TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (2; 2).
C. (−1; −7).
D. (1; −3).
Câu 2. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 24.
B. 15, 36.
C. 3, 55.
D. 20.
Câu 3.
Z [1233d-2] Mệnh đề nào sau đây sai?
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
B.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
Z
C.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
D.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
A.
Câu 4. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 5%.
B. 0, 6%.
C. 0, 7%.
D. 0, 8%.
1
Câu 5. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 1.
B. 3.
C. 2.
D. 4.
Câu 6. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
√
B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
D. Cả ba đáp án trên.
Câu 7. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {4; 3}.
B. {5; 3}.
C. {3; 4}.
D. {3; 3}.
1
Câu 8. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 ≤ m ≤ −1.
B. (−∞; −2) ∪ (−1; +∞). C. −2 < m < −1.
D. (−∞; −2] ∪ [−1; +∞).
1 − 2n
Câu 9. [1] Tính lim
bằng?
3n + 1
1
2
2
A. .
B. .
C. 1.
D. − .
3
3
3
[ = 60◦ , S O
Câu 10. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S BC) bằng
√
√
2a 57
a 57
a 57
A.
.
B.
.
C. a 57.
D.
.
19
19
17
Câu 11. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {0}.
B. D = R \ {1}.
C. D = R.
D. D = (0; +∞).
Trang 1/10 Mã đề 1
Câu 12. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab
1
ab
.
B. √
.
C. 2
.
A. √
.
D. √
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
a
1
Câu 13. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 2.
B. 7.
C. 1.
D. 4.
[ = 60◦ , S A ⊥ (ABCD).
Câu 14. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối
√chóp S .ABCD là
3
3
3
√
a 2
a 2
a 3
A.
.
B.
.
C.
.
D. a3 3.
4
12
6
Câu 15.
bằng 1 là:
√ Thể tích của khối lăng√trụ tam giác đều có cạnh √
3
3
3
3
A.
.
B.
.
C.
.
D. .
4
2
12
4
Câu 16. Khối đa diện đều loại {4; 3} có số mặt
A. 6.
B. 8.
C. 10.
D. 12.
2
x − 3x + 3
đạt cực đại tại
Câu 17. Hàm số y =
x−2
A. x = 2.
B. x = 3.
C. x = 1.
D. x = 0.
Câu 18. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng
√
√
√
a 3
2a 3
a 3
A.
.
B. a 3.
C.
.
D.
.
2
2
3
Câu 19. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
Câu 20. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 70, 128 triệu đồng. B. 50, 7 triệu đồng.
C. 3, 5 triệu đồng.
D. 20, 128 triệu đồng.
Câu 21. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = [2; 1].
B. D = R.
C. D = (−2; 1).
2
D. D = R \ {1; 2}.
d = 60◦ . Đường chéo
Câu 22. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
0
0 0
0 0
◦
BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
√
2a3 6
a3 6
4a3 6
3
.
B. a 6.
C.
.
D.
.
A.
3
3
3
Câu 23. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 2e.
B. .
C. 3.
D. 2e + 1.
e
un
Câu 24. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. −∞.
B. 0.
C. +∞.
D. 1.
1
Câu 25. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = ey − 1.
B. xy0 = −ey + 1.
C. xy0 = ey + 1.
D. xy0 = −ey − 1.
Trang 2/10 Mã đề 1
Câu 26. Khối đa diện đều loại {5; 3} có số đỉnh
A. 30.
B. 8.
C. 20.
D. 12.
Câu 27. [2] Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8
C. m = ± 3.
D. m = ±1.
A. m = ±3.
B. m = ± 2.
Câu 28. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −5.
B. −9.
C. −12.
D. −15.
Câu 29. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
20
10
40
20
C50
.(3)30
C50
.(3)40
C50
.(3)10
C50
.(3)20
A.
.
B.
.
C.
.
D.
.
450
450
450
450
Câu 30. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 = 2 x . ln 2.
B. y0 = 2 x . ln x.
C. y0 = x
.
D. y0 =
.
2 . ln x
ln 2
Câu 31. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 12.
C. 20.
D. 30.
Câu 32. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
√ tích khối chóp S .ABC
√
√là
√ với đáy và S C = a 3. 3Thể
2a 6
a3 3
a3 6
a3 3
.
