TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. Khẳng định nào sau đây đúng?
A. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ tứ giác đều là hình lập phương.
C. Hình lăng trụ đứng là hình lăng trụ đều.
D. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
Câu 2. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
đến đường√thẳng BD0 bằng
√
√
√
abc b2 + c2
b a2 + c2
c a2 + b2
a b2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 3. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
=
=
và d0 :
=
=
đường thẳng d :
2
3
−5
3
−2
−1
x−2 y−2 z−3
x y−2 z−3
A.
=
=
.
B. =
=
.
2
3
4
2
3
−1
x y z−1
x−2 y+2 z−3
C. = =
.
D.
=
=
.
1 1
1
2
2
2
√
√
4n2 + 1 − n + 2
bằng
Câu 4. Tính lim
2n − 3
3
A. 1.
B. .
C. 2.
D. +∞.
2
Câu 5. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
√
1
A. 5.
B. .
C. 5.
5
√
D. 25.
Câu 6. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi
suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước đó.
Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết
rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền ra.
A. 220 triệu.
B. 212 triệu.
C. 216 triệu.
D. 210 triệu.
Câu 7. [1] Tính lim
A. 0.
1 − n2
bằng?
2n2 + 1
1
B. .
3
Câu 8. Khối đa diện đều loại {5; 3} có số cạnh
A. 8.
B. 20.
1
C. − .
2
D.
1
.
2
C. 30.
D. 12.
Câu 9. Cho khối chóp S .ABC√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
√ với đáy và S C = a 3. 3Thể
√ tích khối chóp S .ABC
√là
√
3
3
a 6
2a 6
a 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
9
4
2
1 + 2 + ··· + n
Câu 10. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = .
2
C. lim un = 1.
D. lim un = 0.
Trang 1/10 Mã đề 1
x2 − 5x + 6
x→2
x−2
B. 5.
Câu 11. Tính giới hạn lim
A. −1.
Câu 12. Phần thực√và phần ảo của số phức
√ z=
A. Phần thực là √2 − 1, phần ảo là −√ 3.
C. Phần thực là 2, phần ảo là 1 − 3.
√
C. 1.
D. 0.
√
2 − 1 − 3i lần lượt l √
√
B. Phần thực là 1√− 2, phần ảo là −√ 3.
D. Phần thực là 2 − 1, phần ảo là 3.
Câu 13. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B. Số cạnh của khối chóp bằng số mặt của khối chóp.
C. Số đỉnh của khối chóp bằng số mặt của khối chóp.
D. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
Câu 14. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 0.
C. 22016 .
D. 1.
3
Câu 15. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e2 .
B. e3 .
C. e5 .
D. e.
Câu 16. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
23
1079
1637
1728
.
B.
.
C.
.
D.
.
A.
4913
68
4913
4913
Câu 17. Phát biểu nào sau đây là sai?
1
A. lim = 0.
B. lim qn = 0 (|q| > 1).
n
1
C. lim un = c (un = c là hằng số).
D. lim k = 0.
n
Câu 18. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. Vô số.
C. 1.
D. 2.
Câu 19. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√
√
√ của hàm số. Khi đó tổng M + m
A. 8 3.
B. 16.
C. 7 3.
D. 8 2.
Câu 20. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 12.
B. 3.
C. 10.
2−n
Câu 21. Giá trị của giới hạn lim
bằng
n+1
A. 2.
B. 0.
C. −1.
D. 27.
D. 1.
Câu 22. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 6 cạnh, 4 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 3 đỉnh, 3 cạnh, 3 mặt. D. 4 đỉnh, 8 cạnh, 4 mặt.
Câu 23. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (1; +∞).
B. (−1; 1).
C. (−∞; −1).
D. (−∞; 1).
Câu 24. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 2).
B. Hàm số đồng biến trên khoảng (0; 2).
C. Hàm số đồng biến trên khoảng (0; +∞).
D. Hàm số nghịch biến trên khoảng (−∞; 2).
Câu 25. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
D.
.
A. 5.
B. 7.
C. .
2
2
Trang 2/10 Mã đề 1
Câu 26. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; 2).
B. (−∞; 2).
C. (0; +∞).
D. (−∞; 0) và (2; +∞).
1
Câu 27. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3
√
một đoạn có độ dài bằng 24.
