TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m > 3.
C. m < 3.
D. m ≥ 3.
Câu 2. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. +∞.
B. 1.
C. 2.
D. 0.
[ = 60◦ , S O
Câu 3. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a. Khoảng cách từ A đến (S
√ BC) bằng
√
√
a 57
a 57
2a 57
.
B. a 57.
C.
.
D.
.
A.
19
19
17
Z 1
Câu 4. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0
A. 0.
B.
1
.
2
C.
1
.
4
D. 1.
2
Câu 5. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log2 3.
B. 1 − log3 2.
C. 3 − log2 3.
D. 2 − log2 3.
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử của
Câu 6. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
S bằng
A. 2.
B. 5.
C. 4.
D. 3.
√
2
x + 3x + 5
Câu 7. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. 0.
B. − .
C. 1.
D. .
4
4
Câu 8. Tứ diện đều thuộc loại
A. {5; 3}.
B. {4; 3}.
C. {3; 3}.
D. {3; 4}.
!
x+1
Câu 9. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
4035
2016
2017
.
B.
.
C. 2017.
D.
.
A.
2018
2018
2017
12 + 22 + · · · + n2
Câu 10. [3-1133d] Tính lim
n3
2
1
A. 0.
B. .
C. .
D. +∞.
3
3
Câu 11. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 3.
B. T = e + .
C. T = e + 1.
D. T = 4 + .
e
e
2
3
7n − 2n + 1
Câu 12. Tính lim 3
3n + 2n2 + 1
2
7
A. - .
B. 1.
C. 0.
D. .
3
3
Câu 13. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Tứ diện đều.
B. Nhị thập diện đều. C. Thập nhị diện đều. D. Bát diện đều.
Trang 1/10 Mã đề 1
Câu 14. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
S .ABCD là
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp √
2a3
2a3 3
4a3 3
4a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
2
Câu 15. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 3.
B. 2.
C. 5.
D. 4.
Câu 16. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể tích khối chóp S .ABC là √
√
√
a3
a3 3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
4
4
8
12
Câu 17. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Hai mặt.
B. Ba mặt.
C. Một mặt.
D. Bốn mặt.
1 − 2n
bằng?
Câu 18. [1] Tính lim
3n + 1
2
2
1
A. − .
B. .
C. .
D. 1.
3
3
3
Câu 19. Phát biểu nào sau đây là sai?
1
A. lim k = 0.
B. lim qn = 0 (|q| > 1).
n
1
C. lim un = c (un = c là hằng số).
D. lim = 0.
n
!
1
1
1
Câu 20. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
A. +∞.
B. 2.
C. .
D. .
2
2
Câu 21. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
C là
√
√
a3 3
a3
a3 3
A.
.
B.
.
C.
.
D. a3 .
6
3
2
2
2
0
Câu 22. Cho f (x) = sin x − cos x − x. Khi đó f (x) bằng
A. −1 + 2 sin 2x.
B. 1 + 2 sin 2x.
C. 1 − sin 2x.
D. −1 + sin x cos x.
Câu 23. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vơ nghiệm.
B. 1.
C. 2.
D. 3.
Câu 24. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45√◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là
10a3 3
A.
.
B. 20a3 .
C. 10a3 .
D. 40a3 .
3
x−2
Câu 25. Tính lim
x→+∞ x + 3
2
A. 1.
B. 2.
C. − .
D. −3.
3
Câu 26. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 2020.
B. 2020.
C. log2 13.
D. 13.
Câu 27. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là
√
√
√
a3 3
2a3 3
a3 3
3
A. a 3.
B.
.
C.
.
D.
.
6
3
3
Trang 2/10 Mã đề 1
Câu 28. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. n3 lần.
C. 2n3 lần.
D. 2n2 lần.
Câu 29. Khối đa diện đều loại {3; 5} có số cạnh
A. 8.
B. 20.
C. 12.
D. 30.
Câu 30. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
2
1
1
9
.
B. .
C. .
D.
