TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.423.000.
B. 102.016.000.
C. 102.016.000.
D. 102.424.000.
Câu 2. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây thứ
5 đến giây thứ 15 là bao nhiêu?
A. 6510 m.
B. 2400 m.
C. 1202 m.
D. 1134 m.
1
bằng
Câu 3. [1] Giá trị của biểu thức log √3
10
1
1
A. − .
B. .
C. 3.
D. −3.
3
3
Câu 4. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích hình
hộp đã cho là 1728. Khi đó, các kích thước của hình hộp là√
√
A. 8, 16, 32.
B. 2, 4, 8.
C. 2 3, 4 3, 38.
D. 6, 12, 24.
Câu 5. Dãy số nào sau đây có giới hạn là 0?
n2 + n + 1
n2 − 2
A. un =
.
B.
u
=
.
n
(n + 1)2
5n − 3n2
C. un =
n2 − 3n
.
n2
D. un =
1 − 2n
.
5n + n2
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = e − 1.
C. xy0 = −ey + 1.
D. xy0 = ey + 1.
Câu 6. [3-12217d] Cho hàm số y = ln
A. xy0 = −ey − 1.
Câu 7. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
đề nào dưới đây đúng?
!
!
1
1
A. Hàm số nghịch biến trên khoảng ; 1 .
B. Hàm số đồng biến trên khoảng ; 1 .
3
3
C. Hàm số nghịch biến trên khoảng (1; +∞).
!
1
D. Hàm số nghịch biến trên khoảng −∞; .
3
Câu 8. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. Vô số.
B. 1.
C. 2.
D. 3.
Câu 9. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
B. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
Z 0
u (x)
C.
dx = log |u(x)| + C.
u(x)
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
Câu 10. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
A. 3.
B. .
C. .
D. 1.
2
2
Trang 1/10 Mã đề 1
x = 1 + 3t
Câu 11. [1232h] Trong không gian Oxyz, cho đường thẳng d :
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua
z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
trình là
x
=
1
+
3t
x
=
−1
+
2t
x
=
1
+
7t
x = −1 + 2t
A.
B.
.
D.
y = 1 + 4t .
y = −10 + 11t . C.
y=1+t
y = −10 + 11t .
z = 1 − 5t
z = 6 − 5t
z = 1 + 5t
z = −6 − 5t
√
√
Câu 12. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
3
9
A. 0 < m ≤ .
B. 0 ≤ m ≤ .
C. m ≥ 0.
D. 0 ≤ m ≤ .
4
4
4
2
Câu 13. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z là số ảo là
A. Trục ảo.
B. Hai đường phân giác y = x và y = −x của các góc tọa độ.
C. Trục thực.
D. Đường phân giác góc phần tư thứ nhất.
2
Câu 14. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 135.
B. S = 22.
2
m
ln2 x
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
C. S = 24.
D. S = 32.
π π
Câu 15. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 3.
B. −1.
C. 7.
D. 1.
1 − 2n
Câu 16. [1] Tính lim
bằng?
3n + 1
1
2
2
C. .
D. − .
A. 1.
B. .
3
3
3
Câu 17. Khối đa diện đều loại {3; 3} có số đỉnh
A. 4.
B. 5.
C. 2.
D. 3.
1
Câu 18. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 0 < m ≤ 1.
C. 2 < m ≤ 3.
D. 2 ≤ m ≤ 3.
Câu 19. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (−1; 1).
C. (1; +∞).
D. (−∞; −1).
2
Câu 20. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 2.
B. 4.
C. 5.
D. 3.
√
Câu 21. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 63.
C. 64.
D. Vô số.
q
2
Câu 22. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [−1; 0].
C. m ∈ [0; 1].
D. m ∈ [0; 4].
1
ln x p 2
Câu 23. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
1
1
8
A. .
B. .
C. .
D. .
9
3
9
3
Trang 2/10 Mã đề 1
9t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9t + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 1.
B. 2.
C. Vô số.
D. 0.
Câu 24. [4] Xét hàm số f (t) =
Câu 25. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 20 .(3)20
C 20 .(3)30
C 40 .(3)10
C 10 .(3)40
B. 50 50 .
C. 50 50 .
D. 50 50 .
A. 50 50 .
4
4
4
4
Câu 26. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 1 nghiệm.
