TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 6 mặt.
C. 9 mặt.
2−n
bằng
n+1
B. −1.
D. 7 mặt.
Câu 2. Giá trị của giới hạn lim
A. 2.
C. 0.
D. 1.
Câu 3. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; −1) và (0; +∞). B. (−∞; 0) và (1; +∞). C. (0; 1).
D. (−1; 0).
Câu 4. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp tứ giác.
B. Hai khối chóp tam giác.
C. Một khối chóp tam giác, một khối chóp ngữ giác.
D. Hai khối chóp tứ giác.
Câu 5. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 4.
B. ln 12.
C. ln 14.
D. ln 10.
Câu 6. [1] Đạo hàm của hàm số y = 2 x là
1
A. y0 = 2 x . ln 2.
B. y0 =
.
ln 2
C. y0 = 2 x . ln x.
Câu 7. Cho
√ số phức z thỏa mãn |z +√3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
A. |z| = 10.
B. |z| = 17.
C. |z| = 10.
log2 240 log2 15
−
+ log2 1 bằng
log3,75 2 log60 2
B. 3.
C. 4.
D. y0 =
1
2 x . ln
x
.
D. |z| = 17.
Câu 8. [1-c] Giá trị biểu thức
A. −8.
D. 1.
Câu 9. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
Câu 10. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√
√ chóp S .ABCD là
√
3
3
a 2
a 3
a3 3
a3 6
A.
.
B.
.
C.
.
D.
.
16
24
48
48
2n + 1
Câu 11. Tìm giới hạn lim
n+1
A. 1.
B. 0.
C. 3.
D. 2.
Câu 12. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 2; m = 1.
B. M = e−2 + 1; m = 1.
C. M = e−2 − 2; m = 1.
D. M = e2 − 2; m = e−2 + 2.
1
Câu 13. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 2.
B. 1.
C. 3.
D. 4.
Trang 1/10 Mã đề 1
mx − 4
Câu 14. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 67.
B. 34.
C. 45.
D. 26.
Câu 15. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. 4.
B. .
C. .
D. .
8
2
4
Câu 16. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −4.
B. 4.
C. −2.
D. 2.
2
3
7n − 2n + 1
Câu 17. Tính lim 3
3n + 2n2 + 1
7
2
A. 1.
B. .
C. - .
D. 0.
3
3
Câu 18. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Khơng có.
B. Có hai.
C. Có vơ số.
D. Có một.
2
2
sin x
Câu 19.
+ 2cos x lần
√ =2
√ lượt là
√ [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x)
B. 2 và 3.
C. 2 và 2 2.
D. 2 2 và 3.
A. 2 và 3.
Câu 20. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 7.
B. 3.
C. 1.
D. 2.
√
2
x + 3x + 5
Câu 21. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. .
B. 0.
C. − .
D. 1.
4
4
1
ln x p 2
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
Câu 22. Gọi F(x) là một nguyên hàm của hàm y =
x
3
1
8
1
8
A. .
B. .
C. .
D. .
9
9
3
3
a
1
Câu 23. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 2.
B. 4.
C. 1.
D. 7.
Câu 24. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ đứng là hình lăng trụ đều.
3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng
√
a
a 2
2a
a
A. .
B.
.
C.
.
D. .
4
3
3
3
x−2 x−1
x
x+1
Câu 26. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [−3; +∞).
B. (−∞; −3).
C. (−3; +∞).
D. (−∞; −3].
cos n + sin n
Câu 27. Tính lim
n2 + 1
A. 0.
B. −∞.
C. 1.
D. +∞.
Câu 25. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
Trang 2/10 Mã đề 1
Câu 28. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là
√
10a3 3
3
3
3
.
A. 20a .
B. 10a .
C. 40a .
D.
3
Câu 29. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
D. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
Z 1
6
2
3
. Tính
f (x)dx.
Câu 30. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
0
3x + 1
A. 2.
B. 6.
C. −1.
D. 4.
Câu 31. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 14 năm.
