Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn thi thpt 10 (512)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (150.45 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích hình
hộp đã cho là 1728. Khi đó, các kích
√ thước
√ của hình hộp là
A. 2, 4, 8.
B. 2 3, 4 3, 38.
C. 6, 12, 24.
D. 8, 16, 32.
Câu 2. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. −2.
B. .
C. − .
2
2

D. 2.

Câu 3. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 9 mặt.


C. 6 mặt.
D. 4 mặt.
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử của
Câu 4. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
S bằng
A. 3.
B. 4.
C. 2.
D. 5.
y
z+1
x−1
= =

Câu 5. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x − y + 2z − 1 = 0.
B. 2x + y − z = 0.
C. −x + 6y + 4z + 5 = 0.
D. 10x − 7y + 13z + 3 = 0.
Câu 6. [12221d] Tính tổng tất cả các nghiệm của phương trình x + 1 = 2 log2 (2 x + 3) − log2 (2020 − 21−x )
A. 13.

B. 2020.
C. log2 2020.
D. log2 13.
Câu 7. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ là


√ Thể tích khối chóp S 3.ABC
3
a 2
a3 3
a3 3
a 3
.
B.
.
C.
.
D.
.
A.
4
12
12
6
Câu 8. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây thứ
5 đến giây thứ 15 là bao nhiêu?
A. 6510 m.
B. 1202 m.

C. 2400 m.
D. 1134 m.
Câu 9. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 23.
B. 24.
C. 21.
D. 22.
Câu 10. Dãy số nào sau đây có giới hạn khác 0?
1
1
A. .
B. √ .
n
n

C.

n+1
.
n

D.

sin n
.
n

Câu 11. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng

A. 7.
B. 3.
C. 1.
D. 2.
[ = 60◦ , S A ⊥ (ABCD).
Câu 12. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh S C là a. Thể tích khối√chóp S .ABCD là


a3 2
a3 3
a3 2
3
A.
.
B. a 3.
C.
.
D.
.
4
6
12
Trang 1/10 Mã đề 1


Câu 13. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD
√ là


3
3
3
3
8a 3
a 3
8a 3
4a 3
.
B.
.
C.
.
D.
.
A.
9
3
9
9
log 2x
Câu 14. [1229d] Đạo hàm của hàm số y =

x2
1
1 − 4 ln 2x
1 − 2 log 2x
1 − 2 ln 2x
A. y0 = 3

.
B. y0 =
.
C. y0 =
.
D. y0 = 3
.
3
3
2x ln 10
2x ln 10
x
x ln 10
Câu 15. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n2 lần.
B. n lần.
C. n3 lần.
D. 3n3 lần.
Câu 16. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.

C. Khối 20 mặt đều.

D. Khối tứ diện đều.

Câu 17. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối bát diện đều.
C. Khối lập phương.
D. Khối lăng trụ tam giác.

Câu 18. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
A. .
B. 5.
C. 25.
D. 5.
5
Câu 19. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−1; 0).
B. (0; 1).
C. (−∞; 0) và (1; +∞). D. (−∞; −1) và (0; +∞).


Câu 20. Tính lim

2n2 − 1
3n6 + n4

2
.
C. 1.
D. 0.
3
Câu 21. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 3ac
3b + 2ac
A.

.
B.
.
C.
.
D.
.
c+2
c+1
c+2
c+3
Câu 22. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng



a 3
a 3
2a 3
A.
.
B.
.
C.
.
D. a 3.
2
3
2
Câu 23. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu

không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất khơng thay đổi?
A. 102.016.000.
B. 102.423.000.
C. 102.016.000.
D. 102.424.000.
A. 2.

B.

Câu 24. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có vơ số.
B. Có hai.
C. Có một.
D. Khơng có.
Câu 25. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 − 2e
1 + 2e
A. m =
.
B. m =
.
C. m =
.
4 − 2e
4 − 2e
4e + 2

log2 240 log2 15
Câu 26. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. 1.
B. 3.
C. −8.
Câu 27. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 30.

