Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn toán thpt 12 c2 (474)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (112.45 KB, 5 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 3 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



3
4a 3
5a3 3
2a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
3
3


3
2
Câu 2. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không rút
tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo.
Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban
đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 14 năm.
C. 10 năm.
D. 11 năm.
Câu 3. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 2.
B. 4.
C. −4.

D. −2.

Câu 4. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 30.
C. 12.
D. 20.


4n2 + 1 − n + 2
bằng
Câu 5. Tính lim
2n − 3
3
A. .

B. 2.
C. +∞.
D. 1.
2
Câu 6. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 7. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
A. 15 tháng.
B. 16 tháng.
C. 17 tháng.
D. 18 tháng.
x2
Câu 8. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = , m = 0.
B. M = e, m = 0.
C. M = e, m = 1.
D. M = e, m = .
e
e
Câu 9. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường thẳng
BB0 và AC 0 bằng

ab
ab
1
1
A. √
.
B. 2
.
C.
.
D.
.


a + b2
a2 + b2
2 a2 + b2
a2 + b2
Câu 10. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 3.
B. V = 6.
C. V = 5.
D. V = 4.
x−3
Câu 11. [1] Tính lim
bằng?
x→3 x + 3
A. +∞.
B. 0.

C. −∞.
D. 1.
Câu 12. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 2.
B. 3.
C. 1.

D. 0.
Trang 1/3 Mã đề 1


Câu 13.
đề nào sai? Z
Z Cho hàm sốZf (x), g(x) liên tục trên R. Trong cácZmệnh đề sau, mệnh Z
A.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
B.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
Z
Z
Z
Z
Z
C.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
D.

f (x)g(x)dx =
f (x)dx g(x)dx.
Câu 14. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
C. V = S h.
D. V = S h.
A. V = 3S h.
B. V = S h.
3
2
2
Câu 15. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 1.
B. 22016 .
C. 0.
D. e2016 .
Câu 16. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Cả hai đều đúng.

C. Chỉ có (I) đúng.

D. Cả hai đều sai.

Câu 17. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình

lập phương thành
A. Bốn tứ diện đều và một hình chóp tam giác đều.
B. Một tứ diện đều và bốn hình chóp tam giác đều.
C. Năm tứ diện đều.
D. Năm hình chóp tam giác đều, khơng có tứ diện đều.
Câu 18. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ là


√ Thể tích khối chóp S 3.ABC
a 2
a3 3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
12
12
4
6
!
1
1

1
+
+ ··· +
Câu 19. Tính lim
1.2 2.3
n(n + 1)
3
A. 2.
B. 0.
C. 1.
D. .
2
Câu 20. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
A. a 3.
.
C. 2a 6.
B.
D. a 6.
2
2−n
bằng
Câu 21. Giá trị của giới hạn lim
n+1
A. −1.

B. 1.
C. 0.
D. 2.
Câu 22. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
x−3 x−2 x−1
x
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (2; +∞).
B. [2; +∞).
C. (−∞; 2].
D. (−∞; 2).
Câu 23. [4-1213d] Cho hai hàm số y =

Trang 2/3 Mã đề 1


x−2 x−1
x

x+1
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−3; +∞).
B. (−∞; −3).
C. (−∞; −3].
D. [−3; +∞).
Câu 24. [4-1212d] Cho hai hàm số y =

Câu 25. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng (S AB). Thiết diện của
√ hình chóp S .ABCD với
√mặt phẳng (AIC) có diện
√tích là
2
2
2
2
11a
a 5
a 2
a 7

A.
.
B.
.
C.
.
D.
.
32
16
4
8
Câu 26. Phát biểu nào sau đây là sai?
1
B. lim un = c (Với un = c là hằng số).
A. lim √ = 0.
n
1
C. lim k = 0 với k > 1.
D. lim qn = 1 với |q| > 1.
n
Câu 27. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −6.
B. −3.
C. 3.
D. 0.
Câu 28. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −12.
B. −15.

C. −5.
D. −9.
Câu 29. Khối lập phương thuộc loại
A. {3; 4}.
B. {5; 3}.

C. {3; 3}.

D. {4; 3}.

Câu 30. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B.
.
C. a3 .
D.
.
A.
6
24
12
Câu 31. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị lớn nhất trên K.
B. f (x) có giá trị nhỏ nhất trên K.
C. f (x) xác định trên K.

D. f (x) liên tục trên K.
Câu 32. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
B. T = e + 3.
C. T = e + 1.
D. T = e + .
A. T = 4 + .
e
e
1 + 2 + ··· + n
Câu 33. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
A. lim un = 1.
B. lim un = 0.
1
C. lim un = .
D. Dãy số un không có giới hạn khi n → +∞.
2
Câu 34. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 1.
B. 3.
C. 2.
D. Vô số.
Câu 35. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 2.

B. 0.

C. 1.

D. +∞.

Câu 36. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của√|z + 2 + i|



12 17
A.
.
B. 34.
C. 5.
D. 68.
17
Trang 3/3 Mã đề 1


Câu 37. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
2a
a
8a
5a
.
B.

.
C. .
D.
.
A.
9
9
9
9
Câu 38. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.

.
D.
.
24
12
6
36
Câu 39. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 40. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.

C. Khối bát diện đều.

D. Khối 20 mặt đều.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 4/3 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.


D

2.

3.

D

4.

5.

D

6.

B

8.

B

7.

B

9. A
11.

B

D

13.
15.
17.

D

24.

B
D
B

D

28. A
30.

31.

D

32.

33.

C

26.


D
C

D
B

34.

B

C

36. A

37.
39.

D

22. A

29.

35.

B

20.


C

25.
27.

12.

18. A

21. A
23.

D

16. A

B

19.

C

10.
14.

C

D

D


38.
40. A

C

1

B



×