D. 3.
3
!
!
!
4x
1
2

2016
Câu 6. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
.
C. T = 1008.
D. T = 2016.
A. T = 2017.
B. T =
2017

Câu 7. Xác định phần ảo của số√phức z = ( 2 + 3i)2

A. 7.
B. 6 2.
C. −7.
D. −6 2.
Câu 8. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 2; m = 1.
B. M = e−2 + 1; m = 1.
C. M = e−2 − 2; m = 1.
D. M = e2 − 2; m = e−2 + 2.
un
Câu 9. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng

vn
A. −∞.
B. +∞.
C. 0.
D. 1.
Câu 10. Cho số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.

A. |z| = 17.
B. |z| = 10.
C. |z| = 17.
D. |z| = 10.
Câu 11. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 8 mặt.
D. 7 mặt.
2n + 1
Câu 12. Tính giới hạn lim
3n + 2
1
3
2
A. .
B. .
C. 0.
D. .
2
2
3
Câu 13. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?

α

B. aα+β = aα .aβ .
C. aα bα = (ab)α .
D. β = a β .
A. aαβ = (aα )β .
a
t
9
Câu 14. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 1.
B. 0.
C. 2.
D. Vô số.
Trang 1/10 Mã đề 1


Câu 15. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 5.
B. 0, 4.
C. 0, 3.
D. 0, 2.
!
1
1
1

Câu 16. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
D. 0.
A. 2.
B. 1.
C. .
2
d = 120◦ .
Câu 17. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
D. 3a.
A. 2a.
B. 4a.
C.
2
!
x+1
Câu 18. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
4035
2017
2016
A.

.
B. 2017.
C.
.
D.
.
2018
2018
2017
Câu 19. Khối đa diện đều loại {3; 5} có số mặt
A. 30.
B. 8.
C. 20.
D. 12.
Câu 20. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 9.
B. 5.

C. 0.

Câu 21. [1] !Tập xác định của hàm số y != log3 (2x + 1) là
!
1
1
1
; +∞ .
B. −∞; − .
C. − ; +∞ .
A.

2
2
2

D. 7.
!
1
D. −∞; .
2

3
2
Câu 22. Giá
√ trị cực đại của hàm số y =
√ x − 3x − 3x + 2


A. 3 − 4 2.
B. −3 − 4 2.
C. 3 + 4 2.
D. −3 + 4 2.
Z 1
Câu 23. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

1
B. 1.
A. .
4

Câu 24. Khối lập phương thuộc loại
A. {4; 3}.
B. {5; 3}.

D.

C. {3; 3}.

D. {3; 4}.

Câu 25. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −8.
B. x = 0.
C. x = −2.
Câu 26. Phát biểu nào sau đây là sai?
1
A. lim k = 0 với k > 1.
n
C. lim qn = 1 với |q| > 1.

1
.
2

C. 0.

D. x = −5.

B. lim un = c (Với un = c là hằng số).
1

D. lim √ = 0.
n

Câu 27. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x−2 y−2 z−3
x−2 y+2 z−3
A.
=
=
.
B.
=
=
.
2
3

4
2
2
2
x y−2 z−3
x y z−1
C. = =
.
D. =
=
.
1 1
1
2
3
−1
 π
Câu 28. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


2 π4
3 π6
1 π
A. 1.
B.
e .
C.
e .
D. e 3 .

2
2
2
Trang 2/10 Mã đề 1


Z
Câu 29. Cho
A. 1.

1

2

ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
B. 0.
C. −3.

D. 3.

Câu 30. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. Vô nghiệm.
C. 3.
D. 2.
Câu 31. Khối đa diện đều loại {4; 3} có số mặt
A. 12.
B. 10.


C. 8.

D. 6.

Câu 32. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.424.000.
C. 102.016.000.
D. 102.423.000.
2

Câu 33. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 4.
B. 3.
C. 2.
Câu 34. [2] Tổng các nghiệm của phương trình 2
A. 6.
B. −6.

D. 5.

x2 +2x

= 82−x là
C. −5.


D. 5.

Câu 35. Tính thể tích khối lập phương
biết tổng diện tích tất cả các mặt bằng 18.

C. 27.
D. 8.
A. 9.
B. 3 3.
Câu 36. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 1200 cm2 .
B. 160 cm2 .
C. 120 cm2 .
D. 160 cm2 .
Câu 37. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + .
B. T = e + 3.
C. T = e + 1.
D. T = 4 + .
e
e
Câu 38. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.
Câu 39. Hàm số y = x +
A. 2.


1
có giá trị cực đại là
x
B. −1.

C. Khối bát diện đều.

D. Khối lập phương.

C. −2.

D. 1.

Câu 40. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
√ phẳng vuông góc với (ABCD). Thể tích khối chóp
√ S .ABCD là
3

a3 2
3
a3 3
a
A.
.
B.
.
C. a3 3.
D.

