Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (474)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (150.58 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.
C. 9 mặt.
D. 3 mặt.
Câu 2. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 3. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp ngữ giác.
B. Hai khối chóp tam giác.
C. Một khối chóp tam giác, một khối chóp tứ giác.
D. Hai khối chóp tứ giác.
Câu 4. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 + 2 sin 2x.
B. −1 + sin x cos x.
C. −1 + 2 sin 2x.
D. 1 − sin 2x.
x−2 x−1
x


x+1
Câu 5. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. (−∞; −3].
C. (−3; +∞).
D. [−3; +∞).
Câu 6. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 4 mặt. B. 4 đỉnh, 6 cạnh, 4 mặt. C. 3 đỉnh, 3 cạnh, 3 mặt. D. 4 đỉnh, 8 cạnh, 4 mặt.
Câu 7. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = (−2; 1).
B. D = [2; 1].
2

C. D = R \ {1; 2}.

D. D = R.

7n2 − 2n3 + 1
Câu 8. Tính lim 3
3n + 2n2 + 1
2

7
A. - .
B. 0.
C. .
D. 1.
3
3
Câu 9. √
Thể tích của tứ diện đều cạnh
√ bằng a


a3 2
a3 2
a3 2
a3 2
.
B.
.
C.
.
D.
.
A.
12
2
6
4
Câu 10. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng




a 2
a 2
A.
.
B.
.
C. a 3.
D. a 2.
3
2
Câu 11. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − .
B. −e.
C. − 2 .
D. − .
2e
e
e
Câu 12. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó,√các kích
√ thước của hình hộp là
A. 6, 12, 24.
B. 2 3, 4 3, 38.
C. 8, 16, 32.

D. 2, 4, 8.
3a
Câu 13. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng
Trang 1/11 Mã đề 1



a 2
C.
.
3

2a
.
3
q
2
Câu 14. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 1].
C. m ∈ [−1; 0].
D. m ∈ [0; 4].
a

A. .
3

a
B. .
4

D.

Câu 15. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 1.
B. 0.
C. 2.

D. 3.

Câu 16. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √

a3 3
a3 3
a3 3
a3
A.
.
B.
.
C.
.

D.
.
8
4
12
4
Câu 17. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x y−2 z−3
x−2 y−2 z−3
A. =
=
.
B.
=
=
.

2
3
−1
2
3
4
x y z−1
x−2 y+2 z−3
C. = =
.
D.
=
=
.
1 1
1
2
2
2
[ = 60◦ , S O
Câu 18. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.√Khoảng cách từ O đến (S
√ BC) bằng


2a 57
a 57
a 57
A. a 57.
B.

.
C.
.
D.
.
19
19
17
x+2
Câu 19. Tính lim
bằng?
x→2
x
A. 0.
B. 2.
C. 3.
D. 1.
Câu 20. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
.
C. −2.
D. −7.
A. −4.
B.
27
Câu 21. [1] Giá trị của biểu thức 9log3 12 bằng
A. 24.
B. 4.

C. 2.


D. 144.
x+3
Câu 22. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 3.
B. 2.
C. Vơ số.
D. 1.
Câu 23. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
A. 7.
B. 5.
C.
.
D. .
2
2
Câu 24. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 3
a 6

a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
24
48
24
8
2

2

Câu 25.
số f (x) = 2sin x + 2cos x lần lượt là
√ [3-c] Giá trị nhỏ nhất và giá√trị lớn nhất của hàm √
A. 2 và 3.
B. 2 và 2 2.
C. 2 2 và 3.
D. 2 và 3.
Câu 26. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

A. aα+β = aα .aβ .
B. β = a β .

C. aαβ = (aα )β .
D. aα bα = (ab)α .
a
Trang 2/11 Mã đề 1


Câu 27. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 3.
B. 5.
C. 1.

D. 2.

Câu 28. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. 3n3 lần.
B. n2 lần.
C. n3 lần.
D. n lần.
Câu 29. Giá√trị cực đại của hàm số y√= x3 − 3x2 − 3x + 2

B. 3 − 4 2.
C. −3 − 4 2.
A. −3 + 4 2.


D. 3 + 4 2.

Câu 30. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (−1; −7).