C. 12.

D. m =

1 − 2e
.
4e + 2

D. 4.
D. 20.
Trang 2/10 Mã đề 1


x2
Câu 28. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1

A. M = , m = 0.
B. M = e, m = 0.
C. M = e, m = 1.
D. M = e, m = .
e
e
0 0 0

d
Câu 29. Cho lăng trụ đứng ABC.A B C có đáy là tam giác vng tại A, AC = a, ACB = 60 . Đường chéo
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0





a3 6
4a3 6
2a3 6
A.
.
B.
.
C.
.
D. a3 6.
3
3
3
Z 1

6
2
3
. Tính
f (x)dx.
Câu 30. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
0
3x + 1
A. 4.

B. 2.
x2 − 5x + 6
Câu 31. Tính giới hạn lim
x→2
x−2
A. 5.
B. 1.

C. 6.

D. −1.

C. −1.

D. 0.

Câu 32. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S√B bằng
a
a

a 3
.
B. .
C. .
D. a.
A.
2
3
2

Câu 33. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 1 nghiệm.
B. 2 nghiệm.
C. Vô nghiệm.
D. 3 nghiệm.
Câu 34. Trong khơng gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 3).
B. A0 (−3; −3; −3).
C. A0 (−3; 3; 1).
D. A0 (−3; −3; 3).
Câu 35. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ
√ min |z − 1 − i|.
√ thức |z − 1 + 3i| = 3. Tìm
A. 2.
B. 1.
C. 10.
D. 2.
Câu 36. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC theo a



a3
a3 15
a3 15
a3 5
A.
.
B.
.
C.
.
D.
.
25
3
25
5
Câu 37.! Dãy số nào sau đây có giới
!n hạn là 0?
!n
!n
n
5
4
1
5
A.
.
B.

.
C.
.
D. − .
3
e
3
3
Câu 38. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều.
log7 16
Câu 39. [1-c] Giá trị của biểu thức
log7 15 − log7
A. −2.
B. 2.

C. Khối 12 mặt đều.
15
30

D. Khối lập phương.

bằng
C. 4.

D. −4.

d = 300 .
Câu 40. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC

Độ dài cạnh bên CC 0 = 3a. Thể tích V của khối lăng trụ đã cho. √


3a3 3
a3 3
3
3
A. V = 3a 3.
B. V = 6a .
C. V =
.
D. V =
.
2
2
Câu 41. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 15, 36.
B. 20.
C. 3, 55.
D. 24.
Trang 3/10 Mã đề 1


Câu 42.√Thể tích của tứ diện đều √
cạnh bằng a


a3 2

a3 2
a3 2
a3 2
A.
.
B.
.
C.
.
D.
.
12
6
2
4
Câu 43. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m > 3.
C. m ≤ 3.
D. m < 3.
Câu 44. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 1 nghiệm.
B. 2 nghiệm.
C. 3 nghiệm.
D. Vô nghiệm.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 45. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là




a3 3
a3 2
a3 3
2
.
B.
.
C. 2a 2.
.
D.
A.
12
24
24
Câu 46. Bát diện đều thuộc loại
A. {4; 3}.
B. {3; 3}.
C. {5; 3}.
D. {3; 4}.

Câu 47. Thể tích của khối lập phương có cạnh bằng a 2

3


2a
2

.
A. V = a3 2.
B. V = 2a3 .
C. 2a3 2.
D.
3
Câu 48. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 72.
B. 0, 8.
C. −7, 2.
D. 7, 2.
2n + 1
Câu 49. Tính giới hạn lim
3n + 2
1
2
3
A. .
B. 0.
C. .
D. .
2
3
2
Câu 50. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Hai đường phân giác y = x và y = −x của các góc tọa độ.
B. Đường phân giác góc phần tư thứ nhất.
C. Trục ảo.
D. Trục thực.
2x + 1

Câu 51. Tính giới hạn lim
x→+∞ x + 1
1
A. .
B. −1.
2

C. 1.

D. 2.

1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
B. xy0 = ey + 1.
C. xy0 = −ey − 1.
D. xy0 = ey − 1.

Câu 52. [3-12217d] Cho hàm số y = ln
A. xy0 = −ey + 1.