.
2
4
2
2x + 1
Câu 41. Tính giới hạn lim
x→+∞ x + 1
1
A. .
B. 1.
C. 2.
D. −1.
2
Câu 42. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Giảm đi n lần.
B. Tăng lên n lần.
C. Không thay đổi.
D. Tăng lên (n − 1) lần.
!
1
1
1
Câu 43. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
A. +∞.

B. 2.
C. .
D. .
2
2
Trang 3/10 Mã đề 1


Câu 44. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
C. .
D.
.
A. a.
B. .
3
2
2
cos n + sin n
Câu 45. Tính lim
n2 + 1
A. +∞.
B. 0.
C. −∞.
D. 1.
2

x − 3x + 3
Câu 46. Hàm số y =
đạt cực đại tại
x−2
A. x = 0.
B. x = 1.
C. x = 2.
D. x = 3.
Câu 47. Khối đa diện đều loại {3; 3} có số đỉnh
A. 4.
B. 3.

C. 5.

D. 2.

Câu 48. Giá trị của lim (3x − 2x + 1)
x→1
A. 3.
B. 1.

C. +∞.

D. 2.

2

Câu 49. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!

un
= 0.
B. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
!vn
un
C. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
!
un
= −∞.
D. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
vn
Câu 50. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là√

a3
a3
2a3 3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
6

3
3
Câu 51. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 1 nghiệm.
B. Vô nghiệm.
C. 3 nghiệm.
D. 2 nghiệm.
Câu 52. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



3
a3 3
5a3 3
4a3 3
2a 3
A.
.
B.
.
C.
.
D.
.
3
2
3

3
Câu 53. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC) một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √

a3
a3 3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
4
4
12
8
log7 16
Câu 54. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. 4.
B. 2.
C. −4.
D. −2.
q

2
Câu 55. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [0; 2].
C. m ∈ [0; 4].
D. m ∈ [−1; 0].
Câu 56. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
A.
.
B.
.
C. a 6.
D.
.
2
6
3
Trang 4/10 Mã đề 1



Câu 57. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −5.
B. −15.
C. −9.
D. −12.
Câu 58. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 0.
B. 1.
C. 3.

D. 2.

Câu 59. Trong các khẳng định sau, khẳng định nào sai?
A. Z
F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
u0 (x)
dx = log |u(x)| + C.
B.
u(x)
C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.

Câu 60. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. .
B. −3.
C. 3.

D. − .
3
3
Câu 61. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là −4.
B. Phần thực là −3, phần ảo là 4.
C. Phần thực là 3, phần ảo là 4.
D. Phần thực là −3, phần ảo là −4.
Câu 62. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. (−∞; 6, 5).
C. (4; 6, 5].

D. [6, 5; +∞).

Câu 63. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 6 lần.
B. Tăng gấp 8 lần.
C. Tăng gấp 4 lần.
D. Tăng gấp đôi.
x2
Câu 64. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 0.
B. M = , m = 0.
C. M = e, m = 1.
D. M = e, m = .

e
e
! x3 −3mx2 +m
1
nghịch biến trên
Câu 65. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
π
khoảng (−∞; +∞)
A. m ∈ (0; +∞).
B. m ∈ R.
C. m = 0.
D. m , 0.
Câu 66. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
9
23
5
13
A.
.
B. −
.
C. − .
D.
.
25
100
16
100
Câu 67. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là

sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (I) sai.

B. Không có câu nào C. Câu (III) sai.
D. Câu (II) sai.
sai.
Câu 68. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 0.
B. e2016 .
C. 22016 .
D. 1.
Trang 5/10 Mã đề 1


Câu 69. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n3 lần.
B. n lần.
C. 3n3 lần.
D. n2 lần.
x+3
nghịch biến trên khoảng
Câu 70. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x−m
(0; +∞)?
A. 3.
B. 1.

C. Vô số.
D. 2.
Z 1
6
2
3
Câu 71. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
A. 4.

B. 2.

C. 6.

D. −1.

Câu 72. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) = ln 10.
B. f 0 (0) =
.
C. f 0 (0) = 1.
ln 10
Câu 73. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 2ac
3b + 3ac

A.
.
B.
.
C.
.
c+3
c+2
c+1
x2 − 9
Câu 74. Tính lim
x→3 x − 3
A. 6.
B. 3.
C. −3.

D. f 0 (0) = 10.

D.

3b + 3ac
.
c+2

D. +∞.

Câu 75. [4-1246d] Trong tất cả√các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất của |z|
C. 3.
D. 1.
A. 2.