C. (2; 2).

D. (1; −3).

Câu 31. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1. √
1
3
3
C. .
D.
.
A. 1.
B. .
2
2
2
[ = 60◦ , S A ⊥ (ABCD).
Câu 32. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối chóp S .ABCD là


a3 3
a3 2
a3 2
3
A.
.
B.
.

C. a 3.
.
D.
6
12
4
Câu 33. Xét hai câu sau
Z
Z
Z
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
(I)
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (I) đúng.

B. Cả hai câu trên đúng. C. Chỉ có (II) đúng.

D. Cả hai câu trên sai.

Câu 34. [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
√ min |z − 1 − i|.
A. 2.
B. 2.
C. 1.
D. 10.
Câu 35. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?

A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên khoảng (−2; 1).
C. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
Câu 36. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD), S D = a 5. Thể tích khối
√ chóp S .ABCD là


3

a
5
a3 15
a3 6
3
A. a 6.
B.
.
C.
.
D.
.
3
3
3
Câu 37. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = ln x − 1.
C. y0 = 1 + ln x.

D. y0 = 1 − ln x.
!x
1
1−x
Câu 38. [2] Tổng các nghiệm của phương trình 3 = 2 +

9
A. log2 3.
B. 1 − log2 3.
C. − log2 3.
D. − log3 2.
Câu 39. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.
B. 12.

C. 8.

D. 6.

Câu 40. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 9.
B. 13.
C. 0.

D. Không tồn tại.

Câu 41. Khối đa diện đều loại {3; 3} có số đỉnh
A. 3.
B. 2.


D. 5.

C. 4.

Trang 3/11 Mã đề 1


Câu 42. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m ≥ .
C. m < .
D. m ≤ .
4
4
4
4
1

Câu 43. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (−∞; 1).
B. D = R.
C. D = (1; +∞).

D. D = R \ {1}.



Câu 44. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã



√ cho là
πa3 3
πa3 6
πa3 3
πa3 3
.
B. V =
.
C. V =
.
D. V =
.
A. V =
6
3
6
2
Câu 45. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 0).
B. Hàm số đồng biến trên khoảng (1; 2).
C. Hàm số nghịch biến trên khoảng (0; 1).
D. Hàm số nghịch biến trên khoảng (1; +∞).
Câu 46. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.

C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 47. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.
B. 8.
C. 12.
D. 20.
!
x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
Câu 48. [3] Cho hàm số f (x) = ln 2017 − ln
x
2017
2016
4035
A.
.
B. 2017.
C.
.
D.
.
2018
2017
2018
Z 3
a
x
a
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

Câu 49. Cho I =

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 16.
B. P = −2.
C. P = 4.
D. P = 28.
Câu 50. Dãy
!n số nào sau đây có giới
!n hạn là 0?
5
5
A. − .
B.
.
3
3

!n
1
C.
.
3

!n
4
D.

.
e

Câu 51. Tứ diện đều thuộc loại
A. {5; 3}.
B. {3; 3}.

C. {3; 4}.

D. {4; 3}.

Câu 52. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



3
4a3 3
5a3 3
a3 3
2a 3
.
B.
.
C.
.
D.
.

A.
3
3
3
2
Câu 53. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 6510 m.
B. 1134 m.
C. 1202 m.
D. 2400 m.
Câu 54. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Nhị thập diện đều. B. Tứ diện đều.
C. Bát diện đều.
2x + 1
Câu 55. Tính giới hạn lim
x→+∞ x + 1
1
A. 1.
B. .
C. −1.
2

D. Thập nhị diện đều.

D. 2.

2

Câu 56. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là

A. 5.
B. 8.
C. 7.

D. 6.
Trang 4/11 Mã đề 1


Câu 57. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 + 2e
1 + 2e
A. m =
.
B. m =
.
C. m =
.
4e + 2
4 − 2e
4e + 2

D. m =

1 − 2e
.
4 − 2e

d = 60◦ . Đường chéo
Câu 58. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB

BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0





a3 6
2a3 6
4a3 6
3
.
B. a 6.
.
D.
.
A.
C.
3
3
3
Câu 59. Khối đa diện đều loại {5; 3} có số đỉnh
A. 12.
B. 30.
C. 8.
D. 20.
Câu 60. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. +∞.
B. 0.