B. 10 năm.
C. 11 năm.
D. 12 năm.
Câu 32. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
B. m ≤ 0.
C. − < m < 0.
D. m ≥ 0.
A. m > − .
4
4
Câu 33. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
B. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
0
C. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
A. Nếu
f (x)dx =
Câu 34. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 4 lần.
B. Tăng gấp đôi.
C. Tăng gấp 8 lần.
D. Tăng gấp 6 lần.
Câu 35.
√ Thể tích của khối lăng√trụ tam giác đều có cạnh bằng 1 là:
3
3
3
.
B.
.
C. .
A.
4
2
4
√
3
D.
.
12
√
Câu 36. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
√
√
√
3a 38
a 38
3a
3a 58
A.
.
B.
.
C.
.
D.
.
29
29
29
29
Câu 37. Cho z là√nghiệm của phương trình x2 + x + 1 = 0. Tính P =√z4 + 2z3 − z
−1 + i 3
−1 − i 3
A. P =
.
B. P = 2i.
C. P =
.
D. P = 2.
2
2
Câu 38. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 9 lần.
B. Tăng gấp 27 lần.
C. Tăng gấp 18 lần.
D. Tăng gấp 3 lần.
Trang 3/10 Mã đề 1
Câu 39. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng
√
√
√
a 6
a 6
a 6
A.
.
B.
.
C.
.
D. a 6.
2
6
3
Câu 40.
!
Z Các khẳng định nào sau
Z đây là sai?
Z
0
A.
Z
C.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. B.
f (x)dx = f (x).
Z
Z
Z
k f (x)dx = k
f (x)dx, k là hằng số.
D.
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.
Câu 41. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. 3.
B. .
C. 1.
D. .
2
2
4
0
Câu 42. [2] Cho hàm số f (x) = ln(x + 1). Giá trị f (1) bằng
1
ln 2
A. 1.
B. 2.
C. .
D.
.
2
2
2mx + 1
1
Câu 43. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 1.
B. −5.
C. 0.
D. −2.
Câu 44. Khối đa diện đều loại {5; 3} có số cạnh
A. 20.
B. 8.
C. 30.
D. 12.
Câu 45. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng
√
√
√
c a2 + b2
abc b2 + c2
b a2 + c2
a b2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
!
1
1
1
+ ··· +
Câu 46. [3-1131d] Tính lim +
1 1+2
1 + 2 + ··· + n
3
5
A. 2.
B. +∞.
C. .
D. .
2
2
1 − 2n
Câu 47. [1] Tính lim
bằng?
3n + 1
1
2
2
A. 1.
B. .
C. − .
D. .
3
3
3
tan x + m
Câu 48. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
π
0; .
4
A. (−∞; −1) ∪ (1; +∞). B. [0; +∞).
C. (−∞; 0] ∪ (1; +∞). D. (1; +∞).
Câu 49. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục ảo.
B. Hai đường phân giác y = x và y = −x của các góc tọa độ.
C. Trục thực.
D. Đường phân giác góc phần tư thứ nhất.
Câu 50. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −3.
B. m = −1.
C. m = 0.
log 2x
Câu 51. [1229d] Đạo hàm của hàm số y =
là
x2
1 − 2 log 2x
1
1 − 2 ln 2x
A. y0 =
.
B. y0 = 3
.
C. y0 = 3
.
3
x
2x ln 10
x ln 10
D. m = −2.
D. y0 =
1 − 4 ln 2x
.
2x3 ln 10
Trang 4/10 Mã đề 1
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
√
√
√
18 11 − 29
9 11 + 19
2 11 − 3
=
. C. Pmin =
. D. Pmin =
.
21
9
3
Câu 52. [12210d] Xét các số thực dương x, y thỏa mãn log3
Pmin của P = x√+ y.
9 11 − 19
A. Pmin =
.
9
B. Pmin
Câu 53. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 20 mặt đều.
C. Khối tứ diện đều.
D. Khối 12 mặt đều.
C. 5.
D. 0.
Câu 54. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 9.
B. 7.
Câu 55. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
là
√
√ góc với đáy, S C = a 3. Thể tích khối chóp S 3.ABCD
3
a 3
a3
a 3
.
B. a3 .
C.
.
D.
.
A.