.
A.
10
5
5
10
Câu 31. Khối đa diện đều loại {4; 3} có số cạnh
A. 12.
B. 20.
C. 30.
D. 10.
Câu 32. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
0 0
(AB0C) và
√
√
√ (A C D) bằng
√
a 3
a 3
2a 3
.
B.
.
C.
.
D. a 3.
A.
2
2
3
Câu 33. Mệnh đề nào sau đây sai?
Z
A. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
B. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
!0
Z
C.
f (x)dx = f (x).
D. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Câu 34. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
9
23
13
5
A. − .
B.
.
C. −
.
D.
.
16
25
100
100
9x
Câu 35. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
D. −1.
A. 2.
B. 1.
C. .
2
x−1 y z+1
Câu 36. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =
và
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 10x − 7y + 13z + 3 = 0.
B. −x + 6y + 4z + 5 = 0.
C. 2x − y + 2z − 1 = 0.
D. 2x + y − z = 0.
Câu 37. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.
B. 6.
C. 12.
D. 8.
Câu 38. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 0.
B. 1.
C. 3.
D. 2.
Trang 3/10 Mã đề 1
Câu 39. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
A. 16 tháng.
B. 17 tháng.
C. 15 tháng.
D. 18 tháng.
2
Câu 40. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 7.
B. 5.
C. 6.
Câu 41. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 24.
B. S = 22.
D. 8.
m
ln2 x
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
C. S = 32.
D. S = 135.
Câu 42. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (0; 2).
B. (−∞; 1).
C. (2; +∞).
D. R.
Z 3
a
x
a
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
Câu 43. Cho I =
√
d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 4.
B. P = 16.
C. P = −2.
D. P = 28.
Câu 44. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
là
cùng vng
√ góc với đáy, S C = a 3. Thể tích khối chóp S 3.ABCD
√
3
a 3
a 3
a3
A.
.
B. a3 .
C.
.
D.
.
9
3
3
Câu 45. Khối đa diện đều loại {3; 4} có số mặt
A. 12.
B. 8.
C. 10.
D. 6.
Câu 46. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) trên khoảng (a; b).
B. Cả ba câu trên đều sai.
C. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
D. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
Câu 47. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị lớn nhất trên K.
C. f (x) có giá trị nhỏ nhất trên K.
B. f (x) liên tục trên K.
D. f (x) xác định trên K.
Câu 48.
√ Thể tích của khối lăng√trụ tam giác đều có cạnh bằng 1 là:
3
3
3
A.
.
B.
.
C. .
2
12
4
√
3
D.
.
4
Câu 49. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều sai.
B. Chỉ có (I) đúng.
C. Chỉ có (II) đúng.
D. Cả hai đều đúng.
Câu 50. Khối đa diện đều loại {4; 3} có số mặt
A. 12.
B. 10.
C. 6.
D. 8.
Trang 4/10 Mã đề 1
x−2 x−1
x
x+1
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−3; +∞).
B. (−∞; −3).
C. [−3; +∞).
D. (−∞; −3].
√
Câu 52. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√
√
√
√ cho là
πa3 3
πa3 3
πa3 6
πa3 3
.
B. V =
.
C. V =
.
D. V =
.
A. V =
3
6
2
6
2n2 − 1
Câu 53. Tính lim 6
3n + n4
2
A. 0.
B. 2.
C. 1.
D. .
3
! x3 −3mx2 +m
1
Câu 54. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m , 0.
B. m ∈ R.
C. m ∈ (0; +∞).
D. m = 0.
Câu 51. [4-1212d] Cho hai hàm số y =
Câu 55. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 4.
B. 11.
C. 12.
D. 10.
n−1
Câu 56. Tính lim 2
n +2
A. 1.
B. 2.
C. 0.
D. 3.
Câu 57. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m ≥ .
C. m ≤ .
D. m < .
4
4
4
4
Câu 58. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 + ln x.