C. 2.

D. 1.

Câu 61. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. −2.
B. − .
C. 2.
D. .
2
2
Câu 62. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 1587 m.
B. 27 m.
C. 387 m.
D. 25 m.
Câu 63. [1] !Tập xác định của hàm số y != log3 (2x + 1) là
!
1
1
1
; +∞ .
A.
B. − ; +∞ .

C. −∞; .
2
2
2

!
1
D. −∞; − .
2

Câu 64. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 2).
B. (0; 2).

D. (−∞; 0) và (2; +∞).

C. (0; +∞).

Câu 65. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −4.
B. 4.
C. 2.
D. −2.
x−1
Câu 66. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
AB có độ dài bằng
√ đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng √


A. 2 2.
B. 2.
C. 6.
D. 2 3.
Câu 67.
√ của |z|
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất
A. 3.
B. 1.
C. 2.
D. 5.
Câu 68. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


3
3
a 2
a 6
a3 3
a3 3
A.
.
B.
.
C.
.
D.

.
16
48
24
48
Câu 69. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD

√ là
3
3
3
3
8a 3
a 3
8a 3
4a 3
A.
.
B.
.
C.
.
D.
.
9
3
9
9

Câu 70. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

C. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
D. Cả ba đáp án trên.
Trang 5/11 Mã đề 1


Câu 71. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 3.
B. 2.

C. 1.

D. +∞.

d = 300 .
Câu 72. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên
√ CC = 3a. Thể tích V 3của
√ khối lăng trụ đã cho.

a3 3
3a 3
A. V =
.
B. V =

.
C. V = 3a3 3.
D. V = 6a3 .
2
2
4
Câu 73. Tìm m để hàm số y = x − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 0.
B. m > −1.
C. m > 1.
D. m ≥ 0.
Câu 74. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


a3 3
a3 3
a3
3
.
B. a .
C.
.
D.
.
A.
3
2
6
Câu 75. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác

S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B. a3 .
C.
.
D.
.
24
12
6
Câu 76. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 9 cạnh.
C. 11 cạnh.
D. 10 cạnh.

2
Câu 77. Xác định phần ảo của số √
phức z = ( 2 + 3i)

C. −7.
D. 6 2.
A. 7.
B. −6 2.
Câu 78. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường

thẳng S√B bằng
a
a
a 3
.
B. .
C. .
D. a.
A.
2
2
3
!
1
1
1
+ ··· +
Câu 79. [3-1131d] Tính lim +
1 1+2
1 + 2 + ··· + n
5
3
A. +∞.
B. 2.
C. .
D. .
2
2
Câu 80. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.

B. 4 mặt.
C. 6 mặt.
D. 10 mặt.
Câu 81. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối bát diện đều.
B. Khối lăng trụ tam giác.
C. Khối tứ diện.
D. Khối lập phương.
Câu 82. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. 2.
C. Vô nghiệm.
D. 1.
Câu 83. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
√ góc với đáy, S C = a3 3. Thể tích khối chóp S .ABCD là

a3 3
a
a3 3
3
A.
.
B.
.
C. a .
D.
.
3

3
9
8
Câu 84. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 64.
B. 82.
C. 81.
D. 96.
Câu 85. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 91cm3 .
B. 64cm3 .
C. 48cm3 .
D. 84cm3 .
Trang 6/11 Mã đề 1


Câu 86. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 5}.
B. {5; 3}.
C. {4; 3}.

D. {3; 4}.

Câu 87. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≤ 3.
B. −3 ≤ m ≤ 3.
C. −2 ≤ m ≤ 2.
D. m ≥ 3.

1
2mx + 1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 88. Giá trị lớn nhất của hàm số y =
m−x
3
A. 1.
B. −2.
C. 0.
D. −5.
Câu 89. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m > 3.
C. m < 3.
D. m ≤ 3.

Câu 90. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 62.
C. 63.
D. Vô số.
Câu 91. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là −4.
B. Phần thực là 4, phần ảo là 1.
C. Phần thực là −1, phần ảo là 4.
D. Phần thực là 4, phần ảo là −1.
Câu 92. Hàm số nào sau đây không có cực trị
A. y = x3 − 3x.


B. y = x4 − 2x + 1.

x2 − 5x + 6
Câu 93. Tính giới hạn lim
x→2
x−2
A. −1.
B. 5.

C. y =

C. 0.

x−2
.
2x + 1

1
D. y = x + .
x

D. 1.

Câu 94. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
C. V = S h.
D. V = 3S h.
A. V = S h.

B. V = S h.
2
3
Câu 95. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
9
18
6
15
Câu 96. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; 8).
B. A(4; −8).
C. A(−4; 8).
D. A(−4; −8)(.
!
3n + 2
2
Câu 97. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng

A. 3.
B. 5.
C. 4.
D. 2.
Câu 98. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 2.
C. 1.
D. Vô nghiệm.
Câu 99. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m > 0.
B. m = 0.
C. m < 0.
D. m , 0.


4n2 + 1 − n + 2
Câu 100. Tính lim
bằng
2n − 3
3
A. +∞.
B. .
C. 1.
D. 2.
2
Câu 101. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
Trang 7/11 Mã đề 1




A. 6 3.


20 3
B.
.
3


14 3
C.
.
3


D. 8 3.

Câu 102. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
Câu 103. [12210d] Xét các số thực dương x, y thỏa mãn log3
nhất Pmin của P√ = x + y.

9 11 + 19
2 11 − 3

A. Pmin =
. B. Pmin =
.
9
3
1 − 2n
bằng?
Câu 104. [1] Tính lim
3n + 1
1
A. .
B. 1.
3
x2 − 3x + 3
Câu 105. Hàm số y =
đạt cực đại tại
x−2
A. x = 0.
B. x = 2.

C. Pmin

1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ
x + 2y



18 11 − 29
9 11 − 19

=
. D. Pmin =
.
21
9

2
C. − .
3

D.

2
.
3

C. x = 1.

D. x = 3.

Câu 106. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 4.

B. 2.

C. 1.


D. 3.

Câu 107. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
1
1
2
9
A. .
B.
.
C. .
D.
.
5
10
5
10
log2 240 log2 15

+ log2 1 bằng
Câu 108. [1-c] Giá trị biểu thức
log3,75 2 log60 2
A. −8.
B. 4.
C. 1.
D. 3.
Câu 109. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn cạnh.

B. Năm cạnh.
C. Ba cạnh.

D. Hai cạnh.

Câu 110. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lăng trụ.
B. Hình lập phương.
C. Hình chóp.

D. Hình tam giác.

Câu 111. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e4 .
B. −2e2 .
C. 2e2 .
D. −e2 .
Câu 112. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9
tháng thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không
thay đổi trong thời gian gửi.
A. 0, 5%.
B. 0, 6%.
C. 0, 8%.
D. 0, 7%.
Trang 8/11 Mã đề 1


! x3 −3mx2 +m
1
Câu 113. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =

nghịch biến trên
π
khoảng (−∞; +∞)
A. m = 0.
B. m ∈ R.
C. m ∈ (0; +∞).
D. m , 0.
Câu 114. Khối đa diện đều loại {5; 3} có số cạnh
A. 12.
B. 8.

C. 30.

D. 20.

Câu 115. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 2.

B. 4.

C. 3.

B. 0 < m ≤ 1.

= 3m − 2 có nghiệm duy

D. 1.
1


Câu 116. [3-12214d] Với giá trị nào của m thì phương trình
A. 2 ≤ m ≤ 3.

1
3|x−1|

3|x−2|

= m − 2 có nghiệm

C. 2 < m ≤ 3.

D. 0 ≤ m ≤ 1.

Câu 117. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
A. a 6.
.
C. a 3.
B.
D. 2a 6.
2
Câu 118. Cho hàm số y = x3 − 2x2 + x + 1.! Mệnh đề nào dưới đây đúng?
1
B. Hàm số nghịch biến trên khoảng (1; +∞).

A. Hàm số nghịch biến trên khoảng ; 1 .
3
!
!
1
1
C. Hàm số nghịch biến trên khoảng −∞; .
D. Hàm số đồng biến trên khoảng ; 1 .
3
3
Câu 119. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. −7, 2.
B. 72.
C. 7, 2.
Câu 120.
Trong các khẳng định sau, khẳng định nào sai?Z
Z
dx = x + C, C là hằng số.

A.
Z
C.

xα+1
x dx =
+ C, C là hằng số.
α+1
α

B.


D. 0, 8.

0dx = C, C là hằng số.

Z
D.

1
dx = ln |x| + C, C là hằng số.
x

Câu 121. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = 2.
C. y(−2) = 6.
D. y(−2) = −18.
Câu 122. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 11 năm.
C. 12 năm.
D. 14 năm.
Câu 123. Phát biểu nào sau đây là sai?
A. lim un = c (un = c là hằng số).
1
C. lim k = 0.

n

1
= 0.
n
D. lim qn = 0 (|q| > 1).

B. lim

Câu 124. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim− f (x) = f (b).
B. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a

x→b

x→a

x→b

C. lim− f (x) = f (a) và lim+ f (x) = f (b).

x→a

x→b

x→a

x→b


D. lim+ f (x) = f (a) và lim+ f (x) = f (b).

Trang 9/11 Mã đề 1


Câu 125. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 0.
B. 9.

C. 5.

D. 7.

Câu 126. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Một tứ diện đều và bốn hình chóp tam giác đều.
B. Năm hình chóp tam giác đều, khơng có tứ diện đều.
C. Năm tứ diện đều.
D. Bốn tứ diện đều và một hình chóp tam giác đều.
Câu 127. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −3.
C. m = −2.
D. m = −1.
2
2
2
1 + 2 + ··· + n

Câu 128. [3-1133d] Tính lim
n3
2
1
C. 0.
D. .
A. +∞.
B. .
3
3
Câu 129.
Cho hàm số f (x),
Z
Z g(x) liên tục
Z trên R. Trong các
Z mệnh đề sau, mệnh
Z đề nào
Z sai?
( f (x) + g(x))dx =

A.
Z
C.

( f (x) − g(x))dx =

f (x)dx +

Z


g(x)dx.

B.

Z
f (x)dx −

Z
g(x)dx.

D.

f (x)g(x)dx =
f (x)dx g(x)dx.
Z
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.

Câu 130. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5}.
B. {2}.
C. {5; 2}.
D. {3}.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ

Mã đề thi 1
D

1.
C

3.
5.

2.
6.

D

10.

11. A
D

14.

B
B

18.

C

20.


C

21.

D

22. A

23.

D

24.

C

25.

C

16. A
C

17.

27.

26.
D


C
B

28.

29. A

30. A

31. A

32.

33.

B

12. A

13.

19.

B

8. A

9. A

15.


C

4.

B

7.

B

C
D

34.

B

C

35.

C

36.

37.

C


38.

C

40.

C

39.

B

D

41.

C

42.

43.

C

44.

B

45.


C

46.

B

47.

C

48. A

49.

C

50.

51.

B

53. A
55.

D
D

61. A
63.


B

65.
67.

C

52.

D

54.

D

56.

57. A
59.

D

D
C
1

C

58.


B

60.

B

62.

B

64.

D

66.

D

68.

D


69.

D

71.


B

72.

73.

B

74.
C

75.
77.
79.

D
B

81.

C

70.
B

C

76.

D


78.

D
C

80.
82.

C

83.

B

84.

85.

B

86. A

87.

B

88.

89. A


90.
D

91.

D
C
C
B

92.

C

93. A

94.

C

96. A

97.

C

98.
100.


C

101. A

102.

C

103.

104.

C

105.

106.

C
D

109.

110.

D

111.

112.


D

113. A

114.

C

115.

116.

C

117. A

118. A

C
D
D

119. A

120.

C
B


121.

D

123.

D

124. A

125.

126. A

127.

128.

B

107.

D

108. A

122.

D


99.

B

B

129.

130. A

2

B
C
B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×