3
9
3
Câu 56. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A = a 5. Thể tích khối chóp √
S .ABCD là
√
2a3
4a3
4a3 3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
√
Câu 57. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√
√
√
√ cho là
πa3 3
πa3 6
πa3 3
πa3 3
.
B. V =
.
C. V =
.
D. V =
.
A. V =
6
2
6
3
1
Câu 58. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 0 ≤ m ≤ 1.
C. 2 ≤ m ≤ 3.
D. 2 < m ≤ 3.
Câu 59. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 6 mặt.
C. 4 mặt.
D. 9 mặt.
x+3
nghịch biến trên khoảng
Câu 60. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x−m
(0; +∞)?
A. 1.
B. 2.
C. 3.
D. Vô số.
Câu 61. Cho hàm số y = x3 − 2x2 + x + 1. !Mệnh đề nào dưới đây đúng?
1
A. Hàm số nghịch biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng (1; +∞).
3
!
!
1
1
C. Hàm số nghịch biến trên khoảng −∞; .
D. Hàm số đồng biến trên khoảng ; 1 .
3
3
Câu 62. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 4}.
B. {5; 3}.
C. {3; 5}.
Câu 63. Tính lim
x→+∞
A. −3.
x−2
x+3
2
B. − .
3
C. 1.
D. {4; 3}.
D. 2.
Câu 64. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
Trang 5/10 Mã đề 1
(III) lim qn = +∞ nếu |q| > 1.
A. 2.
B. 1.
C. 3.
D. 0.
Câu 65. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một mơn nằm cạnh nhau là
2
1
9
1
.
B. .
C. .
D.
.
A.
10
5
5
10
Câu 66. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
B. log2 a = − loga 2.
C. log2 a =
.
D. log2 a = loga 2.
A. log2 a =
log2 a
loga 2
√
Câu 67. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 62.
C. 64.
D. Vơ số.
q
2
Câu 68. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [0; 2].
C. m ∈ [−1; 0].
D. m ∈ [0; 4].
Z 2
ln(x + 1)
Câu 69. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 0.
B. 3.
C. 1.
D. −3.
Câu 70. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Hai mặt.
B. Ba mặt.
C. Một mặt.
D. Bốn mặt.
Câu 71. Vận tốc chuyển động của máy bay là v(t) = 6t + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1134 m.
B. 1202 m.
C. 6510 m.
D. 2400 m.
2
Câu 72. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
A. lim [ f (x) − g(x)] = a − b.
B. lim
= .
x→+∞
x→+∞ g(x)
b
C. lim [ f (x) + g(x)] = a + b.
D. lim [ f (x)g(x)] = ab.
x→+∞
Câu 73. [12212d] Số nghiệm của phương trình 2
A. 2.
B. 1.
x→+∞
x−3
.3 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
C. Vô nghiệm.
D. 3.
x−2
Câu 74. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 4 mặt. B. 4 đỉnh, 6 cạnh, 4 mặt. C. 3 đỉnh, 3 cạnh, 3 mặt. D. 4 đỉnh, 8 cạnh, 4 mặt.
Câu 75. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 − ln x.
B. y0 = 1 + ln x.
C. y0 = ln x − 1.
D. y0 = x + ln x.
Câu 76. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
9
6
15
18
x
y
Câu 77. [4-c] Xét các số thực dương x, y thỏa mãn 2 + 2 = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 12.
B. 27.
C.
.
D. 18.
2
Câu 78. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 27cm3 .
B. 72cm3 .
C. 64cm3 .
D. 46cm3 .
Trang 6/10 Mã đề 1
√
√
Câu 79. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
3
9
B. m ≥ 0.
C. 0 ≤ m ≤ .
D. 0 < m ≤ .
A. 0 ≤ m ≤ .
4
4
4
2
0
Câu 80. [2] Cho hàm số f (x) = x ln x. Giá trị f (e) bằng
2
A. .
B. 2e.
C. 2e + 1.
D. 3.
e
2
2
d = 120◦ .
Câu 81. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A.
.
B. 4a.
C. 2a.
D. 3a.
2
Câu 82. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 1.