B. y0 = 1 − ln x.
C. y0 = ln x − 1.
D. y0 = x + ln x.
x+1
bằng
Câu 59. Tính lim
x→+∞ 4x + 3
1
1
A. .
B. 3.
C. 1.
D. .
4
3
mx − 4
Câu 60. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 34.
B. 26.
C. 45.
D. 67.
tan x + m
nghịch biến trên khoảng
Câu 61. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
m tan x + 1
π
0; .
4
A. (−∞; 0] ∪ (1; +∞). B. (1; +∞).
C. (−∞; −1) ∪ (1; +∞). D. [0; +∞).
2−n
Câu 62. Giá trị của giới hạn lim
bằng
n+1
A. 2.
B. 0.
C. −1.
D. 1.
Câu 63. Trong các mệnh đề dưới đây, mệnh đề nào!sai?
un
A. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
B. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
C. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
Trang 5/10 Mã đề 1
!
un
D. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
Câu 64. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng
√
a
a 3
a
B. a.
C. .
D.
.
A. .
3
2
2
Câu 65. Khối đa diện đều loại {3; 5} có số mặt
A. 20.
B. 30.
C. 8.
D. 12.
Câu 66. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.
B. 24.
C. 22.
D. 23.
1
Câu 67. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 3).
B. (1; +∞).
C. (−∞; 1) và (3; +∞). D. (1; 3).
Câu 68. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 5
a3 5
a3 3
.
B.
.
C.
.
D.
.
A.
12
4
12
6
Câu 69. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A.
.
B. 18.
C. 27.
D. 12.
2
Câu 70. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 1587 m.
B. 25 m.
C. 387 m.
D. 27 m.
Câu 71. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 2ac
3b + 3ac
A.
.
B.
.
C.
.
c+3
c+2
c+1
3b + 3ac
.
c+2
8
Câu 72. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 96.
B. 64.
C. 81.
D. 82.
D.
Câu 73.
√ Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
A. 3 3.
B. 27.
C. 8.
D. 9.
Câu 74. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. V = 4π.
B. 16π.
C. 8π.
D. 32π.
Câu 75. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.
(1, 01)3
100.1, 03
A. m =
triệu.
B.
m
=
triệu.
(1, 01)3 − 1
3
120.(1, 12)3
100.(1, 01)3
C. m =
triệu.
D.
m
=
triệu.
(1, 12)3 − 1
3
Trang 6/10 Mã đề 1
Câu 76.
√ Tìm giá trị lớn nhất của hàm số y =
A. 2 3.
B. 3.
√
√
x + 3 + 6√− x
C. 3 2.
D. 2 +
√
3.
π
Câu 77. [2-c] Giá trị lớn nhất của hàm số y = e cos x trên đoạn 0; là
2
√
√
1 π3
2 π4
3 π6
A. e .
B.
e .
C. 1.
D.
e .
2
2
2
a
1
Câu 78. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 4.
B. 1.
C. 2.
D. 7.
x
Câu 79. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là
√
√
a3 6
a3 3
a3 3
a3 2
.
B.
.
C.
.
D.
.
A.
16
48
24
48
Câu 80. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
ab
1
1
.
B. 2
.
D.
.
A. √
.
C.
√
√
a + b2
a2 + b2
2 a2 + b2
a2 + b2
Câu 81.
f (x), g(x) liên
đề nào sai? Z
Z Cho hàm số Z
Z tục trên R. Trong cácZmệnh đề sau, mệnh Z
A.
f (x)g(x)dx =
f (x)dx g(x)dx.
B.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
Z
Z
Z
Z
C.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
D.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
Câu 82. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a
√
a3 5
a3 15
a3
a3 15
A.
.
B.
.
C.
.
D.
.
25
25
3
5
x+2
Câu 83. Tính lim
bằng?
x→2
x
A. 0.
B. 2.
C. 3.
D. 1.
Câu 84. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −21.