B. 5.
Câu 76. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. V = 4π.
B. 8π.
C. 32π.
D. 16π.
1 − 2n
bằng?
Câu 77. [1] Tính lim
3n + 1
2
1
2
A. 1.
B. − .
C. .
D. .
3
3
3
0
Câu 78. Cho hai đường thẳng d và d cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Khơng có.
B. Có hai.
C. Có một.
D. Có vơ số.
Câu 79. Mệnh đề nào sau đây sai?
Z

A. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

B. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
!0
Z
D.
f (x)dx = f (x).
x2 − 12x + 35
Câu 80. Tính lim
x→5
25 − 5x
2
2
A. .
B. − .
5
5
Câu 81. Dãy số nào sau đây có giới hạn khác 0?
sin n
1
.
B. √ .
A.
n
n

C. −∞.


C.

Câu 82. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 135.
B. S = 24.

n+1
.
n

D. +∞.

D.

1
.
n

ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e

C. S = 22.

D. S = 32.
Trang 6/10 Mã đề 1



Câu 83. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tam giác và một hình chóp tứ giác.
B. Hai hình chóp tứ giác.
C. Hai hình chóp tam giác.
D. Một hình chóp tứ giác và một hình chóp ngũ giác.
Câu 84. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
.
B. .
C. 5.
D. 7.
A.
2
2
!
3n + 2
2
Câu 85. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 4.
B. 3.
C. 5.
D. 2.
Câu 86. Cho khối chóp S .ABC

√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
3. √
Thể tích khối chóp S .ABC √là
vng góc
với
đáy

S
C
=
a


3
3
a 3
a 3
2a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
4
2
9

12

x2 + 3x + 5
Câu 87. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. 1.
B. .
C. 0.
D. − .
4
4
Câu 88. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8 √
A. m = ± 3.
B. m = ±1.
C. m = ±3.
D. m = ± 2.
mx − 4
Câu 89. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 67.
B. 34.
C. 45.
D. 26.
Câu 90. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. Vô nghiệm.

C. 2.
D. 3.
Câu 91. Khối đa diện đều loại {4; 3} có số đỉnh
A. 4.
B. 8.
Câu 92. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối tứ diện đều.

C. 6.

D. 10.

C. Khối bát diện đều.

D. Khối 12 mặt đều.

x3 −3x+3

Câu 93. [2-c] Giá trị lớn nhất của hàm số f (x) = e
trên đoạn [0; 2] là
5
2
3
A. e .
B. e .
C. e .

D. e.


Câu 94. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
2
1
1
9
.
B. .
C.
.
D. .
A.
10
5
10
5
!x
1
Câu 95. [2] Tổng các nghiệm của phương trình 31−x = 2 +

9
A. 1 − log2 3.
B. − log2 3.
C. − log3 2.
D. log2 3.
Câu 96. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (2; 2).
B. (0; −2).
C. (1; −3).


D. (−1; −7).

Câu 97. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
Trang 7/10 Mã đề 1



20 3
A.
.
3


B. 6 3.


C. 8 3.


14 3
D.
.
3

Câu 98. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
1

ab
ab
.
B. √
.
C. √
.
D. 2
A. √
.
a + b2
a2 + b2
2 a2 + b2
a2 + b2
q
2
Câu 99. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 2].
C. m ∈ [−1; 0].
D. m ∈ [0; 1].
Câu 100. [1] Đạo hàm của hàm số y = 2 x là
A. y0 = 2 x . ln 2.

B. y0 = 2 x . ln x.

C. y0 =


1
.
2 x . ln x

D. y0 =

1
.
ln 2

Câu 101. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng số mặt của khối chóp.
B. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
C. Số đỉnh của khối chóp bằng số mặt của khối chóp.
D. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
tan x + m
nghịch biến trên khoảng
Câu 102. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
m tan x + 1
 π
0; .
4
A. [0; +∞).
B. (−∞; −1) ∪ (1; +∞). C. (1; +∞).
D. (−∞; 0] ∪ (1; +∞).
Câu 103. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (0; 1).
B. (−∞; 0) và (1; +∞). C. (−1; 0).
D. (−∞; −1) và (0; +∞).

Câu 104. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. −7, 2.
B. 72.
C. 0, 8.
Câu 105. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 3 mặt.
C. 4 mặt.

Câu 106. [1] Biết log6 a = 2 thì log6 a bằng
A. 108.
B. 4.
C. 36.