B. 0.
C. e2016 .
D. 22016 .
Câu 83. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó,√các kích
√ thước của hình hộp là
C. 8, 16, 32.
D. 2, 4, 8.
A. 6, 12, 24.
B. 2 3, 4 3, 38.
Câu 84. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab
ab
1
A. √
.
B. 2
.
C.
.
D.
.
√
√
a + b2
2 a2 + b2
a2 + b2
a2 + b2
Câu 85. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 48cm3 .
B. 91cm3 .
C. 84cm3 .
D. 64cm3 .
Câu 86. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m ≤ 3.
C. m < 3.
D. m ≥ 3.
Câu 87. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
√
A. 25.
B. 5.
C. 5.
√
1
.
5
Câu 88. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
9
5
23
13
A.
.
B. − .
C. −
.
D.
.
25
16
100
100
Câu 89. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
3
3
a 6
a 6
a3 3
a3 6
A.
.
B.
.
C.
.
D.
.
24
48
24
8
2n + 1
Câu 90. Tính giới hạn lim
3n + 2
3
1
2
A. .
B. .
C. 0.
D. .
2
2
3
2
Câu 91. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a bằng
1
1
A. −2.
B. 2.
C. − .
D. .
2
2
Câu 92. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 3).
C. (2; 4; 4).
D. (2; 4; 6).
D.
Trang 7/10 Mã đề 1
Câu 93. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp
√ S .ABCD là
√ phẳng vng góc với 3(ABCD).
√
3
3
√
a 3
a 3
a 2
B.
A. a3 3.
.
C.
.
D.
.
2
4
2
Câu 94. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 212 triệu.
B. 210 triệu.
C. 216 triệu.
D. 220 triệu.
Câu 95. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m < .
C. m ≥ .
D. m ≤ .
A. m > .
4
4
4
4
Câu 96. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 5
a3 5
a3 3
A.
.
B.
.
C.
.
D.
.
12
6
4
12
1
bằng
Câu 97. [1] Giá trị của biểu thức log √3
10
1
1
A. .
B. −3.
C. 3.
D. − .
3
3
3
2
2
Câu 98. Tìm m để hàm số y = x − 3mx + 3m có 2 điểm cực trị.
A. m < 0.
B. m = 0.
C. m , 0.
D. m > 0.
Câu 99. Tứ diện đều thuộc loại
A. {5; 3}.
B. {4; 3}.
C. {3; 4}.
D. {3; 3}.
Câu 100. [2D1-3] Tìm giá trị của tham số m để hàm số y = x − mx + 3x + 4 đồng biến trên R.
A. −2 ≤ m ≤ 2.
B. m ≥ 3.
C. −3 ≤ m ≤ 3.
D. m ≤ 3.
3
2
Câu 101. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 72.
B. 7, 2.
C. −7, 2.
D. 0, 8.
t
9
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao
Câu 102. [4] Xét hàm số f (t) = t
9 + m2
cho f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 2.
B. 1.
C. Vô số.
D. 0.
Câu 103. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng
√
a
a 3
a
A. .
B. .
C. a.
D.
.
3
2
2
2
Câu 104. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log3 2.
B. 3 − log2 3.
C. 2 − log2 3.
D. 1 − log2 3.
Câu 105. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P hoặc d ⊥ P.
B. d song song với (P).
C. d ⊥ P.
D. d nằm trên P.
Câu 106. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 2.
C. 3.
D. 4.
Câu 107. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
A. aαβ = (aα )β .
B. aα bα = (ab)α .
C. β = a β .
D. aα+β = aα .aβ .
a
Trang 8/10 Mã đề 1
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e − 1.
B. xy = e + 1.
C. xy0 = −ey + 1.
D. xy0 = ey − 1.
x−1
Câu 109. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
√ có độ dài bằng
√ đều ABI có hai đỉnh A,√B thuộc (C), đoạn thẳng AB
A. 2 3.
B. 6.
C. 2 2.
D. 2.
x+1
Câu 110. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. .
B. .
C. .
D. 1.
2
3
6
Câu 111. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
Câu 108. [3-12217d] Cho hàm số y = ln
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 1.