B. P = −10.
C. P = 10.
D. P = 21.
√
Câu 85. Thể tích của khối lập phương có cạnh bằng a 2
√
√
√
2a3 2
3
3
3
A. V = 2a .
B. V = a 2.
C. 2a 2.
D.
.
3
Câu 86. [1] !Tập xác định của hàm số y != log3 (2x + 1) là
!
1
1
1
A. −∞; .
B. −∞; − .
C. − ; +∞ .
2
2
2
!
1
D.
; +∞ .
2
d = 120◦ .
Câu 87. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A.
.
B. 3a.
C. 4a.
D. 2a.
2
Câu 88. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.
C. 9 mặt.
D. 3 mặt.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
B. xy0 = −ey + 1.
C. xy0 = ey − 1.
D. xy0 = −ey − 1.
Câu 89. [3-12217d] Cho hàm số y = ln
A. xy0 = ey + 1.
Trang 7/10 Mã đề 1
Câu 90. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
2
Câu 91. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
1
B.
.
C. √ .
A. 2 .
3
e
2e
2 e
D.
2
.
e3
x−3 x−2 x−1
x
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (2; +∞).
B. (−∞; 2).
C. [2; +∞).
D. (−∞; 2].
Câu 92. [4-1213d] Cho hai hàm số y =
Câu 93. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
= .
A. lim [ f (x)g(x)] = ab.
B. lim
x→+∞
x→+∞ g(x)
b
C. lim [ f (x) − g(x)] = a − b.
D. lim [ f (x) + g(x)] = a + b.
x→+∞
x→+∞
0
Câu 94. [3-1212h] Cho hình lập phương ABCD.A B C D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
9
6
18
15
Câu 95. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là 4.
B. Phần thực là −3, phần ảo là 4.
C. Phần thực là −3, phần ảo là −4.
D. Phần thực là 3, phần ảo là −4.
Câu 96. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.
0
0
C. Khối 12 mặt đều.
D. Khối lập phương.
Câu 97. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −2 ≤ m ≤ 2.
B. −3 ≤ m ≤ 3.
C. m ≤ 3.
D. m ≥ 3.
Câu 98. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −12.
B. −15.
C. −9.
D. −5.
Câu 99. Biểu thức nào sau đây khơng có nghĩa
A. 0−1 .
B. (−1)−1 .
√
C. (− 2)0 .
Câu 100. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 12.
B. 10.
C. 27.
D.
√
−1.
−3
D. 3.
2
Câu 101. Cho z là nghiệm của phương trình
= z4 + 2z3 − z
√ x + x + 1 = 0. Tính P √
−1 − i 3
−1 + i 3
A. P = 2i.
B. P =
.
C. P =
.
D. P = 2.
2
2
Câu 102. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = R \ {0}.
C. D = R \ {1}.
D. D = (0; +∞).
Câu 103. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. 3.
C. Vô nghiệm.
D. 1.
Câu 104. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 4.
B. V = 6.
C. V = 3.
D. V = 5.
Trang 8/10 Mã đề 1
Câu 105. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R \ {1; 2}.
B. D = R.
C. D = (−2; 1).
2
D. D = [2; 1].
Câu 106. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa
√
√ hai đường thẳng BD và√S C bằng
√
a 6
a 6
a 6
.
B.
.
C.
.
D. a 6.
A.
3
2
6
Câu 107. [1] Giá trị của biểu thức 9log3 12 bằng
A. 24.
B. 144.
C. 2.
D. 4.
Câu 108. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. 1.
B. .
C. 3.
D. .
2
2
2n + 1
Câu 109. Tính giới hạn lim
3n + 2
1
3
2
A. 0.
B. .
C. .
D. .
2
2
3
◦
◦
d = 90 , ABC
d = 30 ; S BC là tam giác đều cạnh a và (S AB) ⊥
Câu 110. Cho hình chóp S .ABC có BAC
(ABC). Thể
√
√ tích khối chóp S .ABC là
√
3
3
√
a 3
a
2
a3 3
2
A.
.
B. 2a 2.
C.
.
D.
.