B.
.
C.
.
D.
.
A.
2
9
4
12
Câu 33. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 6 mặt.
C. 4 mặt.
D. 9 mặt.
Câu 34. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai cạnh.
B. Năm cạnh.
C. Bốn cạnh.
D. Ba cạnh.
Câu 35. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
z
x+1 y−5
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 2; −1).
B. ~u = (3; 4; −4).
C. ~u = (2; 1; 6).
D. ~u = (1; 0; 2).
Câu 36. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối tứ diện đều.
C. Khối bát diện đều.
Câu 37. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. (−∞; 6, 5).
C. [6, 5; +∞).
D. Khối 12 mặt đều.
D. (4; 6, 5].
Câu 38. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 2.
B. 3.
Câu 39. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 4.
C. 1.
C. 8.
D. 0.
D. 6.
Trang 3/10 Mã đề 1
1
Câu 40. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R \ {1}.
B. D = (1; +∞).
C. D = R.
D. D = (−∞; 1).
Câu 41. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số đồng biến trên khoảng (1; 2).
C. Hàm số nghịch biến trên khoảng (−∞; 0).
D. Hàm số nghịch biến trên khoảng (1; +∞).
Câu 42. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 43. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 2.
B. +∞.
C. 1.
D. 0.
Câu 44. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −6.
B. 6.
C. −5.
2
D. 5.
2
2
sin x
Câu 45. [3-c]
+ 2cos x lần lượt là
√ Giá trị nhỏ nhất và√giá trị lớn nhất của hàm√số f (x) = 2
B. 2 2 và 3.
C. 2 và 3.
D. 2 và 3.
A. 2 và 2 2.
Câu 46. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối lập phương.
B. Khối tứ diện đều.
C. Khối 12 mặt đều.
D. Khối bát diện đều.
Câu 47. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
√ góc với đáy, S C = a3 √3. Thể tích khối chóp S .ABCD là
3
a 3
a 3
a3
A.
.
B.
.
C. a3 .
D.
.
3
9
3
d = 120◦ .
Câu 48. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 4a.
B. 3a.
C. 2a.
D.
.
2
Câu 49. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
√
1
A. 25.
B. .
C. 5.
D. 5.
5
√
√
Câu 50.
Tìm
giá
trị
lớn
nhất
của
hàm
số
y
=
x
+
3
+
6−x
√
√
√
A. 2 3.
B. 3 2.
C. 3.
D. 2 + 3.
√
Câu 51. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 62.
C. 63.
D. Vơ số.
√
Câu 52. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B.
.
C.
.
D. a3 .
6
24
12
x−1 y z+1
Câu 53. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =
và
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. −x + 6y + 4z + 5 = 0.
B. 2x − y + 2z − 1 = 0.
C. 2x + y − z = 0.
D. 10x − 7y + 13z + 3 = 0.
Trang 4/10 Mã đề 1
x = 1 + 3t
Câu 54. [1232h] Trong không gian Oxyz, cho đường thẳng d :
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua
z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
trình là
x
=
1
+
3t
x
=
−1
+
2t
x
=
1
+
7t
x = −1 + 2t
A.
B.
.
D.
y = 1 + 4t .
y = −10 + 11t . C.
y=1+t
y = −10 + 11t .
z = 1 − 5t
z = 6 − 5t
z = 1 + 5t
z = −6 − 5t
Câu 55. Dãy số nào sau đây có giới hạn khác 0?
1
sin n
.
B. .
A.
n
n
C.
n+1
.
n
1
D. √ .
n
2
Câu 56. [2] Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2
A. m = ±3.
B. m = ± 2.
C. m = ± 3.
D. m = ±1.
Câu 57. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng
√
√
√
a 2
a 2
.
B. a 2.
.
D. a 3.
A.
C.
2
3
Câu 58. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích khối chóp S .ABCD là √
√
3
3
√
a
3
2a
3
a3 3
.
B. a3 3.
C.
.
D.
.
A.
3
6
3
Câu 59. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√
√
√ của hàm số. Khi đó tổng M + m
B. 16.
C. 8 2.
D. 7 3.
A. 8 3.
Câu 60. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
! của A lên BC là
!