B. 2.
C. 3.
D. 4.
Câu 112. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√M + m
√
√ của hàm số. Khi đó tổng
B. 8 2.
C. 16.
D. 8 3.
A. 7 3.
Câu 113. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là
√
√
a3
a3 3
a3 3
A.
.
B.
.
C.
.
D. a3 .
3
2
6
Câu 114. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 27 m.
C. 25 m.
D. 1587 m.
Câu 115.
√ Thể tích của tứ diện đều
√cạnh bằng a
√
√
3
3
a 2
a 2
a3 2
a3 2
A.
.
B.
.
C.
.
D.
.
4
6
12
2
Câu 116. Cho hình
√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là
√
3
3
√
a 6
a 5
a3 15
A.
.
B.
.
C.
.
D. a3 6.
3
3
3
Câu 117.
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn√nhất của |z|
A. 3.
B. 1.
C. 2.
D. 5.
Câu 118. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [1; 2].
B. (1; 2).
C. [−1; 2).
Câu 119.
Trong các khẳng định sau, khẳng định nào sai?Z
Z
0dx = C, C là hằng số.
A.
Z
C.
dx = x + C, C là hằng số.
B.
Z
D.
xα dx =
D. (−∞; +∞).
xα+1
+ C, C là hằng số.
α+1
1
dx = ln |x| + C, C là hằng số.
x
Trang 9/10 Mã đề 1
√
√
4n2 + 1 − n + 2
bằng
Câu 120. Tính lim
2n − 3
A. 2.
B. +∞.
3
.
2
Câu 121. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|
√
√
√
√
12 17
A. 34.
B.
D. 68.
.
C. 5.
17
π π
3
Câu 122. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 7.
B. −1.
C. 1.
D. 3.
C. 1.
D.
Câu 123. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
.
B. −7.
C. −4.
D. −2.
A.
27
Câu 124. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 125. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
C. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số nghịch biến trên khoảng (−2; 1).
Câu 126. Tính thể tích khối lập √
phương biết tổng diện tích tất cả các mặt bằng 18.
C. 9.
D. 8.
A. 27.
B. 3 3.
Câu 127. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. e.
B. 4 − 2 ln 2.
C. 1.
D. −2 + 2 ln 2.
Câu 128. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
B. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C. Cả ba câu trên đều sai.
D. F(x) = G(x) trên khoảng (a; b).
Câu 129. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. 5.
B. .
C.
.
D. 7.
2
2
Câu 130. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của
P = xy + x + 2y + 17
A. −15.
B. −12.
C. −9.
D. −5.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
C
1.
2.
D
3.
4. A
C
5.
6. A
7. A
8. A
9.
C
D
11.
13.
D
19.
C
22.
D
23.
B
D
B
D
26.
C
28. A
29.
C
30.
31.
C
32. A
33. A
34.
35. A
36.
37.
D
38.
D
43.
42.
C
45.
C
D
B
D
B
44.
D
47.
D
40.
B
41.
51.
C
24. A
27. A
49.
B
20.
C
25.
12.
18.
D
21.
C
16.
C
17.
10.
14.
B
15.
39.
B
C
46. A
C
B
C
48.
D
50.
D
52.
D
53.
D
54. A
55.
D
56.
57.
D
58.
60.
C
61. A
62.
C
63.
B
D
C
65.
64. A
66.
C
67.
68.
C
69.
1
D
B
D
70.
D
72.
B
73. A
74.
B
75.
77.
D
80.
81. A
82.
83. A
84.
85.
B
78. A
C
79.
C
71.
D
B
C
86.
D
D
87. A
88.
89. A
90.
D
91. A
92.
D
93.
C
94. A
B
95.
D
96. A
97.
D
98.
C
99.
D
100.
C
101.
C
102. A
103.
C
104.
105. A
107.
C
109. A
111.
113.
C
B
C
106.
D
108.
D
110.
C
112.
C
114.
115.
C
116. A
117.
C
118.
B
D
119.
B
120.
C
121.
B
122.
C
123.
D
124. A
125. A
126.
B
127. A
128.
B
130.
B
129.
B
2