12
24
24
Câu 111. Khối đa diện đều loại {3; 3} có số đỉnh
A. 2.
B. 5.
C. 4.
D. 3.
Câu 112. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −e2 .
B. 2e4 .
C. 2e2 .
D. −2e2 .
Câu 113. Khối đa diện đều loại {4; 3} có số đỉnh
A. 6.
B. 8.
C. 4.
D. 10.
Câu 114. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9
tháng thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không
thay đổi trong thời gian gửi.
A. 0, 5%.
B. 0, 7%.
C. 0, 8%.
D. 0, 6%.
Câu 115. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|
√
√
√
√
12 17
B.
.
C. 68.
D. 34.
A. 5.
17
Câu 116. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 7 mặt.
D. 8 mặt.
Câu 117. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 10 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 118. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một.
B. Khơng có.
C. Có một hoặc hai.
D. Có hai.
Câu 119. Hàm số y =
A. x = 3.
x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 0.
C. x = 2.
D. x = 1.
Trang 9/10 Mã đề 1
!
1
1
1
Câu 120. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
B. 1.
C. 2.
D. 0.
A. .
2
Câu 121. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
z
x+1 y−5
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
d:
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (1; 0; 2).
B. ~u = (3; 4; −4).
C. ~u = (2; 2; −1).
D. ~u = (2; 1; 6).
1
Câu 122. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 4.
B. 1.
C. 3.
D. 2.
Câu 123. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. e.
B. 4 − 2 ln 2.
C. 1.
D. −2 + 2 ln 2.
Câu 124. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Tăng lên (n − 1) lần. B. Tăng lên n lần.
C. Không thay đổi.
D. Giảm đi n lần.
Câu 125. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 6.
B. y(−2) = 2.
C. y(−2) = 22.
D. y(−2) = −18.
Câu 126. Cho hình
√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD), S D = a 5. Thể tích khối
√ chóp S .ABCD là
√
√
3
√
a 5
a3 15
a3 6
3
A. a 6.
B.
.
C.
.
D.
.
3
3
3
Câu 127. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. .
B. −2.
C. − .
D. 2.
2
2
2n + 1
Câu 128. Tìm giới hạn lim
n+1
A. 1.
B. 3.
C. 2.
D. 0.
Câu 129. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m > 0.
B. m = 0.
C. m , 0.
D. m < 0.
Câu 130.
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn√nhất của |z|
A. 3.
B. 1.
C. 2.
D. 5.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
D
2.
3. A
4.
5.
7.
D
B
9. A
11. A
6.
C
8.
C
10.
C
D
16.
17.
D
18. A
20.
B
C
21.
B
24.
B
B
C
26.
27.
D
28. A
29.
D
30. A
31. A
32.
C
C
33.
B
34.
35.
B
36. A
37.
D
38.
C
39. A
40. A
41.
C
42. A
44.
43. A
45.
B
46.
47.
B
48.
49.
C
51.
D
C
D
50.
D
C
52. A
54.
53. A
55.
C
56.
57.
C
58. A
59. A
D
C
60. A
62.
B
63.
D
64.
65. A
67.
C
22. A
25. A
61.
D
14.
C
15.
23.
B
12. A
13.
19.
D
C
1
C
B
66.
C
68.
C
69.
70.
B
71.
D
75. A
C
76.
77.
78.
D
79.
80.
D
81. A
B
83.
84. A
B
D
B
85.
86.
C
87. A
89.
C
90.
91. A
93.
C
72.
73. A
82.
D
C
D
92.
B
96.
D
98. A
C
95.
B
97.
B
99. A
100.
D
101.
D
102. A
103. A
104. A
105.
B
107.
B
106.
C
D
108.
110.
111.
C
112. A
114.
B
116. A
118.
C
B
115.
B
117.
D
119.
D
B
121. A
122.
B
123. A
124.
D
125.
126.
D
127.
C
130.
C
129.
2
C
113.
120.
128.
D
109.
D
B
C