8
7
5
A. (2; 0; 0).
B.
; 0; 0 .
; 0; 0 .
; 0; 0 .
C.
D.
3
3
3
√
Câu 61. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) √
bằng
√
√
a 38
3a
3a 58
3a 38
.
B.
.
C.
.
D.
.
A.
29
29
29
29
log 2x
Câu 62. [3-1229d] Đạo hàm của hàm số y =
là
x2
1 − 2 ln 2x
1
1 − 4 ln 2x
1 − 2 log 2x
A. y0 = 3
.
B. y0 = 3
.
C. y0 =
.
D. y0 =
.
3
x ln 10
2x ln 10
2x ln 10
x3
7n2 − 2n3 + 1
Câu 63. Tính lim 3
3n + 2n2 + 1
2
7
A. 1.
B. - .
C. .
D. 0.
3
3
Câu 64. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tam giác.
B. Một hình chóp tam giác và một hình chóp tứ giác.
C. Hai hình chóp tứ giác.
D. Một hình chóp tứ giác và một hình chóp ngũ giác.
Trang 5/10 Mã đề 1
2n + 1
Câu 65. Tìm giới hạn lim
n+1
A. 3.
B. 1.
C. 2.
D. 0.
Câu 66. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
=
=
và d0 :
=
=
đường thẳng d :
2
3
−5
3
−2
−1
x y−2 z−3
x−2 y+2 z−3
A. =
=
.
B.
=
=
.
2
3
−1
2
2
2
x−2 y−2 z−3
x y z−1
.
D.
=
=
.
C. = =
1 1
1
2
3
4
Câu 67. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 6 mặt. B. 5 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 5 mặt. D. 6 đỉnh, 9 cạnh, 6 mặt.
Câu 68.
√ Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
A. 3 3.
B. 8.
C. 9.
D. 27.
Câu 69. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 11 cạnh.
C. 9 cạnh.
D. 10 cạnh.
Câu 70. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
√
3
3
3
3
4a 3
8a 3
a 3
8a 3
.
B.
.
C.
.
D.
.
A.
9
9
3
9
Câu 71. Phát biểu nào sau đây là sai?
1
A. lim = 0.
B. lim un = c (un = c là hằng số).
n
1
C. lim qn = 0 (|q| > 1).
D. lim k = 0.
n
2,4
Câu 72. [1-c] Giá trị của biểu thức 3 log0,1 10 bằng
A. 0, 8.
B. 72.
C. 7, 2.
D. −7, 2.
Câu 73. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
.
C. 2a 6.
B.
D. a 3.
A. a 6.
2
Câu 74. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
9
15
6
18
x+3
Câu 75. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 1.
B. Vô số.
C. 3.
D. 2.
8
Câu 76. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 96.
B. 64.
C. 82.
D. 81.
Câu 77. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 7 mặt.
C. 9 mặt.
D. 6 mặt.
Câu 78. Cho hàm số y = x − 2x + x + 1. Mệnh
! đề nào dưới đây đúng?
!
1
1
A. Hàm số nghịch biến trên khoảng −∞; .
B. Hàm số đồng biến trên khoảng ; 1 .
3
3
!
1
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng ; 1 .
3
3
2
Trang 6/10 Mã đề 1
Câu 79. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −3.
B. −5.
C. −7.
D. Không tồn tại.
Câu 80. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. 1.
C. 3.
D. Vơ nghiệm.
Câu 81. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m < 3.
C. m ≤ 3.
D. m ≥ 3.
√
√
Câu 82. Phần thực√và phần ảo của số √
phức z = 2 − 1 − 3i lần lượt √l
√
A. Phần thực là √2 − 1, phần ảo là √3.
B. Phần thực là 2 −√1, phần ảo là − √3.
C. Phần thực là 2, phần ảo là 1 − 3.
D. Phần thực là 1 − 2, phần ảo là − 3.
x−3 x−2 x−1
x
Câu 83. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].
B. (2; +∞).
C. [2; +∞).
D. (−∞; 2).
0 0 0 0
0
Câu 84.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 3
a 6
.
B.
.
C.
.
D.
.
A.
3
2
7
2
Câu 85. Khẳng định nào sau đây đúng?
A. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ tứ giác đều là hình lập phương.