Câu 53. Khối chóp ngũ giác có số cạnh là
A. 11 cạnh.
B. 9 cạnh.

C. 10 cạnh.

Câu 54. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?

A. 6 mặt.
B. 5 mặt.
C. 3 mặt.

D. 12 cạnh.
D. 4 mặt.

Câu 55. [2] Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2√
A. m = ±3.
B. m = ± 2.
C. m = ±1.
D. m = ± 3.
Câu 56. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng số cạnh của khối chóp.
B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số mặt của khối chóp bằng 2n+1.
D. Số cạnh của khối chóp bằng 2n.
Trang 4/10 Mã đề 1


Câu 57. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2
3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3 √


2 3
B. 1.
C.
.
D. 2.
A. 3.
3
Câu 58. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 8.
C. 6.
D. 4.
Câu 59. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD), S D = a 5. Thể tích khối
√ chóp S .ABCD là


3

a 6
a3 15
a3 5
3
B.
A. a 6.
.
C.
.
D.

.
3
3
3
Câu 60. Dãy số nào sau đây có giới hạn là 0?
1 − 2n
n2 + n + 1
n2 − 3n
n2 − 2
A. un =
.
B. un =
.
C. un =
.
D. un =
.
5n + n2
(n + 1)2
n2
5n − 3n2


Câu 61. Tìm
giá
trị
lớn
nhất
của
hàm

số
y
=
x
+
3
+
6√− x


A. 2 + 3.
B. 3 2.
C. 2 3.
D. 3.
Câu 62. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −5.
B. −7.
C. −3.

D. Không tồn tại.

Câu 63. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
z
x+1 y−5
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
d:
2
2

−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (3; 4; −4).
B. ~u = (2; 1; 6).
C. ~u = (2; 2; −1).
D. ~u = (1; 0; 2).
ln2 x
m
Câu 64. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 135.
B. S = 22.
C. S = 32.
D. S = 24.
Câu 65. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 4}.
C. {3; 3}.
!2x−1
!2−x
3
3


Câu 66. Tập các số x thỏa mãn
5
5

A. (+∞; −∞).
B. (−∞; 1].
C. [3; +∞).

D. {4; 3}.

D. [1; +∞).

Câu 67. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −5.
B. −9.
C. −15.
D. −12.
x
Câu 68. Tính diện tích hình phẳng
√ giới hạn bởi các đường y = xe , y = 0, x = 1.
3
3
1
A. .
B.
.
C. .
D. 1.
2
2
2
Câu 69. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α


A. aαβ = (aα )β .
B. aα+β = aα .aβ .
C. aα bα = (ab)α .
D. β = a β .
a
Câu 70. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?

A. y = log π4 x.
B. y = loga x trong đó a = 3 − 2.
C. y = log √2 x.
D. y = log 14 x.

Trang 5/10 Mã đề 1


1
Câu 71. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; +∞).
B. (−∞; 1) và (3; +∞). C. (1; 3).
D. (−∞; 3).
Câu 72. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 12.

C. 30.

D. 20.


Câu 73. Cho f (x) = sin x − cos x − x. Khi đó f (x) bằng
A. −1 + 2 sin 2x.
B. 1 + 2 sin 2x.
C. 1 − sin 2x.

D. −1 + sin x cos x.

Câu 74. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.

D. Khối tứ diện đều.

2

2

0

C. Khối lập phương.

2

x −9
Câu 75. Tính lim
x→3 x − 3
A. −3.
B. 3.
C. +∞.
D. 6.

Z 3
x
a
a
Câu 76. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = −2.
B. P = 4.
C. P = 28.
D. P = 16.
Câu 77. Giá trị của lim (3x2 − 2x + 1)
x→1
A. +∞.
B. 2.

C. 1.

D. 3.

Câu 78. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.


