Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg (271)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (151.73 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm
3
dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6 giây
2
cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 1587 m.
C. 387 m.
D. 25 m.
Câu 2. [12221d] Tính tổng tất cả các nghiệm của phương trình x + 1 = 2 log2 (2 x + 3) − log2 (2020 − 21−x )
A. 13.
B. log2 13.
C. log2 2020.
D. 2020.
p
ln x
1
Câu 3. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8


1
8
1
A. .
B. .
C. .
D. .
9
9
3
3
Câu 4. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.
C. 3 mặt.

D. 9 mặt.

Câu 5. Khối đa diện đều loại {5; 3} có số đỉnh
A. 20.
B. 8.

D. 30.

C. 12.

Câu 6. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = 0.
B. x = −8.
C. x = −5.


D. x = −2.

3
2
x
Câu 7. [2] Tìm
√ m để giá trị nhỏ nhất của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng 2 √
A. m = ± 2.
B. m = ±1.
C. m = ±3.
D. m = ± 3.
3a
Câu 8. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng góc
2
của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng
cách từ A đến mặt phẳng (S BD) bằng

a
a 2
a
2a
.
B. .
C.
.
D. .
A.
3

4
3
3

Câu 9. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a
a 3
A. .
B. .
C. a.
D.
.
3
2
2
Câu 10. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
x2 − 5x + 6
x→2
x−2
B. 0.

Câu 11. Tính giới hạn lim
A. −1.


C. 1.

D. 5.

π
Câu 12. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.

A. T = 2 3.
B. T = 4.
C. T = 3 3 + 1.
D. T = 2.
Câu 13.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ
√ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 2.
B. 1.
C. 10.
D. 2.
Trang 1/10 Mã đề 1


log 2x

Câu 14. [3-1229d] Đạo hàm của hàm số y =
x2

1 − 2 log 2x
1 − 4 ln 2x
1 − 2 ln 2x
A. y0 =
.
B. y0 =
.
C. y0 = 3
.
3
3
x
2x ln 10
x ln 10
Câu 15. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. R.
B. (−∞; 1).
C. (2; +∞).

D. y0 =

2x3

1
.
ln 10

D. (0; 2).

Câu 16. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình

phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 4.
B. 0, 2.
C. 0, 5.
D. 0, 3.
Câu 17. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 10 năm.
C. 13 năm.
D. 12 năm.
Câu 18. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 9.
B. 13.
C. Không tồn tại.

D. 0.

Câu 19. Khối đa diện đều loại {5; 3} có số mặt
A. 30.
B. 20.

D. 12.

C. 8.

Câu 20. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là

27
.
A. 18.
B. 12.
C. 27.
D.
2
Câu 21. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).

√ Thể tích khối chóp S 3.ABC
√ là

3
a 3
a3 2
a3 3
a 3
.
B.
.
C.
.
D.
.
A.
12
4
12
6

Câu 22. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 8.
B. 6.
C. 4.
D. 3.
x−3
Câu 23. [1] Tính lim
bằng?
x→3 x + 3
A. 1.
B. −∞.
C. +∞.
D. 0.
!x
1
Câu 24. [2] Tổng các nghiệm của phương trình 31−x = 2 +

9
A. − log3 2.
B. 1 − log2 3.
C. − log2 3.
D. log2 3.

3
4
Câu 25. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
2
7
5

5
B. a 3 .
C. a 3 .
D. a 8 .
A. a 3 .
Câu 26. Cho
√ số phức z thỏa mãn |z +
√ 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
A. |z| = 17.
B. |z| = 10.
C. |z| = 17.
D. |z| = 10.
Câu 27. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là −4.
B. Phần thực là 4, phần ảo là 1.
C. Phần thực là −1, phần ảo là 4.
D. Phần thực là 4, phần ảo là −1.
Câu 28. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 6510 m.
B. 2400 m.
C. 1134 m.
D. 1202 m.
Trang 2/10 Mã đề 1


2

Câu 29. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 4.

