TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng
√M + m
√
A. 8 2.
B. 8 3.
C. 7 3.
D. 16.
Câu 2. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 − ln x.
B. y0 = x + ln x.
C. y0 = ln x − 1.
D. y0 = 1 + ln x.
Câu 3. √[2] Cho hình lâp phương√ABCD.A0 B0C 0 D0 cạnh a. √
Khoảng cách từ C đến AC√0 bằng
a 3
a 6
a 6
a 6
.
B.
.
C.
.
D.
.
A.
2
2
7
3
Câu 4. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 10 năm.
B. 8 năm.
C. 7 năm.
D. 9 năm.
Câu 5. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 12.
B. 27.
C.
.
D. 18.
2
Câu 6. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. 3.
C. Vô nghiệm.
D. 1.
log 2x
Câu 7. [1229d] Đạo hàm của hàm số y =
là
x2
1 − 4 ln 2x
1 − 2 ln 2x
1
1 − 2 log 2x
A. y0 =
.
B. y0 = 3
.
C. y0 = 3
.
D. y0 =
.
3
2x ln 10
x ln 10
2x ln 10
x3
Câu 8. Khối đa diện đều loại {5; 3} có số cạnh
A. 12.
B. 20.
C. 30.
D. 8.
Câu 9. Khối đa diện đều loại {3; 3} có số đỉnh
A. 3.
B. 2.
C. 4.
D. 5.
!
5 − 12x
= 2 có bao nhiêu nghiệm thực?
Câu 10. [2] Phương trình log x 4 log2
12x − 8
A. Vô nghiệm.
B. 1.
C. 3.
D. 2.
Câu 11. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R.
B. D = [2; 1].
C. D = R \ {1; 2}.
D. D = (−2; 1).
Câu 12. Khối đa diện đều loại {5; 3} có số đỉnh
A. 30.
B. 20.
D. 8.
2
C. 12.
Câu 13. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (I) đúng.
B. Cả hai câu trên sai.
C. Cả hai câu trên đúng. D. Chỉ có (II) đúng.
Trang 1/10 Mã đề 1
√
Câu 14. √
Thể tích của khối lập phương có cạnh bằng a 2
√
2a3 2
A.
.
B. V = 2a3 .
C. 2a3 2.
3
√
D. V = a3 2.
Câu 15. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 27cm3 .
B. 72cm3 .
C. 64cm3 .
D. 46cm3 .
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 16. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là
√
√
√
a3 2
a3 3
a3 3
2
A.
.
B.
.
C. 2a 2.
D.
.
24
12
24
Câu 17. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối lập phương.
C. Khối tứ diện đều.
D. Khối bát diện đều.
x=t
Câu 18. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
y = −1 và hai mặt phẳng (P), (Q)
z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
A. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x − 3) + (y + 1) + (z + 3) = .
D. (x − 3) + (y − 1) + (z − 3) = .
4
4
Câu 19. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m ≤ 3.
C. m > 3.
D. m < 3.
Câu 20. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 + 2 sin 2x.
B. 1 − sin 2x.
C. −1 + 2 sin 2x.
D. −1 + sin x cos x.
log(mx)
= 2 có nghiệm thực duy nhất
Câu 21. [3-1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m ≤ 0.
B. m < 0 ∨ m > 4.
C. m < 0 ∨ m = 4.
D. m < 0.
log2 240 log2 15
Câu 22. [1-c] Giá trị biểu thức
−
+ log2 1 bằng
log3,75 2 log60 2
A. 1.
B. −8.
C. 4.
D. 3.
Câu 23. Cho số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
√
A. |z| = 17.
B. |z| = 10.
C. |z| = 10.
D. |z| = 17.
Câu 24. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 14.
B. ln 10.
C. ln 4.
D. ln 12.
!
1
1
1
Câu 25. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
C. .
D. +∞.
A. 2.
B. .
2
2
Câu 26. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B. Số cạnh của khối chóp bằng số mặt của khối chóp.
C. Số đỉnh của khối chóp bằng số mặt của khối chóp.
D. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
Trang 2/10 Mã đề 1
ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 3.
B. −3.
C. 0.
D. 1.
1 − xy
Câu 28. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.
√
√
√
9 11 + 19
18 11 − 29
2 11 − 3
9 11 − 19
A. Pmin =
. B. Pmin =
. C. Pmin =
.