A. m = −3, m = 4.
B. −3 ≤ m ≤ 4.
C. m = 4.
D. m = −3.
√
2
Câu 28. √Xác định phần ảo của số
√ phức z = ( 2 + 3i)
A. −6 2.
B. 6 2.
C. 7.
D. −7.
Câu 29. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Một mặt.
B. Ba mặt.
C. Hai mặt.
D. Bốn mặt.
Câu 30.√Biểu thức nào sau đây khơng có nghĩa
B. 0−1 .
A. (− 2)0 .
D. (−1)−1 .
C.
√
−1.
−3
Câu 31. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 2.
B. 0.
C. 1.
D. 3.
Câu 32. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −7.
B. −4.
C.
.
D. −2.
27
!4x
!2−x
2
3
Câu 33. Tập các số x thỏa mãn
≤
là
3 # 2
"
!
"
!
#
2
2
2
2
A.
; +∞ .
B. −∞; .
C. −∞; .
D. − ; +∞ .
5
5
3
3
Câu 34. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = 1.
B. f 0 (0) = 10.
C. f 0 (0) =
1
.
ln 10
D. f 0 (0) = ln 10.
π π
Câu 35. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. −1.
B. 1.
C. 7.
D. 3.
Câu 36. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
B. F(x) = G(x) trên khoảng (a; b).
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
Câu 37. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = 3S h.
B. V = S h.
C. V = S h.
D. V = S h.
3
2
Câu 38. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 6%.
B. 0, 5%.
C. 0, 8%.
D. 0, 7%.
Trang 3/10 Mã đề 1
Câu 39. Tính lim
x→5
A. −∞.
x2 − 12x + 35
25 − 5x
B. +∞.
C.
2
.
5
2
D. − .
5
Câu 40. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.
C. f (x) có giá trị nhỏ nhất trên K.
B. f (x) liên tục trên K.
D. f (x) có giá trị lớn nhất trên K.
x=t
Câu 41. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
y = −1 và hai mặt phẳng (P), (Q)
z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
A. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x − 3) + (y + 1) + (z + 3) = .
D. (x − 3) + (y − 1) + (z − 3) = .
4
4
2
Câu 42. [3-1224d] Tìm tham số thực m để phương trình log3 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m ≤ .
C. m ≥ .
D. m > .
4
4
4
4
Câu 43. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm tứ diện đều.
B. Năm hình chóp tam giác đều, khơng có tứ diện đều.
C. Một tứ diện đều và bốn hình chóp tam giác đều.
D. Bốn tứ diện đều và một hình chóp tam giác đều.
Câu 44. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
B. .
C. 4.
D. .
A. .
2
8
4
√
Câu 45. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vơ số.
B. 62.
C. 63.
D. 64.
Câu 46. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một hoặc hai.
B. Có một.
C. Có hai.
D. Khơng có.
Câu 47. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 4.
B. 12.
C. 10.
D. 11.
Câu 48. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 3.
C. 2.
D. 1.
Câu 49. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 1.
B. 0.
C. 2.
D. 3.
√
2
3
Câu 50. [2] Phương trình log4 (x + 1) + 2 = log √2 4 − x + log8 (4 + x) có tất cả bao nhiêu nghiệm?
A. 1 nghiệm.
B. Vô nghiệm.
C. 2 nghiệm.
D. 3 nghiệm.
Câu 51. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 3, 55.
B. 15, 36.
C. 24.
D. 20.
Trang 4/10 Mã đề 1
Câu 52.
√ Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
A. 3 3.
B. 8.
C. 27.
D. 9.
Câu 53. Khối đa diện đều loại {3; 4} có số cạnh
A. 12.
B. 8.
C. 10.
D. 6.
Câu 54. Khối đa diện đều loại {3; 4} có số đỉnh
A. 8.
B. 6.
C. 4.
D. 10.
1
bằng
Câu 55. [1] Giá trị của biểu thức log √3
10
1
1
A. 3.
B. − .
C. −3.
D. .
3
3
Câu 56. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của hình chóp S .ABCD với√mặt phẳng (AIC) có diện√tích là
√
2
a 2
11a2
a2 7
a2 5
A.
.
B.
.
C.
.
D.
.
4
32
8
16
Câu 57. [1] Giá trị của biểu thức 9log3 12 bằng
A. 4.
B. 2.
C. 144.
D. 24.
Câu 58. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể
√ tích khối chóp S .ABCD là
3
10a 3
A. 40a3 .
B.
.