B. Vô nghiệm.
C. 3 nghiệm.
D. 2 nghiệm.
Câu 27. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
B. Cả ba đáp án trên.
C. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
√
D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
Câu 28. Khối đa diện đều loại {3; 4} có số mặt
A. 10.
B. 8.
C. 12.
D. 6.
√
Câu 29. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√
√ cho là
√
√
3
πa 3
πa3 6
πa3 3
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
2
6
6
3
Câu 30. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
A. 2e.
B. 3.
C. 2e + 1.
D.
2
.
e
Câu 31. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể
√ tích khối chóp S .ABCD là
3
10a 3
A. 40a3 .
B.
.
C. 20a3 .
D. 10a3 .
3
Câu 32. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
.
A. a 3.
B. 2a 6.
C. a 6.
D.
2
1
Câu 33. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 0 < m ≤ 1.
C. 2 < m ≤ 3.
D. 0 ≤ m ≤ 1.
3
2
Câu 34. Giá
√ trị cực đại của hàm số y√= x − 3x − 3x + 2
√
A. 3 − 4 2.
B. 3 + 4 2.
C. −3 − 4 2.
!2x−1
!2−x
3
3
Câu 35. Tập các số x thỏa mãn
≤
là
5
5
A. (+∞; −∞).
B. [1; +∞).
C. (−∞; 1].
√
D. −3 + 4 2.
D. [3; +∞).
d = 30◦ , biết S BC là tam giác đều
Câu 36. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
9
16
13
26
Trang 3/10 Mã đề 1
2
2
Câu 37. [3-c] Giá trị nhỏ nhất và√giá trị lớn nhất của hàm√số f (x) = 2sin x + 2cos x lần lượt
√ là
A. 2 và 3.
B. 2 2 và 3.
C. 2 và 3.
D. 2 và 2 2.
!
1
1
1
Câu 38. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 1.
B. 0.
C. 2.
D. .
2
0 0
0 0 0
Câu 39. Mặt phẳng (AB C ) chia khối lăng trụ ABC.A B C thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp tứ giác.
B. Hai khối chóp tam giác.
C. Hai khối chóp tứ giác.
D. Một khối chóp tam giác, một khối chóp ngữ giác.
Câu 40. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 1; 6).
B. ~u = (2; 2; −1).
C. ~u = (3; 4; −4).
D. ~u = (1; 0; 2).
2
Câu 41. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 6.
B. 8.
C. 5.
D. 7.
Câu 42. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
ab
1
1
.
B. √
.
C. 2
.
.
D.
A. √
√
a + b2
2 a2 + b2
a2 + b2
a2 + b2
2
Câu 43. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 3 − log2 3.
B. 1 − log3 2.
C. 2 − log2 3.
D. 1 − log2 3.
Câu 44. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 3, 5 triệu đồng.
B. 50, 7 triệu đồng.
C. 20, 128 triệu đồng. D. 70, 128 triệu đồng.
Câu 45. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 1.
B. 0.
C. 3.
D. 2.
x=t
Câu 46. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
y = −1 và hai mặt phẳng (P), (Q)
z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
A. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x − 3) + (y + 1) + (z + 3) = .
D. (x + 3) + (y + 1) + (z + 3) = .
4
4
Câu 47.
bằng 1 là:
√ Thể tích của khối lăng√trụ tam giác đều có cạnh √
3
3
3
3
A.
.
B.
.
C.
.
D. .
2
12
4
4
Trang 4/10 Mã đề 1
Câu 48. Tính lim
A. +∞.
2n − 3
bằng
+ 3n + 1
B. 0.
2n2
Câu 49. Dãy số nào sau đây có giới hạn khác 0?
sin n
n+1
A.
.
B.
.
n
n
C. −∞.
C.
1
.
n
D. 1.
1
D. √ .
n
Câu 50. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là
√
√
a3
a3 3
a3 3
A.
.
B.
.
C.
.
D. a3 .
3
2
6
x2 − 12x + 35
Câu 51. Tính lim
x→5
25 − 5x
2
2
A. − .
B. +∞.
C. −∞.
D. .
5
5
Câu 52. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −2.
B.
.