√ tích khối chóp S .ABC3 √

a 2
a3 6
a3 6
a3 6
.
B.
.
C.
.
D.
.
A.
6
6
36
18
Câu 79. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số nghịch biến trên khoảng (−∞; 0).
D. Hàm số đồng biến trên khoảng (1; 2).
log(mx)
Câu 80. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m = 4.
B. m ≤ 0.
C. m < 0 ∨ m > 4.
D. m < 0.
Câu 81. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy

một góc 45√◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là
10a3 3
A.
.
B. 20a3 .
C. 10a3 .
D. 40a3 .
3
Câu 82. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. V = 4π.
B. 8π.
C. 16π.
D. 32π.
3
x −1
Câu 83. Tính lim
x→1 x − 1
A. +∞.
B. 0.
C. 3.
D. −∞.
Câu 84. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 1200 cm2 .
C. 160 cm2 .
D. 160 cm2 .
Câu 85. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng

được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 20 .(3)30
C 10 .(3)40
C 40 .(3)10
C 20 .(3)20
A. 50 50 .
B. 50 50 .
C. 50 50 .
D. 50 50 .
4
4
4
4
Trang 6/10 Mã đề 1


Câu 86. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 2).
C. Hàm số đồng biến trên khoảng (0; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
Câu 87. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = 3S h.
B. V = S h.
C. V = S h.
D. V = S h.
2

3

2
Câu 88. √Xác định phần ảo của số phức z = ( 2 + 3i)

A. −6 2.
B. 7.
C. 6 2.
D. −7.
un
Câu 89. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 1.
B. +∞.
C. 0.
D. −∞.
Câu 90. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 5.
C. 0, 2.
D. 0, 4.
Câu 91. Cho hàm số y = x3 − 2x2 + x + 1. !Mệnh đề nào dưới đây đúng?
!
1
1
B. Hàm số nghịch biến trên khoảng −∞; .
A. Hàm số nghịch biến trên khoảng ; 1 .
3!
3

1
C. Hàm số đồng biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng (1; +∞).
3
Câu 92. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 1.

B. 3.

C. 2.

D. 0.

Câu 93. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
A. a 3.
B. a 6.
C.
.
D. 2a 6.
2
2


Câu 94. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 8.
B. 6.
C. 5.

D. 7.
! x3 −3mx2 +m
1
nghịch biến trên
Câu 95. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
π
khoảng (−∞; +∞)
A. m ∈ R.
B. m = 0.
C. m , 0.
D. m ∈ (0; +∞).
x−1
Câu 96. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
√ đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB

√ có độ dài bằng
A. 6.
B. 2.
C. 2 3.
D. 2 2.
Câu 97. Biểu thức nào sau đây khơng có nghĩa

A. 0−1 .
B. (−1)−1 .


C. (− 2)0 .

D.


−1.

−3

Câu 98. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B.
.
C.
.
D. a3 .
12
6
24
Trang 7/10 Mã đề 1



Câu 99. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 0.
B. 1.
C. e2016 .
D. 22016 .
Câu 100. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. −1.
B. 6.
C. 1.

D. 2.

Câu 101. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa

√ hai đường thẳng S B và AD bằng


a 2
a 2
.
B. a 2.
.
C. a 3.
D.
A.
3

2
Câu 102. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 3, 5 triệu đồng.
B. 70, 128 triệu đồng. C. 50, 7 triệu đồng.
D. 20, 128 triệu đồng.
x+1
Câu 103. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. .
B. .
C. 3.
D. 1.
3
4
1
a
, với a, b ∈ Z. Giá trị của a + b là
Câu 104. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
4 b ln 3
A. 7.
B. 4.
C. 2.
D. 1.
Câu 105. Xét hai câu sau
Z

Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.

B. Cả hai câu trên đúng. C. Chỉ có (I) đúng.

D. Chỉ có (II) đúng.

Câu 106. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là 4.
B. Phần thực là −3, phần ảo là −4.
C. Phần thực là 3, phần ảo là −4.
D. Phần thực là −3, phần ảo là 4.
Câu 107. Tính lim

7n2 − 2n3 + 1
3n3 + 2n2 + 1
B. 1.

2
7
D. .
C. - .

3
3
Câu 108. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng



a 2
a 2
A. a 2.
B.
.
C. 2a 2.
D.
.
2
4
π
Câu 109. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu thức T = a + b 3.