C. 20a3 .
D. 10a3 .
3
Câu 59. [2]√Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2√
A. m = ± 2.
B. m = ±1.
C. m = ±3.
D. m = ± 3.
log7 16
bằng
Câu 60. [1-c] Giá trị của biểu thức
log7 15 − log7 15
30
A. 2.
B. −4.
C. −2.
D. 4.
1
Câu 61. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2] ∪ [−1; +∞). B. −2 ≤ m ≤ −1.
C. −2 < m < −1.
D. (−∞; −2) ∪ (−1; +∞).
d = 30◦ , biết S BC là tam giác đều
Câu 62. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
26
16
9
13
d = 300 .
Câu 63. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
0
Độ dài cạnh bên
√ CC = 3a. Thể tích V của khối lăng trụ đã cho.3 √
3
√
3a 3
a 3
A. V =
.
B. V = 6a3 .
C. V =
.
D. V = 3a3 3.
2
2
x
x
Câu 64. [12211d] Số nghiệm của phương trình 12.3 + 3.15 − 5 x = 20 là
A. 3.
B. 1.
C. 2.
D. Vơ nghiệm.
3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng
√
a
a
2a
a 2
A. .
B. .
C.
.
D.
.
4
3
3
3
Câu 65. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
Trang 5/10 Mã đề 1
Câu 66. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
ab
1
.
C. √
.
D. √
.
A. 2
.
B. √
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
2
Câu 67. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log2 3.
B. 1 − log3 2.
C. 3 − log2 3.
D. 2 − log2 3.
x3 − 1
Câu 68. Tính lim
x→1 x − 1
A. 3.
B. 0.
D. −∞.
C. +∞.
!x
1
1−x
là
Câu 69. [2] Tổng các nghiệm của phương trình 3 = 2 +
9
A. − log3 2.
B. 1 − log2 3.
C. log2 3.
D. − log2 3.
Câu 70. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −21.
B. P = 10.
C. P = −10.
D. P = 21.
Câu 71. [1] Tập
! xác định của hàm số y != log3 (2x + 1) là
!
1
1
1
A. − ; +∞ .
B. −∞; − .
C. −∞; .
2
2
2
!
1
D.
; +∞ .
2
Câu 72. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1. √
1
3
3
A. 1.
B. .
C. .
D.
.
2
2
2
log 2x
Câu 73. [3-1229d] Đạo hàm của hàm số y =
là
x2
1 − 2 log 2x
1 − 4 ln 2x
1 − 2 ln 2x
1
A. y0 =
.
C. y0 =
.
D. y0 = 3
.
.
B. y0 = 3
3
3
x
2x ln 10
2x ln 10
x ln 10
m
ln2 x
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
Câu 74. [3] Biết rằng giá trị lớn nhất của hàm số y =
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 135.
B. S = 32.
C. S = 22.
D. S = 24.
Câu 75. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (I) sai.
B. Câu (III) sai.
Câu 76. Khối đa diện đều loại {4; 3} có số mặt
A. 10.
B. 6.
C. Khơng có câu nào D. Câu (II) sai.
sai.
C. 8.
D. 12.
Câu 77. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un
B. Nếu lim un
C. Nếu lim un
D. Nếu lim un
!
un
= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!
un
= a , 0 và lim vn = ±∞ thì lim
= 0.
vn
= +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
= a > 0 và lim vn = 0 thì lim
= +∞.
vn
Trang 6/10 Mã đề 1
Câu 78. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 9.
B. 5.
C. 7.
Câu 79. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 3 mặt.
D. 0.
D. 4 mặt.
Câu 80. Cho hình chóp S .ABCD có đáy ABCD là hình thang vuông tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp
√
√ phẳng vng góc với 3(ABCD).
√ S .ABCD là
3
3
√
a 3
a 2
a 3
A. a3 3.
B.
.
C.
.
D.
.
2
2
4
9t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
Câu 81. [4] Xét hàm số f (t) = t
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. Vô số.
B. 0.
C. 1.
D. 2.
cos n + sin n
Câu 82. Tính lim
n2 + 1
A. 1.
B. 0.
C. −∞.
D. +∞.
Câu 83. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối 20 mặt đều.
C. Khối bát diện đều.
D. Khối tứ diện đều.
Câu 84. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
120.(1, 12)3
100.(1, 01)3
A. m =
triệu.
B.
m
=
triệu.