C. −7.
D. −4.
27
√
Câu 53. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. Vô nghiệm.
B. 1 nghiệm.
C. 2 nghiệm.
D. 3 nghiệm.
Câu 54. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu của A lên BC là
!
!
8
5
7
A.
; 0; 0 .
B.
; 0; 0 .
C. (2; 0; 0).
D.
; 0; 0 .
3
3
3
Câu 55. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
9
6
18
15
Câu 56. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
Câu 57. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 7, 2.
B. 72.
C. −7, 2.
D. 0, 8.
Câu 58. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
120.(1, 12)3
(1, 01)3
A. m =
triệu.
B.
m
=
triệu.
(1, 12)3 − 1
(1, 01)3 − 1
100.(1, 01)3
100.1, 03
C. m =
triệu.
D. m =
triệu.
3
3
Câu 59. [1] Tập
! xác định của hàm số y! = log3 (2x + 1) là
!
!
1
1
1
1
A. −∞; − .
B.
; +∞ .
C. − ; +∞ .
D. −∞; .
2
2
2
2
Trang 5/10 Mã đề 1
Câu 60. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Ba mặt.
B. Hai mặt.
C. Một mặt.
D. Bốn mặt.
Câu 61. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một hoặc hai.
B. Có hai.
C. Khơng có.
D. Có một.
Câu 62. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Chỉ có (I) đúng.
C. Cả hai đều sai.
D. Cả hai đều đúng.
Câu 63. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 2020.
B. log2 13.
C. log2 2020.
D. 13.
Câu 64. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 3.
B. 1.
C. 0.
D. 2.
Câu 65. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
√
B. y = loga x trong đó a = 3 − 2.
A. y = log √2 x.
D. y = log 14 x.
C. y = log π4 x.
Câu 66. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 2.
2
x −9
Câu 67. Tính lim
x→3 x − 3
A. 6.
B. 3.
C. 4.
D. 3.
C. +∞.
D. −3.
Câu 68. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18. √
A. 8.
B. 9.
C. 27.
D. 3 3.
Câu 69.
đề nào sau đây sai?
Z [1233d-2] Mệnh
Z
A.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
B.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
C.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
Z
D.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Câu 70. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 9 mặt.
C. 7 mặt.
5
Câu 71. [1] Cho a > 0, a , 1 .Giá trị của biểu thức a
bằng
√
1
A. 5.
B. .
C. 25.
5
D. 8 mặt.
log √a
D. 5.
π
Câu 72. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2
√
√
2 π4
3 π6
1 π
A.
e .
B.
e .
C. 1.
D. e 3 .
2
2
2
2
Câu 73. Tổng diện tích các mặt của một khối lập phương bằng 54cm .Thể tích của khối lập phương đó
là:
A. 27cm3 .
B. 72cm3 .
C. 46cm3 .
D. 64cm3 .
Trang 6/10 Mã đề 1
!
!
!
4x
1
2
2016
Câu 74. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
.
C. T = 2017.
D. T = 1008.
A. T = 2016.
B. T =
2017
Câu 75. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 10 mặt.
C. 4 mặt.
D. 8 mặt.
Câu 76. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối lập phương.
B. Khối bát diện đều.
D. Khối 12 mặt đều.
C. Khối tứ diện đều.
Câu 77. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
B. aα bα = (ab)α .
C. aαβ = (aα )β .
D. aα+β = aα .aβ .
A. β = a β .
a
Câu 78. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 5 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 5 mặt. D. 6 đỉnh, 6 cạnh, 6 mặt.
Câu 79. Khối đa diện đều loại {3; 5} có số mặt
A. 30.
B. 8.
C. 12.
D. 20.
Câu 80. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 1.
B. 3.
C. 2.
√
Câu 81. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
B. 3.
C. − .
A. .
3
3
D. 0.
D. −3.
Câu 82. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2
A. 4.
B. 2.
C. 6.
3
Z
6
3x + 1
. Tính
1
f (x)dx.
0
D. −1.
Câu 83. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. (−∞; −3].
B. [1; +∞).
C. [−1; 3].
D. [−3; 1].
Câu 84. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. (1; 2).
C. [1; 2].
Câu 85. [1] Đạo hàm của làm số y = log x là
1
ln 10
.
B. y0 =
.
A.