A. T = 2.
B. T = 4.
C. T = 2 3.
D. T = 3 3 + 1.
n−1

Câu 110. Tính lim 2
n +2
A. 3.
B. 0.
C. 2.
D. 1.
A. 0.

Trang 8/10 Mã đề 1


Câu 111. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 5.
B. 1.
C. 2.

D. 3.

Câu 112. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = 10.

B. f 0 (0) = 1.

C. f 0 (0) = ln 10.

D. f 0 (0) =

1
.
ln 10


Câu 113. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m > .
C. m ≥ .
D. m ≤ .
4
4
4
4
Câu 114. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d song song với (P).
B. d nằm trên P.
C. d ⊥ P.
D. d nằm trên P hoặc d ⊥ P.
Câu 115. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn mặt.
B. Hai mặt.
C. Ba mặt.

D. Năm mặt.

Câu 116. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số

tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 20 triệu đồng.
B. 2, 25 triệu đồng.
C. 2, 22 triệu đồng.
D. 3, 03 triệu đồng.
Câu 117. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.




5 13
B.
.
C. 2.
D. 26.
A. 2 13.
13
Câu 118. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
A. 5.
B. 68.
C. 34.
D.
.

17
1 − n2
Câu 119. [1] Tính lim 2
bằng?
2n + 1
1
1
1
A. .
B. − .
C. .
D. 0.
2
2
3
Câu 120. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
1
Câu 121. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2) ∪ (−1; +∞). B. −2 ≤ m ≤ −1.
C. −2 < m < −1.
D. (−∞; −2] ∪ [−1; +∞).
2

2


sin x
Câu 122. [3-c] Giá trị nhỏ nhất và giá
+ 2cos x√lần lượt là
√ trị lớn nhất của hàm√số f (x) = 2
C. 2 2 và 3.
D. 2 và 3.
A. 2 và 3.
B. 2 và 2 2.

Câu 123. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
A. −7.

B. −4.

C. −2.

D.

67
.
27

Câu 124. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 91cm3 .
C. 84cm3 .
D. 48cm3 .
Trang 9/10 Mã đề 1



3

Câu 125. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e2 .
B. e5 .
C. e3 .
D. e.
2

Câu 126. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 5.
B. 4.
C. 3.

D. 2.

Câu 127. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 128. Khối đa diện đều loại {3; 4} có số cạnh
A. 6.
B. 12.

C. 8.

D. 10.


Câu 129. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Khơng thay đổi.
B. Tăng lên (n − 1) lần. C. Giảm đi n lần.
D. Tăng lên n lần.
Câu 130. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m = 0.
B. m < 0.
C. m > 0.

D. m , 0.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
C

1.

2. A

3. A

4.

D

5.

D

6.

C

7.

B

8. A

9.

D

10.

11.

D

12. A

13.


D

14.

C

C
D

16.

C

17. A

18.

C

19. A

20.

15.

21.

C

22.


B
B

23.

D

24.

25.

D

26.

27.

C

29.

28.
D

31.
B

34. A


35.

B

36.
C

38.
D

42. A

43. A

44.
D

C
B
C
B

46.

47.

C

48.


49.

C

50. A

51.

D

40.

41. A
45.

B

32.

33.

39.

C

30. A

C

37.


D

D

D
C

52.

D

53.

C

54.

D

55.

C

56.

D

57.


D

58.

59.

B

60. A

61.

B

62.

63.

D

64.

65. A
67.

D
1

C
D

C

66.

D

68.

D


69.
71.

D
B

73. A
D

75.
77.

72.

D

74.

D


76.

B
D

78.

B

79. A
81.

C

70.

80. A
B

C

83.

84.

C

85.


D

86.

C

87.

D

88.

C

89.

90. A

91. A

92.

C

94.

D

93.


B

95.

B

97. A

C

96.
98. A
100.

C

99. A
101.

B

102.

D

104. A
D

106.


103.

B

105.

B

107.

108.

B

109.

110.

B

111.

112.

D

B
C
D
C


115.

C

116.

C

113.

C

114.

D

117.

B

118.

D

119.

B

120.


D

121.

B

122.

C

123.

124. A

125.

126.

B

127.

128.

B

129.

130.


D

2

C
B
D
C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×