D. 7, 2.
D. 6 mặt.
D. 6.

Câu 107. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
1 − 2n
n2 + n + 1
n2 − 2
A. un =
.
B.
u
=
.
C.

u
=
.
D.
u
=
.
n
n
n
n2
5n + n2
(n + 1)2
5n − 3n2
Z 3
x
a
a
Câu 108. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 4.
B. P = 28.
C. P = −2.
D. P = 16.
Câu 109. Giá trị của lim(2x2 − 3x + 1) là

x→1

A. 2.

B. 0.

C. 1.

D. +∞.

Câu 110. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 27.
B. 12.
C.
.
D. 18.
2
Trang 8/10 Mã đề 1


Câu 111. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc
Biết rằng√ khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối
√chóp S .ABCD là
3
3
3
a 3

a 2
a 2
A.
.
B.
.
C.
.
6
12
4
Câu 112. Khối đa diện đều loại {3; 5} có số đỉnh
A. 12.
B. 30.
C. 20.

[ = 60◦ , S A ⊥ (ABCD).
BAD

D. a3 3.
D. 8.

Câu 113. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 6 mặt. B. 5 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 5 mặt. D. 6 đỉnh, 6 cạnh, 6 mặt.
x+1
Câu 114. Tính lim
bằng
x→−∞ 6x − 2
1
1

1
A. 1.
B. .
C. .
D. .
3
2
6
Câu 115. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 4.
B. V = 5.
C. V = 6.
D. V = 3.
Câu 116. Khối đa diện đều loại {3; 3} có số cạnh
A. 4.
B. 5.

C. 6.

D. 8.

Câu 117. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim+ f (x) = f (b).
B. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a
x→a
x→b
x→b

C. lim− f (x) = f (a) và lim− f (x) = f (b).
D. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a

x→b

x→a

x→b

Câu 118. [3-1225d] Tìm tham số thực m để phương trình log2 (5 − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m < 3.
C. m > 3.
D. m ≤ 3.
x

Câu 119. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 14 năm.
B. 11 năm.
C. 12 năm.
D. 10 năm.
Câu 120. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lập phương.
B. Khối lăng trụ tam giác.
C. Khối tứ diện.

D. Khối bát diện đều.
Câu 121.
[1233d-2] Mệnh đề nào sau đây sai?
Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
B.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
C.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
D.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.

A.

Câu 122. Cho hình
√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là


3
3

a 5
a 6
a3 15
3
A.
.
B.
.
C. a 6.
D.
.
3
3
3
Câu 123. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 5}.
B. {5; 3}.
C. {4; 3}.
D. {3; 4}.
Trang 9/10 Mã đề 1


Câu 124. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 1.
B. m > 0.
C. m > −1.

x+1
Câu 125. Tính lim
bằng
x→+∞ 4x + 3
1
1
C. .
A. 1.
B. .
4
3
Câu 126. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Hai mặt.
B. Ba mặt.
C. Một mặt.


Câu 127. [12215d] Tìm m để phương trình 4 x+
3
A. m ≥ 0.
B. 0 ≤ m ≤ .
4
Câu 128. Dãy số nào có giới hạn bằng!0?
n
6
n3 − 3n
A. un =
.
B. un =
.

n+1
5

1−x2



D. m ≥ 0.

D. 3.
D. Bốn mặt.

− 3m + 4 = 0 có nghiệm
9
3
C. 0 ≤ m ≤ .
D. 0 < m ≤ .
4
4

− 4.2 x+

1−x2

!n
−2
C. un =
.
3


D. un = n2 − 4n.

Câu 129. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi
G la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
15
9
6
18
Câu 130. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1

1.

C

2. A

3. A

4.
C

5.
7.

B
C

9.
11. A

D

13.

6.

C

8.


C

10.

D

12.

D

C

16.

17.

C

18.

19.

C

20. A

21.

C


22.
D

B
C
D

24. A

25. A

26.

27.

C

28.

29.

C

30. A

31.

D

32.


33. A

C
B
B
C

34.

35.

B

36.

37.

B

38.

39.

C

40.

41.


C

42. A

43.

B

44. A

45.

B

46.

47. A
49.

C
D

54.

55.

D

56.


57.

D

58. A

59.

B

60. A

61.

B

62.

63.

B

64. A
66.
68. A
1

B
D


53.

B

D

50.
52.

C

C

D

D

65.

D

48.

51.

67.

C

14.


15.

23.

B

B
C
B

C
B


69. A

70. A

71. A

72. A

73.

D

74. A

75. A

78.

77.
B

80. A
D

82.
84.

B

B

79.

C

81.

C

83.

C

85. A

86.


D

87.

88.

D

89.

B

91.

B

C

90.

D

92. A

93. A

94. A

95.


B

97.

B

96.

B

98.

C

100. A
102.

C

104. A

99.

C

101.

C


103.

C

106.

107.

B

108. A

109.

B

110.

111.

C

112. A

113.

C

114.


B
D
D

116.

115. A
117.

B

118. A

119.

B

120.

121.

C

122.

123. A

124.

125.


B

126.

127.

B

128.

130.

B

2

C
C
B
C
D
C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×