10 ln x
x
5
Câu 86. Tính lim
n+3
A. 3.
B. 2.
D. (−∞; +∞).
1
C. y0 = .
x
D. y0 =
C. 0.
D. 1.
C. 1.
D.
1
.
x ln 10
2
Câu 87. Tính lim
A. 2.
2n − 1
3n6 + n4
B. 0.
2
.
3
Câu 88. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 210 triệu.
B. 212 triệu.
C. 216 triệu.
D. 220 triệu.
Trang 7/10 Mã đề 1
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
B thuộc (C), đoạn thẳng AB có độ dài bằng
√ đều ABI có hai đỉnh A, √
√
A. 6.
B. 2 3.
C. 2.
D. 2 2.
Câu 89. [3-1214d] Cho hàm số y =
Câu 90. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|
√
√
√
√
12 17
A. 5.
B.
.
C. 68.
D. 34.
17
Câu 91. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 10 cạnh.
C. 11 cạnh.
D. 9 cạnh.
Câu 92. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
= .
B. lim [ f (x) + g(x)] = a + b.
A. lim
x→+∞
x→+∞ g(x)
b
C. lim [ f (x)g(x)] = ab.
D. lim [ f (x) − g(x)] = a − b.
x→+∞
x→+∞
Câu 93. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≥ 3.
B. m ≤ 3.
C. −3 ≤ m ≤ 3.
D. −2 ≤ m ≤ 2.
Câu 94. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√
√ chóp S .ABCD là
√
a3 2
a3 3
a3 3
a3 6
A.
.
B.
.
C.
.
D.
.
16
48
24
48
Câu 95. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 6.
B. 3.
C. 8.
D. 4.
Câu 96. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 10 năm.
B. 9 năm.
C. 8 năm.
D. 7 năm.
Z 3
a
a
x
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
Câu 97. Cho I =
√
d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = −2.
B. P = 4.
C. P = 28.
D. P = 16.
3a
Câu 98. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng √
a 2
2a
a
a
A.
.
B.
.
C. .
D. .
3
3
4
3
a
1
Câu 99. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 7.
B. 4.
C. 2.
D. 1.
Câu 100. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 10.
B. ln 14.
C. ln 12.
D. ln 4.
Câu 101. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng số cạnh của khối chóp.
B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số cạnh của khối chóp bằng 2n.
D. Số mặt của khối chóp bằng 2n+1.
Trang 8/10 Mã đề 1
√
√
4n2 + 1 − n + 2
bằng
Câu 102. Tính lim
2n − 3
3
A. .
B. +∞.
C. 2.
D. 1.
2
[ = 60◦ , S O
Câu 103. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S
√ BC) bằng
√
2a 57
a 57
a 57
A.
.
B.
.
C.
.
D. a 57.
19
17
19
x
x−3 x−2 x−1
+
+
+
và y = |x + 2| − x − m (m là tham
Câu 104. [4-1213d] Cho hai hàm số y =
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (2; +∞).
B. [2; +∞).
C. (−∞; 2].
D. (−∞; 2).
Câu 105. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − 2 .
B. − .
C. − .
e
2e
e
Câu 106. Tứ diện đều thuộc loại
A. {3; 3}.
B. {5; 3}.
C. {4; 3}.
D. {3; 4}.
Câu 107. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (1; −3).
B. (2; 2).
C. (0; −2).
D. (−1; −7).
Câu 108. Cho f (x) = sin x − cos x − x. Khi đó f (x) bằng
A. 1 − sin 2x.
B. −1 + 2 sin 2x.
C. 1 + 2 sin 2x.
log 2x
Câu 109. [1229d] Đạo hàm của hàm số y =
là
x2
1
1 − 2 ln 2x
1 − 4 ln 2x
0
0
.
B.
y
=
.
C.
y
=
.
A. y0 =
2x3 ln 10
2x3 ln 10
x3 ln 10
Câu 110. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −5.
B. x = −8.
C. x = 0.
2
2
D. −e.
0
D. −1 + sin x cos x.
D. y0 =
1 − 2 log 2x
.
x3
D. x = −2.
Câu 111. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5}.
B. {2}.
C. {3}.
D. {5; 2}.
Câu 112. Biểu thức nào sau đây√khơng có nghĩa
−3
A. 0−1 .
B.