(1, 12)3 − 1
3
100.1, 03
(1, 01)3
C. m =
triệu.
D. m =
triệu.
3
(1, 01)3 − 1
Câu 85. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Hai đường phân giác y = x và y = −x của các góc tọa độ.
C. Trục thực.
D. Trục ảo.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
B. xy0 = −ey − 1.
C. xy0 = −ey + 1.
D. xy0 = ey − 1.
Câu 86. [3-12217d] Cho hàm số y = ln
A. xy0 = ey + 1.
Câu 87. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 70, 128 triệu đồng. B. 50, 7 triệu đồng.
C. 20, 128 triệu đồng. D. 3, 5 triệu đồng.
Câu 88. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 − sin 2x.
B. −1 + sin x cos x.
C. 1 + 2 sin 2x.
D. −1 + 2 sin 2x.
Câu 89. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≤ 3.
B. −3 ≤ m ≤ 3.
C. −2 ≤ m ≤ 2.
D. m ≥ 3.
Câu 90. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Thập nhị diện đều. B. Bát diện đều.
C. Nhị thập diện đều.
D. Tứ diện đều.
Trang 7/10 Mã đề 1
Câu 91. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
9
1
2
1
B.
.
C.
.
D. .
A. .
5
10
10
5
Câu 92. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 4.
B. ln 14.
C. ln 12.
D. ln 10.
Câu 93. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim f (x) = f (a).
B. lim+ f (x) = lim− f (x) = a.
x→a
x→a
x→a
x→a
x→a
D. lim+ f (x) = lim− f (x) = +∞.
C. f (x) có giới hạn hữu hạn khi x → a.
Câu 94. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hồn nợ ở mỗi tháng là như nhau và ơng A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 25 triệu đồng.
B. 2, 22 triệu đồng.
C. 3, 03 triệu đồng.
D. 2, 20 triệu đồng.
√
Câu 95. [12215d] Tìm m để phương trình 4 x+
3
3
B. 0 < m ≤ .
A. 0 ≤ m ≤ .
4
4
1−x2
√
− 3m + 4 = 0 có nghiệm
9
C. 0 ≤ m ≤ .
D. m ≥ 0.
4
− 4.2 x+
1−x2
Câu 96. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2
A. −1.
B. 2.
C. 4.
log 2x
là
Câu 97. [1229d] Đạo hàm của hàm số y =
x2
1 − 2 ln 2x
1 − 4 ln 2x
1 − 2 log 2x
A. y0 = 3
.
B. y0 =
.
C. y0 =
.
3
x ln 10
2x ln 10
x3
3
Z
6
3x + 1
. Tính
1
f (x)dx.
0
D. 6.
D. y0 =
2x3
1
.
ln 10
Câu 98. Cho z là√nghiệm của phương trình√ x2 + x + 1 = 0. Tính P = z4 + 2z3 − z
−1 − i 3
−1 + i 3
.
B. P =
.
C. P = 2.
D. P = 2i.
A. P =
2
2
Câu 99. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 1200 cm2 .
B. 160 cm2 .
C. 120 cm2 .
D. 160 cm2 .
2x + 1
Câu 100. Tính giới hạn lim
x→+∞ x + 1
1
C. −1.
D. 2.
A. 1.
B. .
2
Câu 101. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
3
2
x
Câu 102. [2] Tìm m để giá trị lớn nhất
√ của hàm số y = 2x + (m√ + 1)2 trên [0; 1] bằng 8
A. m = ±3.
B. m = ± 3.
C. m = ± 2.
D. m = ±1.
√
x2 + 3x + 5
Câu 103. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. .
B. 1.
C. − .
D. 0.
4
4
Trang 8/10 Mã đề 1
Câu 104. Khối đa diện đều loại {5; 3} có số đỉnh
A. 20.
B. 30.
C. 8.
Câu 105. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (0; 2).
B. (2; +∞).
C. (−∞; 1).
D. 12.
D. R.
Câu 106. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung
điểm cạnh AB, biết S H ⊥ (ABCD).√Thể tích khối chóp S .ABCD
√ là
3
3
3
4a 3
2a 3
a3
a
.
B.
.
C.
.
D.
.
A.
6
3
3
3
Câu 107. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {2}.
B. {5; 2}.
C. {5}.
D. {3}.
Câu 108. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 5.
B. V = 3.
C. V = 6.
D. V = 4.
n−1
Câu 109. Tính lim 2
n +2
A. 2.
B. 3.
C. 0.
D. 1.
Câu 110. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; −1) và (0; +∞). B. (−1; 0).
C. (0; 1).
D. (−∞; 0) và (1; +∞).
Câu 111. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m ≥ .
C. m ≤ .
D. m > .
A. m < .
4
4
4
4
3
2
Câu 112. Giá
√ trị cực đại của hàm số y√= x − 3x − 3x + 2 √
√
A. −3 − 4 2.
B. −3 + 4 2.
C. 3 − 4 2.
D. 3 + 4 2.
Câu 113. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lập phương.
B. Hình chóp.
C. Hình lăng trụ.
D. Hình tam giác.
Câu 114. Khối lập phương thuộc loại
A. {4; 3}.
B. {3; 4}.
D. {3; 3}.
C. {5; 3}.
Câu 115. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lập phương.
B. Khối tứ diện.
C. Khối lăng trụ tam giác.
D. Khối bát diện đều.
Câu 116. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {0}.
B. D = R \ {1}.
C. D = (0; +∞).
D. D = R.
! x3 −3mx2 +m
1
Câu 117. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m , 0.
B. m ∈ (0; +∞).
C. m = 0.
D. m ∈ R.
d = 60◦ . Đường chéo
Câu 118. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
0
0 0
0 0
◦
BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
√
4a3 6
a3 6
2a3 6
A.
.
B.
.
C.
.
D. a3 6.
3
3
3
Câu 119. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Trang 9/10 Mã đề 1
Câu 120.
Z Mệnh!0đề nào sau đây sai?
A.
f (x)dx = f (x).
B. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
D. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
Câu 121. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 2.
B. 3.
C. 1.
D. 5.
Câu 122. Cho hai hàm y = f (x), y = Z
g(x) có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =
g0 (x)dx.
Z
Z
0
B. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Câu 123. Khối đa diện đều loại {3; 3} có số mặt
A. 2.
B. 5.
C. 4.
Câu 124. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 3.
B. 4.
C. 1.
D. 3.
1
3|x−1|
= 3m − 2 có nghiệm duy
D. 2.
1
Câu 125. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 2 ≤ m ≤ 3.
C. 2 < m ≤ 3.
D. 0 < m ≤ 1.
Câu 126. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 25 m.
C. 387 m.
D. 1587 m.
Câu 127. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. −1.
B. 6.
C. 1.
x−3
Câu 128. [1] Tính lim
bằng?
x→3 x + 3
A. 1.
B. −∞.
C. +∞.
D. 2.
D. 0.
Câu 129. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là 4.
B. Phần thực là −3, phần ảo là −4.
C. Phần thực là −3, phần ảo là 4.
D. Phần thực là 3, phần ảo là −4.
Câu 130. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(4; −8).
C. A(−4; −8)(.
D. A(4; 8).
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
D
1.
3.
4. A
C
5.
D
7.
D
2.
6.
B
8.
C
9. A
10.
11. A
C
B
12. A
13.
C
14.
15.
C
16.
D
D
17.
B
18.
19.
B
20.
C
21.
23.
24.
27. A
D
31. A
33.
B
26.
C
29.
B
22. A
B
25.
B
D
D
28.
B
30.
B
32.
D
34.
D
35.
B
36.
D
37.
B
38.
D
39.
C
40.
B
41.
C
42.
B
43.
C
44.
45.
B
46. A
47.
B
48.
49.
B
50.
51.
B
52. A
53. A
55.
54.
B
57.
C
C
61.
B
62.
67.
64.
66.
D
68. A
1
B
58.
60.
C
C
C
B
65.
D
56.
59.
63. A
D
B
D
B
C
69.
D
70. A
72. A
71. A
D
73.
C
75.
77.
D
74.
B
76.
B
78. A
80.
B
81.
82.
B
83. A
D
84.
D
85.
86.
D
87.
88.
D
89.
B
91.
B
90. A
92.
B
93. A
94.
B
95. A
96.
C
97. A
98.
C
99.
100.
D
102.
C
D
101. A
C
103.
104. A
106.
B
C
105. A
B
D
108.
107.
C
109.
C
C
110.
B
111.
112.
B
113.
114. A
115.
D
B
116.
D
117.
C
118.
D
119.
C
120.
C
122.
124.
121. A
D
C
126. A
123.
C
125.
C
127.
128.
D
130.
D
129.
2
B
C