B. 2.
C. 3.
Câu 30. Khối đa diện đều loại {3; 4} có số mặt
A. 6.
B. 10.
2n − 3
Câu 31. Tính lim 2
bằng
2n + 3n + 1
A. −∞.
B. 0.

D. 5.

C. 12.

D. 8.

C. +∞.

D. 1.

Câu 32. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Hai mặt.
B. Một mặt.
C. Bốn mặt.

D. Ba mặt.

Câu 33. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là

A. 2.
B. 1.
C. 3.
D. Vơ nghiệm.
!
5 − 12x
= 2 có bao nhiêu nghiệm thực?
Câu 34. [2] Phương trình log x 4 log2
12x − 8
A. 1.
B. 2.
C. Vô nghiệm.
D. 3.
Câu 35. Bát diện đều thuộc loại
A. {3; 3}.
B. {3; 4}.

C. {4; 3}.

D. {5; 3}.

Câu 36. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 4.
B. ln 14.
C. ln 10.
D. ln 12.
x−1 y z+1
Câu 37. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =


2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 10x − 7y + 13z + 3 = 0.
B. 2x − y + 2z − 1 = 0.
C. 2x + y − z = 0.
D. −x + 6y + 4z + 5 = 0.
Câu 38. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≤ 3.
B. −2 ≤ m ≤ 2.
C. m ≥ 3.
D. −3 ≤ m ≤ 3.
Câu 39. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Z
u0 (x)
B.
dx = log |u(x)| + C.
u(x)
C. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
Câu 40. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
B. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C. Số cạnh của khối chóp bằng số mặt của khối chóp.
D. Số đỉnh của khối chóp bằng số mặt của khối chóp.
un

Câu 41. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 1.
B. 0.
C. −∞.
D. +∞.

Câu 42. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 62.
C. 63.
D. Vô số.
Câu 43. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 2.
C. 1.
D. 3.
Trang 3/10 Mã đề 1


Câu 44. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 45. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng





20 3
14 3
.
D.
.
A. 8 3.
B. 6 3.
C.
3
3
Câu 46. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 1.
B. 2.
C. 3.

D. 0.

Câu 47. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −5.
B. −15.
C. −12.
D. −9.
2

Câu 48. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log2 3.

B. 3 − log2 3.
C. 1 − log3 2.
Câu 49. Phát biểu nào sau đây là sai?
1
A. lim k = 0.
n
C. lim un = c (un = c là hằng số).

D. 2 − log2 3.

1
= 0.
n
D. lim qn = 0 (|q| > 1).

B. lim

Câu 50. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.
B. log2 a = − loga 2.
C. log2 a = loga 2.
D. log2 a =
.
log2 a
loga 2
[ = 60◦ , S A ⊥ (ABCD).
Câu 51. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD

Biết rằng√ khoảng cách từ A đến cạnh S C là a. Thể tích khối√chóp S .ABCD là

3
3

2
a
2
a3 3
a
.
B. a3 3.
.
D.
.
A.
C.
6
12
4
Câu 52. Khối đa diện đều loại {3; 5} có số mặt
A. 30.
B. 20.

C. 12.

D. 8.

Câu 53. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Bát diện đều.

B. Thập nhị diện đều. C. Nhị thập diện đều.

D. Tứ diện đều.

Câu 54. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.

D. Khối lập phương.

C. Khối bát diện đều.

Câu 55. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 6%.
B. 0, 7%.
C. 0, 5%.
D. 0, 8%.
Câu 56. Giá trị lớn nhất của hàm số y =
A. 0.

B. −2.

2mx + 1
1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
C. 1.

D. −5.

x2 − 3x + 3
đạt cực đại tại
x−2
A. x = 1.
B. x = 2.
2n + 1
Câu 58. Tìm giới hạn lim
n+1
A. 0.
B. 3.

Câu 57. Hàm số y =

C. x = 0.

D. x = 3.

C. 1.

D. 2.
Trang 4/10 Mã đề 1


Câu 59. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m ≥ 3.
C. m ≤ 3.