D. Pmin =
.
9
21
3
9
√
x2 + 3x + 5
Câu 29. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. .
B. − .
C. 0.
D. 1.
4
4
Z
2
Câu 27. Cho
Câu 30. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; −8)(.
B. A(4; 8).
C. A(4; −8).
D. A(−4; 8).
Câu 31. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
B. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C. Cả ba câu trên đều sai.
D. F(x) = G(x) trên khoảng (a; b).
Câu 32. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 4 mặt.
C. 6 mặt.
D. 3 mặt.
Câu 33. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√
√ là
√
√ Thể tích khối chóp S 3.ABC
3
a 3
a3 2
a3 3
a 3
.
B.
.
C.
.
D.
.
A.
6
4
12
12
Câu 34. Khối lập phương thuộc loại
A. {4; 3}.
B. {5; 3}.
C. {3; 4}.
D. {3; 3}.
Câu 35. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 0).
B. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số nghịch biến trên khoảng (0; 1).
D. Hàm số đồng biến trên khoảng (1; 2).
Z 1
Câu 36. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
1
A. .
4
0
B.
1
.
2
C. 1.
D. 0.
Câu 37. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
5
23
13
9
A. − .
B. −
.
C.
.
D.
.
16
100
100
25
[ = 60◦ , S O
Câu 38. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S√BC) bằng
√
a 57
a 57
2a 57
A.
.
B.
.
C.
.
D. a 57.
17
19
19
Câu 39. Khối đa diện đều loại {4; 3} có số mặt
A. 12.
B. 10.
C. 8.
D. 6.
Trang 3/10 Mã đề 1
Câu 40. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là
√
√
3
3
a 2
a3 3
a3 6
a 3
.
B.
.
C.
.
D.
.
A.
48
16
24
48
Câu 41. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
C. m ≥ 0.
D. m > − .
A. m ≤ 0.
B. − < m < 0.
4
4
Câu 42. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 14 năm.
B. 10 năm.
C. 11 năm.
D. 12 năm.
Câu 43. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.
B. 12.
C. 8.
D. 6.
Câu 44. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp ngữ giác.
B. Hai khối chóp tứ giác.
C. Hai khối chóp tam giác.
D. Một khối chóp tam giác, một khối chóp tứ giác.
Câu 45. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
D. Hàm số nghịch biến trên khoảng (−2; 1).
!
3n + 2
2
Câu 46. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 5.
B. 2.
C. 3.
D. 4.
1
a
, với a, b ∈ Z. Giá trị của a + b là
Câu 47. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
4 b ln 3
A. 4.
B. 1.
C. 7.
D. 2.
Câu 48. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A.
.
B. −4.
C. −7.
D. −2.
27
Câu 49. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 6 lần.
B. Tăng gấp 8 lần.
C. Tăng gấp đôi.
D. Tăng gấp 4 lần.
Câu 50. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
Câu 51. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp S .ABCD là
√
2a3
4a3 3
4a3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Trang 4/10 Mã đề 1
Câu 52.
có nghĩa
√ Biểu thức nào sau đây khơng
−3
−1
A.
−1.
B. 0 .
C. (−1)−1 .
√
D. (− 2)0 .
Câu 53. [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ
√ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 1.
B. 10.
C. 2.
D. 2.
Câu 54. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 =
.
B. y0 = x
.
ln 2
2 . ln x
C. y0 = 2 x . ln x.
Câu 55. [1] !Tập xác định của hàm số y != log3 (2x + 1) là
!
1
1
1
; +∞ .
B. −∞; − .
C. −∞; .
A.
2
2
2
D. y0 = 2 x . ln 2.
!
1
D. − ; +∞ .
2
Câu 56. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. V = 4π.
B. 16π.
C. 8π.
D. 32π.
Câu 57. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
20
10
40
20
C50
C50
C50
C50
.(3)20
.(3)40
.(3)10
.(3)30
.
B.
.
C.
.
D.
.
A.
450
450
450
450
!
1
1
1
Câu 58. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 0.
B. .
C. 1.
D. 2.
2
Câu 59. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là
√ hình chóp S .ABCD với mặt
√
2
2
2
a 5
11a
a2 2
a 7
.
B.
.
C.
.
D.
.
A.
8
16
32
4
Câu 60. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
A. 2.
B.
.