C. Hình lăng trụ đứng là hình lăng trụ đều.
D. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
log 2x
Câu 86. [1229d] Đạo hàm của hàm số y =
là
x2
1
1 − 4 ln 2x
1 − 2 log 2x
1 − 2 ln 2x
.
C. y0 = 3
.
D. y0 =
.
A. y0 =
.
B. y0 = 3
3
x
x ln 10
2x ln 10
2x3 ln 10
Câu 87. Phát biểu nào sau đây là sai?
1
A. lim k = 0 với k > 1.
B. lim qn = 1 với |q| > 1.
n
1
C. lim un = c (Với un = c là hằng số).
D. lim √ = 0.
n
Câu 88. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 3 đỉnh, 3 cạnh, 3 mặt. B. 4 đỉnh, 8 cạnh, 4 mặt. C. 4 đỉnh, 6 cạnh, 4 mặt. D. 6 đỉnh, 6 cạnh, 4 mặt.
Câu 89. Khối đa diện đều loại {3; 5} có số cạnh
A. 12.
B. 8.
2n − 3
bằng
Câu 90. Tính lim 2
2n + 3n + 1
A. −∞.
B. +∞.
C. 30.
D. 20.
C. 0.
D. 1.
Câu 91. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
√
Câu 92. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. .
B. −3.
C. 3.
D. − .
3
3
1
Câu 93. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = ey + 1.
B. xy0 = −ey + 1.
C. xy0 = ey − 1.
D. xy0 = −ey − 1.
Trang 7/10 Mã đề 1
Câu 94. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 72cm3 .
B. 64cm3 .
C. 46cm3 .
D. 27cm3 .
Câu 95. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 4 lần.
B. Tăng gấp đôi.
C. Tăng gấp 6 lần.
D. Tăng gấp 8 lần.
Câu 96. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 25 m.
B. 27 m.
C. 387 m.
D. 1587 m.
Câu 97. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là −4.
B. Phần thực là −3, phần ảo là 4.
C. Phần thực là 3, phần ảo là −4.
D. Phần thực là 3, phần ảo là 4.
Câu 98. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
A. y = log √2 x.
B. y = log 14 x.
√
C. y = loga x trong đó a = 3 − 2.
D. y = log π4 x.
d = 300 .
Câu 99. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên
CC 0 = 3a. Thể tích V của khối lăng trụ đã cho.
√
√
√
a3 3
3a3 3
3
3
.
B. V = 6a .
C. V = 3a 3.
.
D. V =
A. V =
2
2
√
Câu 100. [12215d] Tìm m để phương trình 4 x+
3
9
B. 0 ≤ m ≤ .
A. 0 ≤ m ≤ .
4
4
cos n + sin n
Câu 101. Tính lim
n2 + 1
A. 1.
B. +∞.
1−x2
√
− 4.2 x+
1−x2
− 3m + 4 = 0 có nghiệm
C. m ≥ 0.
3
D. 0 < m ≤ .
4
C. −∞.
D. 0.
Câu 102. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 103. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Cả hai đều đúng.
C. Chỉ có (I) đúng.
D. Cả hai đều sai.
!
x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
Câu 104. [3] Cho hàm số f (x) = ln 2017 − ln
x
2017
4035
2016
A.
.
B.
.
C.
.
D. 2017.
2018
2018
2017
Câu 105.
√ [4-1245d] Trong tất cả
√ các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
B. 10.
C. 2.
D. 1.
A. 2.
Câu 106. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung
điểm cạnh AB, biết S H ⊥ (ABCD).√Thể tích khối chóp S .ABCD là
√
a3
4a3 3
a3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
3
6
3
Trang 8/10 Mã đề 1
Câu 107. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 10 mặt.
C. 4 mặt.
D. 6 mặt.
Câu 108. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m > .
C. m ≤ .
D. m ≥ .
A. m < .
4
4
4
4
x x
0
Câu 109. [2] Cho hàm số f (x) = 2 .5 . Giá trị của f (0) bằng
1
A. f 0 (0) = ln 10.
B. f 0 (0) = 1.
C. f 0 (0) =
.
D. f 0 (0) = 10.
ln 10
Câu 110. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai mặt.