D. m < 3.
2

Câu 60. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 6.
B. 5.
C. 8.

D. 7.

Câu 61. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
C. .
D. 6.
A. 9.
B. .
2
2
Câu 62. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 1.
B. 0.
C. 3.
D. 2.
Câu 63. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −3.
B. Không tồn tại.
C. −7.


D. −5.

Câu 64. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {3}.
B. {2}.
C. {5}.
D. {5; 2}.
Câu 65. Khối đa diện đều loại {3; 3} có số cạnh
A. 5.
B. 6.
2n + 1
Câu 66. Tính giới hạn lim
3n + 2
1
2
A. .
B. .
2
3

C. 8.

D. 4.

3
.
2

D. 0.


C.

1
Câu 67. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 2 ≤ m ≤ 3.
C. 2 < m ≤ 3.
D. 0 < m ≤ 1.
Câu 68. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lăng trụ tam giác.
B. Khối tứ diện.
C. Khối lập phương.
D. Khối bát diện đều.
Câu 69. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = −21.
C. P = 21.
D. P = −10.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 70. [3-12217d] Cho hàm số y = ln
x+1
0
y
0
y
A. xy = e − 1.
B. xy = −e + 1.
C. xy0 = ey + 1.

D. xy0 = −ey − 1.
Câu 71. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 =
.
B. y0 = x
.
C. y0 = 2 x . ln x.
D. y0 = 2 x . ln 2.
ln 2
2 . ln x
Câu 72. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng


a 2
a 2
A.
.
B.
.
C. 2a 2.
D. a 2.
2
4
Câu 73. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = [2; 1].

B. D = R \ {1; 2}.
C. D = (−2; 1).
D. D = R.
1 − xy
Câu 74. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x +
√ y.



18 11 − 29
2 11 − 3
9 11 + 19
9 11 − 19
A. Pmin =
. B. Pmin =
.
C. Pmin =
. D. Pmin =
.
21
3
9
9
2

Trang 5/10 Mã đề 1



Câu 75. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối 20 mặt đều.

C. Khối tứ diện đều.

D. Khối bát diện đều.

Câu 76. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + .
B. T = e + 1.
C. T = e + 3.
D. T = 4 + .
e
e
Câu 77. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 2.
C. 3.
D. 4.
Câu 78. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 4.
B. 10.
C. 12.
D. 11.

Câu 79. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
(1, 01)3
100.1, 03
triệu.
B. m =
triệu.
A. m =
3
(1, 01)3 − 1
100.(1, 01)3
120.(1, 12)3
triệu.
D.
m
=
triệu.
C. m =
(1, 12)3 − 1
3
1 + 2 + ··· + n
Câu 80. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. lim un = .
B. lim un = 1.

2
C. Dãy số un không có giới hạn khi n → +∞.
D. lim un = 0.
Câu 81. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 + 2 sin 2x.
B. −1 + sin x cos x.
C. 1 − sin 2x.
D. −1 + 2 sin 2x.
Z 1
Câu 82. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

1
.
2
Câu 83. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai cạnh.
B. Bốn cạnh.
C. Ba cạnh.
A. 0.

B. 1.

C.

D.

1
.

4

D. Năm cạnh.

Câu 84. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC theo a


a3 15
a3
a3 15
a3 5
A.
.
B.
.
C.
.
D.
.
5
3
25
25
Câu 85. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −1.
B. m = −2.
C. m = −3.

D. m = 0.


Câu 86. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2

A. 2.

B. −1.

C. 6.

3

Z

6
3x + 1

. Tính

1

f (x)dx.
0

D. 4.

[ = 60◦ , S O
Câu 87. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a. Khoảng cách từ A đến (S

√ BC) bằng


2a 57
a 57
a 57
A.
.
B. a 57.
C.
.
D.
.
19
19
17
Trang 6/10 Mã đề 1


Câu 88. Khối chóp ngũ giác có số cạnh là
A. 9 cạnh.
B. 12 cạnh.

C. 10 cạnh.

Câu 89. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. −1.
B. 1.
C. 6.


D. 11 cạnh.
D. 2.

Câu 90. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 0.
B. −6.
C. 3.
D. −3.


Câu 91. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là



a3
a3 3
a3 3
3
A.
.
B. a 3.
.
D.
.
C.
4
12
3


Câu 92. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
D. 5.
A. 25.
B. 5.
C. .
5
Câu 93. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 72.
B. 0, 8.
C. −7, 2.
D. 7, 2.
x−2 x−1
x
x+1
Câu 94. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. (−∞; −3].
C. (−3; +∞).
D. [−3; +∞).

n−1
Câu 95. Tính lim 2
n +2
A. 2.
B. 0.
C. 1.
D. 3.
x−1
Câu 96. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
B thuộc (C), đoạn thẳng AB có độ dài bằng

√ đều ABI có hai đỉnh A, √
B. 2 2.
C. 2.
D. 6.
A. 2 3.
Câu 97. Dãy số nào sau đây có giới hạn khác 0?
1
1
A. √ .
B. .
n
n

C.

sin n

.
n

D.

n+1
.
n

Câu 98. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.

.
D.
.
24
12
6
36
1 − n2
Câu 99. [1] Tính lim 2
bằng?
2n + 1
1
1
1
A. − .
B. .
C. 0.
D. .
2
2
3
Câu 100. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
A. 68.
B. 34.

C.
.
D. 5.
17
Câu 101.
√ Thể tích của tứ diện đều
√cạnh bằng a


3
3
a 2
a 2
a3 2
a3 2
A.
.
B.
.
C.
.
D.
.
2
6
4
12
Trang 7/10 Mã đề 1



Câu 102. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 + 2e
1 − 2e
.
B. m =
.
C. m =
.
A. m =
4e + 2
4 − 2e
4e + 2
Câu 103. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 3ac
3b + 2ac
A.
.
B.
.
C.
.
c+2
c+1
c+3
Câu 104. Dãy số nào có giới hạn bằng!0?
n
6
n3 − 3n

.
B. un =
.
A. un =
n+1
5
2−n
Câu 105. Giá trị của giới hạn lim
bằng
n+1
A. 2.
B. −1.
1 − 2n
Câu 106. [1] Tính lim
bằng?
3n + 1
2
2
B. .
A. − .
3
3

D. m =

D.

1 + 2e
.
4 − 2e


3b + 2ac
.
c+2

C. un = n − 4n.

!n
−2
D. un =
.
3

C. 1.

D. 0.

1
.
3

D. 1.

2

C.

Câu 107. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới

" đây?
!
5
5
A.
;3 .
B. (1; 2).
C. 2; .
D. [3; 4).
2
2


ab.

Câu 108. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1

x−2 y+2 z−3
x−2 y−2 z−3
A.
=
=
.
B.
=
=
.
2
2
2
2
3
4
x y z−1
x y−2 z−3
=
.
D. = =
.
C. =
2
3
−1
1 1
1
Câu 109. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó,√các kích

√ thước của hình hộp là
A. 2, 4, 8.
B. 2 3, 4 3, 38.
C. 8, 16, 32.
D. 6, 12, 24.
Câu 110. Cho hình chóp S .ABCD có√đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp S .ABCD là

2a3
2a3 3
4a3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 111. [1] Giá trị của biểu thức 9log3 12 bằng
A. 144.
B. 24.
C. 4.
log2 240 log2 15
Câu 112. [1-c] Giá trị biểu thức


+ log2 1 bằng
log3,75 2 log60 2
A. −8.
B. 1.
C. 3.

Câu 113.√ Xác định phần ảo của số phức z = ( 2 + 3i)2
A. −6 2.
B. 7.
C. −7.

D. 2.

D. 4.

D. 6 2.

Câu 114. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
Trang 8/10 Mã đề 1


(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 3.

B. 2.


C. 4.

D. 1.

Câu 115. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (II) đúng.

B. Chỉ có (I) đúng.

C. Cả hai câu trên sai.

D. Cả hai câu trên đúng.

Câu 116. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (II) và (III).


B. (I) và (II).
C. (I) và (III).
D. Cả ba mệnh đề.
mx − 4
Câu 117. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 67.
B. 45.
C. 26.
D. 34.
8
Câu 118. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 82.
B. 96.
C. 64.
D. 81.
Câu 119. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

a3 6
a3 3
a3 6
a3 6
A.
.

B.
.
C.
.
D.
.
48
24
24
8
2
4
3
Câu 120. Cho z là nghiệm của phương trình
√ x + x + 1 = 0. Tính P = z + 2z − z

−1 − i 3
−1 + i 3
A. P = 2i.
B. P =
.
C. P = 2.
D. P =
.
2
2
Câu 121. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 1 nghiệm.
B. 3 nghiệm.
C. Vơ nghiệm.

D. 2 nghiệm.
Câu 122. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số nghịch biến trên khoảng (−∞; 0).
D. Hàm số đồng biến trên khoảng (1; 2).
Câu 123. Khối lập phương thuộc loại
A. {3; 4}.
B. {4; 3}.

C. {3; 3}.

D. {5; 3}.

Câu 124. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un
A. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
!vn
un
B. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
C. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
D. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn

Trang 9/10 Mã đề 1


Câu 125. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 20, 128 triệu đồng. B. 3, 5 triệu đồng.
C. 50, 7 triệu đồng.
D. 70, 128 triệu đồng.
Câu 126. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 0.
B. m > 1.
C. m ≥ 0.


4n2 + 1 − n + 2
bằng
Câu 127. Tính lim
2n − 3
A. 1.
B. 2.
C. +∞.
Câu 128. [3] Biết rằng giá trị lớn nhất của hàm số y =

D. m > −1.

D.

3
.

2

ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là
x
e

các số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 24.
C. S = 22.
D. S = 135.
x
9
Câu 129. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
C. −1.
D. 2.
A. 1.
B. .
2
Câu 130. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
Thể tích khối chóp S .ABCD là
√ phẳng vng góc với 3(ABCD).

3

3

a 3
a 3
a 2
A.
.
B.
.
C.
.
D. a3 3.
2
2
4
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2.

3. A

5. A


6.

B

7.

8. A

B
B
C

9.

10.

B

11. A

12.

B

13.

14.

C


B

15.

D

16.

D

17.

D

18.

D

19.

D

20. A

21. A

22.

D


24.
26.

23.

C

25. A
27.

B

28. A

D

29. A

30.

D

32.

C

34. A
36.


D

B

31.

B

33.

B

35.

B

37. A

38.

D

39.

B

40.

D


41.

B

42.

B

43.

B

44.

B

45.

B

46.

D

47.

48.

D


49.

D

50.

D

51.

D

C

52.

B

53.

B

54.

B

55.

B


56. A

57. A

58.

D

59.

60.

D

61.

62.

B

64.

C

C

63.

B


65.

B

66.

B

67.

68.

B

69.
1

B

C
B


70. A

71.

D

72. A


73.

D

74.

B

75. A

76.

C

77.

78.

C

79.

82.

C

83.

84.


C

85.
D

86.

D

90.

C
B

87. A

C

88.

C

89.
91.

D

92. A


D

93.
B

95.

C
B

97.

96. A
98.

B

81.

80. A

94.

D

B

100.

D


99. A
D

101.

C

102. A

103. A
D

104.

105.

106. A

B

107. A
D

108.
110.

D

109.


C

111. A

112. A

113.

D

114. A

115.

D

117.

D

116.

B

118.

D

120.


119.
121.

C

122. A
124.

123.
125. A

B

126.

D

127. A

128. A
130.

C

129. A
B

2


D
B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×