C. 1.
D. .
2
2
1
Câu 61. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 1) và (3; +∞). B. (1; +∞).
C. (1; 3).
D. (−∞; 3).
Câu 62.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nàoZsai?
A.
Z
C.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
f (x)g(x)dx =
B.
Z
D.
f (x)dx g(x)dx.
Z
Z
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
d = 60◦ . Đường chéo
Câu 63. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
0
0 0
0 0
◦
BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
√
a3 6
4a3 6
2a3 6
A.
.
B.
.
C.
.
D. a3 6.
3
3
3
Câu 64. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 0.
C. 13.
D. 9.
Trang 5/10 Mã đề 1
Câu 65. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB)
√ bằng
√
√
√
a 6
C. 2a 6.
D. a 3.
A.
.
B. a 6.
2
Câu 66.
√ Thể tích của khối lăng√trụ tam giác đều có cạnh bằng 1 là:
√
3
3
3
3
A.
.
B.
.
C. .
D.
.
12
2
4
4
√
Câu 67. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. − .
B. −3.
C. 3.
D. .
3
3
x−3 x−2
x−3
x−2
Câu 68. [12212d] Số nghiệm của phương trình 2 .3 − 2.2 − 3.3 + 6 = 0 là
A. 3.
B. Vô nghiệm.
C. 2.
D. 1.
Câu 69. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|
√
√
√
√
12 17
B.
.
C. 68.
D. 34.
A. 5.
17
Câu 70. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có vơ số.
B. Có một.
C. Khơng có.
D. Có hai.
Câu 71. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + .
B. T = 4 + .
C. T = e + 1.
D. T = e + 3.
e
e
Câu 72. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; 6, 5].
B. (4; +∞).
C. [6, 5; +∞).
D. (−∞; 6, 5).
x+3
Câu 73. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. Vô số.
B. 1.
C. 2.
D. 3.
2
1−n
bằng?
Câu 74. [1] Tính lim 2
2n + 1
1
1
1
B. 0.
C. − .
D. .
A. .
3
2
2
Câu 75. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD
√ là
3
10a 3
A. 20a3 .
B. 10a3 .
C.
.
D. 40a3 .
3
Câu 76. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 12 m.
B. 8 m.
C. 16 m.
D. 24 m.
Câu 77. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
100.(1, 01)3
(1, 01)3
A. m =
triệu.
B. m =
triệu.
3
(1, 01)3 − 1
120.(1, 12)3
100.1, 03
C. m =
triệu.
D. m =
triệu.
3
(1, 12) − 1
3
Trang 6/10 Mã đề 1
Câu 78. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn cạnh.
B. Năm cạnh.
C. Ba cạnh.
D. Hai cạnh.
Câu 79. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là
√
√
a3 3
a3 3
a3
.
B.
.
C.
.
D. a3 .
A.
3
2
6
log(mx)
Câu 80. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m = 4.
B. m < 0.
C. m ≤ 0.
D. m < 0 ∨ m > 4.
Câu 81. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. 1.
C. 2.
D. Vơ nghiệm.
Câu 82. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể tích của khối chóp S .ABC√ theo a
√
√
a3 15
a3 5
a3 15
a3
.
B.
.
C.
.
D.
.
A.
3
5
25
25
2
Câu 83. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 6.
B. −5.
C. −6.
D. 5.
Câu 84. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. 4.
D. .
4
2
8
√
Câu 85. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 1 nghiệm.
B. Vơ nghiệm.
C. 2 nghiệm.
D. 3 nghiệm.
Câu 86. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 1; m = 1.
B. M = e2 − 2; m = e−2 + 2.
−2
C. M = e − 2; m = 1.
D. M = e−2 + 2; m = 1.
Câu 87. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
! của A lên BC là
!
5
8
7
; 0; 0 .
; 0; 0 .
; 0; 0 .
C.
D.
A. (2; 0; 0).
B.
3
3
3
1
Câu 88. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R \ {1}.
B. D = (1; +∞).
C. D = (−∞; 1).
Câu 89. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 20.
2x + 1
Câu 90. Tính giới hạn lim
x→+∞ x + 1
A. 1.
B. 2.
C. 12.
D. D = R.
D. 30.
1
.
2
D. −1.
2−n
Câu 91. Giá trị của giới hạn lim
bằng
n+1
A. 0.
B. 1.
C. 2.
D. −1.
Câu 92. