TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. Tính lim
x→5
2
A. − .
5
x2 − 12x + 35
25 − 5x
2
B. .
5
C. −∞.
D. +∞.
2mx + 1
1
Câu 2. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 0.
B. −5.
C. −2.
D. 1.
Câu 3. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B.
.
C. a3 .
D.
.
A.
6
12
24
Câu 4. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
! đề nào dưới đây đúng?
1
A. Hàm số nghịch biến trên khoảng −∞; .
B. Hàm số nghịch biến trên khoảng (1; +∞).
! 3
!
1
1
C. Hàm số đồng biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng ; 1 .
3
3
Câu 5. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là
3
3
2a 3
a3
a3
4a 3
.
B.
.
C.
.
D.
.
A.
3
3
3
6
1
Câu 6. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 2 < m ≤ 3.
C. 0 < m ≤ 1.
D. 2 ≤ m ≤ 3.
x+2
bằng?
Câu 7. Tính lim
x→2
x
A. 2.
B. 3.
C. 0.
D. 1.
Câu 8. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
√
1
C. 5.
D. 25.
A. 5.
B. .
5
Câu 9. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD. Cho
hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.
B. 8π.
C. 16π.
D. V = 4π.
√
Câu 10. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối bát diện đều.
C. Khối tứ diện đều.
Câu 11. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 3ac
A.
.
B.
.
C.
.
c+2
c+2
c+1
5
Câu 12. Tính lim
n+3
A. 0.
B. 2.
C. 1.
Câu 13. Khối đa diện đều loại {5; 3} có số đỉnh
A. 8.
B. 12.
C. 20.
D. Khối 12 mặt đều.
D.
3b + 2ac
.
c+3
D. 3.
D. 30.
Trang 1/10 Mã đề 1
Câu 14. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. .
B. 6.
C. .
D. 9.
2
2
12 + 22 + · · · + n2
Câu 15. [3-1133d] Tính lim
n3
1
2
A. .
B. .
3
3
C. 0.
Câu 16. Phát biểu nào sau đây là sai?
1
A. lim = 0.
n
C. lim qn = 0 (|q| > 1).
D. +∞.
B. lim un = c (un = c là hằng số).
1
D. lim k = 0.
n
Câu 17. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 2.
B. 1.
C. 5.
D. 3.
Câu 18. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.
C. Khối lập phương.
D. Khối tứ diện đều.
C. D = R \ {1; 2}.
D. D = [2; 1].
Câu 19. [1] Tập xác định của hàm số y = 4
A. D = R.
B. D = (−2; 1).
x2 +x−2
là
2
Câu 20. Tính mơ đun của số phức z biết
√ (1 + 2i)z = 3 + 4i. √
A. |z| = 5.
B. |z| = 2 5.
C. |z| = 5.
D. |z| =
√4
5.
2
Câu 21. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
1
C. 3 .
A. √ .
B. 2 .
e
2e
2 e
D.
2
.
e3
Câu 22. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 2020.
B. log2 13.
C. 13.
D. log2 2020.
Câu 23. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có một.
B. Có hai.
C. Khơng có.
D. Có vơ số.
Câu 24. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −5.
B. x = −8.
C. x = 0.
D. x = −2.
Câu 25. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {4; 3}.
B. {5; 3}.
C. {3; 4}.
D. {3; 5}.
Câu 26. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 6.
B. V = 4.
C. V = 5.
D. V = 3.
!4x
!2−x
2
3
Câu 27. Tập các số x thỏa mãn
≤
là
3
2
#
"
!
#
"
!
2
2
2
2
A. −∞; .
B.
; +∞ .
C. −∞; .
D. − ; +∞ .
5
5
3
3
Câu 28. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m > − .
B. − < m < 0.
C. m ≤ 0.
D. m ≥ 0.
4
4
Trang 2/10 Mã đề 1
log 2x
là
Câu 29. [1229d] Đạo hàm của hàm số y =
x2
1 − 2 log 2x
1 − 2 ln 2x
1
A. y0 =
.
B. y0 = 3
.
C. y0 = 3
.
3
x
x ln 10
2x ln 10
Câu 30. Khối đa diện đều loại {3; 3} có số đỉnh
A. 2.
B. 3.
C. 4.
D. y0 =
1 − 4 ln 2x
.
2x3 ln 10
D. 5.
Câu 31. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1134 m.
B. 6510 m.
C. 2400 m.
D. 1202 m.
Câu 32. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
√
Câu 33. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√
√ cho là
√
√
πa3 3
πa3 3
πa3 3
πa3 6
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
3
2
6
Câu 34. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 3 mặt.
C. 4 mặt.
D. 5 mặt.
Câu 35. Khối đa diện đều loại {5; 3} có số mặt
A. 12.
B. 8.
D. 30.
C. 20.
Câu 36. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
A. aα+β = aα .aβ .
B. aα bα = (ab)α .
C. aαβ = (aα )β .
D.
α
aα
β.
=
a
aβ
Câu 37. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều đúng.
B. Cả hai đều sai.
C. Chỉ có (I) đúng.
D. Chỉ có (II) đúng.
Câu 38. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD
√ là
3
10a
3
A. 40a3 .
B. 10a3 .
C.
.
D. 20a3 .
3
Câu 39. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.
C. Khối bát diện đều.
D. Khối 12 mặt đều.
Câu 40. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 20.
B. 3, 55.
C. 15, 36.
D. 24.
Câu 41. Cho z là nghiệm của phương trình√ x2 + x + 1 = 0. Tính P =√z4 + 2z3 − z
−1 − i 3
−1 + i 3
A. P = 2i.
B. P =
.
C. P =
.
D. P = 2.
2
2
Trang 3/10 Mã đề 1
Câu 42. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể tích khối chóp S .ABC là √
√
√
a3
a3 3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
4
4
12
8
x−3 x−2 x−1
x
+
+
+
và y = |x + 2| − x − m (m là tham
Câu 43. [4-1213d] Cho hai hàm số y =
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].
B. (2; +∞).
C. [2; +∞).
D. (−∞; 2).
x2 − 5x + 6
x→2
x−2
B. 5.
Câu 44. Tính giới hạn lim
A. 1.
C. −1.
D. 0.
Câu 45. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m > 3.
C. m ≥ 3.
D. m < 3.
Câu 46. Tứ diện đều thuộc loại
A. {4; 3}.
B. {5; 3}.
C. {3; 3}.
D. {3; 4}.
Câu 47. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. 1.
C. Vơ nghiệm.
D. 2.
!
1
1
1
Câu 48. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
A. 2.
B. +∞.
C. .
D. .
2
2
Câu 49. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
là
√ góc với đáy, S C = a3 3. Thể tích khối chóp S 3.ABCD
√
3
a 3
a
a 3
A.
.
B.
.
C.
.
D. a3 .
3
3
9
Câu 50. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 220 triệu.
B. 216 triệu.
C. 210 triệu.
D. 212 triệu.
!2x−1
!2−x
3
3
≤
là
Câu 51. Tập các số x thỏa mãn
5
5
A. [1; +∞).
B. (−∞; 1].
C. (+∞; −∞).
D. [3; +∞).
Câu 52. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 53. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 8 m.
B. 16 m.
C. 24 m.
D. 12 m.
Câu 54. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = 1.
B. f 0 (0) = ln 10.
C. f 0 (0) = 10.
D. f 0 (0) =
1
.
ln 10
Trang 4/10 Mã đề 1
Z
Câu 55. Cho
1
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0
1
1
.
C. 0.
D. .
2
4
Câu 56. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 5.
B. 0, 2.
C. 0, 4.
D. 0, 3.
√
√
4n2 + 1 − n + 2
Câu 57. Tính lim
bằng
2n − 3
3
A. 2.
B. +∞.
C. 1.
D. .
2
Câu 58. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
A. 1.
B.
Câu 59. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x y−2 z−3
x y z−1
A. =
=
.
B. = =
.
2
3
−1
1 1
1
x−2 y−2 z−3
x−2 y+2 z−3
=
=
.
D.
=
=
.
C.
2
2
2
2
3
4
Câu 60. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−1; 3].
B. [1; +∞).
C. [−3; 1].
D. (−∞; −3].
Câu 61. [3] Biết rằng giá trị lớn nhất của hàm số y =
m
ln2 x
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 135.
C. S = 24.
D. S = 22.
Câu 62. Khối đa diện đều loại {5; 3} có số cạnh
A. 30.
B. 12.
C. 8.
D. 20.
Câu 63. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đơi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 13 năm.
B. 11 năm.
C. 10 năm.
D. 12 năm.
Câu 64. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
C. f (x) có giá trị nhỏ nhất trên K.
B. f (x) có giá trị lớn nhất trên K.
D. f (x) xác định trên K.
Câu 65. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5}.
B. {5; 2}.
C. {3}.
D. {2}.
2
Câu 66. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log2 3.
B. 3 − log2 3.
C. 1 − log3 2.
D. 2 − log2 3.
3
2
Câu 67. Giá
√
√ trị cực đại của hàm số y√= x − 3x − 3x + 2
A. 3 + 4 2.
B. 3 − 4 2.
C. −3 + 4 2.
√
D. −3 − 4 2.
2
2
sin x
Câu 68. [3-c]
+ 2cos x lần lượt là
√ Giá trị nhỏ nhất và√giá trị lớn nhất của hàm√số f (x) = 2
A. 2 và 2 2.
B. 2 2 và 3.
C. 2 và 3.
D. 2 và 3.
Trang 5/10 Mã đề 1
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = −e − 1.
C. xy0 = ey + 1.
D. xy0 = −ey + 1.
Câu 69. [3-12217d] Cho hàm số y = ln
A. xy0 = ey − 1.
Câu 70. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (II) và (III).
B. Cả ba mệnh đề.
Câu 71. Dãy số nào sau đây có giới hạn khác 0?
sin n
n+1
A.
.
B.
.
n
n
C. (I) và (II).
D. (I) và (III).
1
C. √ .
n
D.
1
.
n
1
Câu 72. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2) ∪ (−1; +∞). B. (−∞; −2] ∪ [−1; +∞). C. −2 ≤ m ≤ −1.
D. −2 < m < −1.
Câu 73. Khẳng định nào sau đây đúng?
A. Hình lăng trụ tứ giác đều là hình lập phương.
B. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ đứng là hình lăng trụ đều.
Câu 74. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −7.
B. −5.
C. Không tồn tại.
√3
4
Câu 75. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
7
5
2
A. a 3 .
B. a 8 .
C. a 3 .
Câu 76. Phát biểu nào sau đây là sai?
1
A. lim k = 0 với k > 1.
n
C. lim qn = 1 với |q| > 1.
D. −3.
5
D. a 3 .
1
B. lim √ = 0.
n
D. lim un = c (Với un = c là hằng số).
1 3
x − 2x2 + 3x − 1.
3
C. (−∞; 1) và (3; +∞). D. (−∞; 3).
Câu 77. Tìm tất cả các khoảng đồng biến của hàm số y =
A. (1; 3).
B. (1; +∞).
Câu 78. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là
√
√ hình chóp S .ABCD với mặt
2
2
2
a 2
a 5
11a
a2 7
A.
.
B.
.
C.
.
D.
.
4
16
32
8
2n − 3
Câu 79. Tính lim 2
bằng
2n + 3n + 1
A. 0.
B. +∞.
C. −∞.
D. 1.
2
Câu 80. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 4.
B. 3.
C. 2.
D. 5.
Trang 6/10 Mã đề 1
Câu 81. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m ≥ .
C. m > .
D. m ≤ .
4
4
4
4
x
9
Câu 82. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
B. 2.
C. 1.
D. −1.
A. .
2
log(mx)
= 2 có nghiệm thực duy nhất
Câu 83. [3-1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m ≤ 0.
B. m < 0 ∨ m = 4.
C. m < 0 ∨ m > 4.
D. m < 0.
Câu 84. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 23.
C. 24.
D. 21.
2x + 1
Câu 85. Tính giới hạn lim
x→+∞ x + 1
1
A. −1.
B. 2.
C. 1.
D. .
2
Câu 86. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
! của A lên BC là
!
8
7
5
; 0; 0 .
C.
; 0; 0 .
D.
; 0; 0 .
A. (2; 0; 0).
B.
3
3
3
√
Câu 87. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới
" đây?
!
5
5
;3 .
A. (1; 2).
B. 2; .
C.
D. [3; 4).
2
2
1
Câu 88. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3
√
một đoạn có độ dài bằng 24.
A. m = −3.
B. m = 4.
C. m = −3, m = 4.
D. −3 ≤ m ≤ 4.
Câu 89. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√
√M + m
√ của hàm số. Khi đó tổng
A. 8 3.
B. 7 3.
C. 16.
D. 8 2.
Câu 90. Khối lập phương thuộc loại
A. {5; 3}.
B. {4; 3}.
C. {3; 3}.
D. {3; 4}.
1
5
Câu 91. [2] Tập xác định của hàm số y = (x − 1) là
A. D = R.
B. D = R \ {1}.
C. D = (1; +∞).
Câu 92. Tính lim
A. +∞.
x→3
x2 − 9
x−3
B. 3.
Câu 93. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 2).
B. (0; 2).
C. −3.
D. D = (−∞; 1).
D. 6.
C. (−∞; 0) và (2; +∞). D. (0; +∞).
Câu 94. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
Trang 7/10 Mã đề 1
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên đúng. B. Cả hai câu trên sai.
C. Chỉ có (II) đúng.
D. Chỉ có (I) đúng.
Câu 95. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 3
a3 5
a3 5
.
B.
.
C.
.
D.
.
A.
12
4
12
6
Câu 96. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m < 3.
C. m > 3.
D. m ≥ 3.
Câu 97. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp 4 lần.
C. Tăng gấp 6 lần.
D. Tăng gấp đôi.
x
x+1
x−2 x−1
Câu 98. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. [−3; +∞).
C. (−3; +∞).
D. (−∞; −3].
Câu 99. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
C. 18.
D. 12.
A. 27.
B.
2
√
Câu 100. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 62.
C. Vô số.
D. 64.
Câu 101. [1] Đạo hàm của hàm số y = 2 x là
1
1
.
B. y0 = 2 x . ln 2.
C. y0 = x
.
D. y0 = 2 x . ln x.
A. y0 =
ln 2
2 . ln x
Câu 102. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. (4; 6, 5].
C. [6, 5; +∞).
D. (−∞; 6, 5).
x = 1 + 3t
Câu 103. [1232h] Trong không gian Oxyz, cho đường thẳng d :
y = 1 + 4t . Gọi ∆ là đường thẳng đi
z = 1
qua điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
trình là
x
=
−1
+
2t
x
=
1
+
3t
x
=
1
+
7t
x = −1 + 2t
A.
C.
.
D.
y = −10 + 11t . B.
y = 1 + 4t .
y=1+t
y = −10 + 11t .
z = −6 − 5t
z = 1 − 5t
z = 1 + 5t
z = 6 − 5t
!
!
!
1
2
2016
4x
Câu 104. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 2016.
B. T = 1008.
C. T = 2017.
D. T =
.
2017
Câu 105. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim+ f (x) = f (b).
B. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim− f (x) = f (a) và lim− f (x) = f (b).
D. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a
x→b
x→a
x→b
Trang 8/10 Mã đề 1
d = 120◦ .
Câu 106. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
A. 4a.
B. 3a.
C. 2a.
D.
2
Câu 107. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 2.
B. 1.
C. 3.
D. 7.
Câu 108. Khối đa diện đều loại {4; 3} có số đỉnh
A. 8.
B. 6.
C. 4.
D. 10.
8
Câu 109. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 64.
B. 81.
C. 96.
D. 82.
Câu 110. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 12.
C. 30.
D. 20.
Câu 111. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
B. log2 a =
.
C. log2 a = − loga 2.
D. log2 a = loga 2.
A. log2 a =
log2 a
loga 2
Câu 112. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 18 lần.
B. Tăng gấp 27 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 3 lần.
Câu 113. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m ≤ .
C. m > .
D. m < .
4
4
4
4
Câu 114. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 12.
C. 30.
D. 20.
Câu 115. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
8a
2a
5a
a
B.
.
C.
.
D.
.
A. .
9
9
9
9
3a
Câu 116. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng √
a 2
a
2a
a
A.
.
B. .
C.
.
D. .
3
3
3
4
Câu 117. [1] Đạo hàm của làm số y = log x là
1
1
ln 10
1
A. y0 =
.
B. y0 = .
C. y0 =
.
D.
.
x ln 10
x
x
10 ln x
Câu 118. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 1.
B. 2.
C. −1.
D. 6.
Câu 119. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 9 mặt.
C. 4 mặt.
D. 6 mặt.
Câu 120. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 27.
B. 3.
C. 10.
D. 12.
Câu 121. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
với
đáy
và
S
C
=
a
3. √
Thể tích khối chóp S .ABC √là
√
√
3
3
a 6
a 3
2a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
12
4
9
2
Trang 9/10 Mã đề 1
!
1
1
1
Câu 122. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
C. 2.
D. 1.
A. 0.
B. .
2
Câu 123. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
Câu 124. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 2.
B. 1.
C. 0.
D. +∞.
Câu 125. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (0; 1).
B. (−1; 0).
C. (−∞; 0) và (1; +∞). D. (−∞; −1) và (0; +∞).
1
Câu 126. Hàm số y = x + có giá trị cực đại là
x
A. −2.
B. −1.
C. 1.
D. 2.
a
1
Câu 127. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 1.
B. 7.
C. 2.
D. 4.
Câu 128. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn
nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.
120.(1, 12)3
100.(1, 01)3
triệu.
B. m =
triệu.
A. m =
3
(1, 12)3 − 1
(1, 01)3
100.1, 03
C. m =
triệu.
D.
m
=
triệu.
(1, 01)3 − 1
3
Câu 129. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 0.
B. 1.
C. 2.
D. 3.
Câu 130. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp
√
√ phẳng vng góc với 3(ABCD).
√ S .ABCD là
3
3
√
a
3
a
2
a
3
A. a3 3.
B.
.
C.
.
D.
.
4
2
2
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
B
2. A
3.
B
4.
5. A
6.
7. A
8.
10.
D
B
D
11. A
12. A
13.
14. A
15. A
16.
C
17. A
18.
C
19. A
20.
D
D
C
21.
B
B
22.
B
23.
24.
B
25.
D
26.
B
27.
D
28. A
29.
B
30.
C
31.
B
32.
C
33.
B
34.
C
35. A
36.
D
37.
38.
D
39. A
40.
41.
C
42.
D
D
D
43.
C
C
44.
C
45.
46.
C
47.
B
49.
B
48. A
50.
D
51. A
52. A
54.
B
53.
B
55.
B
56.
D
57.
58.
D
59.
60.
62. A
63.
64. A
65. A
68.
B
61. A
C
66.
C
D
67.
B
69. A
1
D
C
70.
C
71.
B
72.
C
73.
B
74.
C
75.
C
76.
C
77.
C
78.
D
79. A
81.
80. A
82.
C
84. A
D
83.
B
85.
B
86.
C
87.
C
88.
C
89.
C
91.
C
93.
C
90.
B
D
92.
94. A
95. A
96.
D
97. A
98.
D
99.
C
100.
B
101.
102.
B
103.
D
104.
B
105.
D
106.
D
B
107. A
108. A
109.
B
110.
B
111.
B
112.
B
113.
B
115.
B
114.
D
116.
C
118.
120.
D
119. A
B
121. A
122.
124.
117. A
D
123.
C
126. A
128.
130.
125.
B
127.
B
129. A
C
D
2
D