B. Ba mặt.
C. Bốn mặt.
D. Năm mặt.
Câu 111. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 4 mặt.
C. 9 mặt.
4x + 1
Câu 112. [1] Tính lim
bằng?
x→−∞ x + 1
A. 4.
B. −4.
C. 2.
D. 6 mặt.
D. −1.
Câu 113. Hàm số nào sau đây khơng có cực trị
1
x−2
A. y = x3 − 3x.
B. y = x + .
C. y = x4 − 2x + 1.
D. y =
.
x
2x + 1
2mx + 1
1
Câu 114. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 1.
B. 0.
C. −5.
D. −2.
Câu 115. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 13.
B. 13.
C. 2020.
D. log2 2020.
x+1
Câu 116. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. 3.
B. .
C. .
D. 1.
3
4
Câu 117. Khối lập phương thuộc loại
A. {5; 3}.
B. {4; 3}.
C. {3; 4}.
D. {3; 3}.
Câu 118. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m ≥ 3.
C. m > 3.
D. m ≤ 3.
Câu 119. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 22016 .
C. 1.
D. 0.
x=t
Câu 120. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
y = −1 và hai mặt phẳng (P), (Q)
z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
B. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x + 3) + (y + 1) + (z + 3) = .
D. (x − 3) + (y + 1) + (z + 3) = .
4
4
√
Câu 121. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là √
√
√
a3 3
a3 3
a3
3
A. a 3.
B.
.
C.
.
D.
.
3
12
4
Trang 9/10 Mã đề 1
Câu 122. Mệnh đề nào sau đây sai?
Z
A. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
B. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
!0
Z
C.
f (x)dx = f (x).
D. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Câu 123. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
6
36
24
Câu 124. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 2ac
3b + 3ac
3b + 3ac
A.
.
B.
.
C.
.
D.
.
c+2
c+3
c+2
c+1
Câu 125. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 8.
B. 6.
C. 3.
D. 4.
Câu 126. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.
B. log2 a = loga 2.
C. log2 a = − loga 2.
D. log2 a =
.
log2 a
loga 2
π π
Câu 127. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 3.
B. 7.
C. 1.
D. −1.
Câu 128. Cho hình chóp S .ABCD có đáy ABCD là hình thang vuông tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp
√ phẳng vng góc với 3(ABCD).
√
√ S .ABCD là
3
3
√
a 3
a 3
a 2
.
C.
.
D.
.
A. a3 3.
B.
2
4
2
3a
Câu 129. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng
√
2a
a
a 2
a
A.
.
B. .
C.
.
D. .
3
3
3
4
0
Câu 130. Cho hai đường thẳng d và d cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Khơng có.
B. Có hai.
C. Có vơ số.
D. Có một.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
2.
3.
D
6.
9.
13.
D
10. A
B
14. A
16. A
17.
C
D
19.
B
23.
C
25. A
27.
B
29.
D
31.
18.
D
20.
D
22.
B
24.
B
26.
C
28.
C
30. A
C
33. A
32.
D
34.
D
D
35.
D
36.
37.
D
38. A
39.
C
41. A
43.
45.
D
D
49. A
42.
B
C
46.
D
48.
D
B
52.
B
D
55.
54.
C
B
56.
C
57. A
D
58. A
60.
B
61.
63.
B
50.
53.
59.
40.
44.
B
47.
51.
D
12.
C
15. A
21.
B
8. A
B
11.
C
4.
5. A
7.
B
B
62. A
C
64. A
B
65.
C
66.
67.
C
68. A
1
C
69.
D
70. A
72.
C
71.
73. A
D
75.
C
C
76.
D
77.
78.
D
79.
D
81.
D
80. A
82.
B
B
87.
88.
C
89.
90.
C
91. A
92. A
D
B
97.
C
C
D
105.
D
107.
D
109. A
B
112. A
113.
D
114.
115. A
B
116.
118.
B
119.
121.
B
103. A
B
108.
117.
D
101.
B
104. A
110.
C
99. A
102.
106.
C
95.
98. A
100.
B
93.
94.
96.
D
85.
84. A
86.
C
83.
D
C
B
120.
122.
B
123. A
D
B
124.
C
125.
C
126.
D
127.
C
128.
D
129. A
130.
2
B