−1.
C. (−1)−1 .
√
D. (− 2)0 .
Câu 113. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 − 2e
1 − 2e
1 + 2e
A. m =
.
B. m =
.
C. m =
.
D. m =
.
4 − 2e
4 − 2e
4e + 2
4e + 2
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
Câu 114. [3-1132d] Cho dãy số (un ) với un =
n2 + 1
1
A. lim un = 1.
B. lim un = .
2
C. lim un = 0.
D. Dãy số un khơng có giới hạn khi n → +∞.
Câu 115. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 10.
C. 8.
D. 6.
Câu 116. Mệnh đề nào sau đây sai?
A. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
!0
Z
B.
f (x)dx = f (x).
C. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Trang 9/10 Mã đề 1
Z
D. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
!
5 − 12x
= 2 có bao nhiêu nghiệm thực?
Câu 117. [2] Phương trình log x 4 log2
12x − 8
A. 3.
B. 1.
C. Vô nghiệm.
D. 2.
Câu 118. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm cạnh.
B. Hai cạnh.
C. Bốn cạnh.
Câu 119. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 4.
B. 3.
D. Ba cạnh.
1
3|x−1|
C. 2.
= 3m − 2 có nghiệm duy
D. 1.
Câu 120. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n2 lần.
B. n3 lần.
C. 2n3 lần.
D. n3 lần.
Câu 121. Phát biểu nào sau đây là sai?
A. lim un = c (Với un = c là hằng số).
C. lim qn = 1 với |q| > 1.
1
= 0 với k > 1.
nk
1
D. lim √ = 0.
n
B. lim
Câu 122. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp đôi.
B. Tăng gấp 4 lần.
C. Tăng gấp 6 lần.
D. Tăng gấp 8 lần.
2n + 1
Câu 123. Tính giới hạn lim
3n + 2
2
3
1
C. .
D. .
A. 0.
B. .
2
3
2
x+2
Câu 124. Tính lim
bằng?
x→2
x
A. 2.
B. 1.
C. 0.
D. 3.
Câu 125. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. 1.
C. 2.
D. Vơ nghiệm.
Câu 126. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
a
8a
2a
5a
A.
.
B. .
C.
.
D.
.
9
9
9
9
Câu 127. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.
B. 12.
C. 20.
D. 8.
Câu 128. Khối đa diện đều loại {3; 4} có số cạnh
A. 12.
B. 8.
C. 6.
Câu 129. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.
C. V = S h.
2
3
Câu 130. Khối đa diện đều loại {5; 3} có số mặt
A. 8.
B. 12.
C. 30.
D. 10.
D. V = 3S h.
D. 20.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
D
2. A
4.
3. A
5.
D
6.
7. A
D
B
8.
9.
C
C
10.
B
B
11.
B
12.
13.
B
14.
D
16.
D
15.
D
17. A
18.
20.
B
21. A
22.
B
23. A
24.
B
19.
25.
B
C
26.
B
D
27.
D
28.
B
29.
D
30.
B
31.
C
32.
33.
C
34.
35.
B
36.
37.
B
38. A
D
41.
43.
42.
C
45.
D
47.
C
B
51.
D
53.
D
B
44.
C
46.
C
48.
B
50.
B
54. A
C
B
60.
D
57.
C
59.
C
61. A
62. A
63.
64.
C
65. A
66.
C
67. A
68.
C
52. A
56. A
58.
D
40.
39. A
49.
C
D
69. A
1
B
70.
71.
B
72. A
73. A
74.
76.
C
D
75. A
77. A
B
78.
79.
C
80.
D
81. A
82. A
84.
D
C
86.
D
83.
D
85.
D
87.
B
88.
B
89.
B
90.
B
91.
B
92. A
C
93.
94.
B
95.
B
96.
B
97.
B
98.
B
99. A
100.
B
101.
102.
104.
D
103. A
105.
B
106. A
C
C
B
109.
110.
B
111. A
112. A
113.
117.
118.
B
122.
D
124. A
C
128. A
130.
D
B
119.
D
126.
C
115.
B
116. A
120.
B
107.
108.
114.
C
121.
C
123.
C
125.
B
127.
B
129.
B
2
D
C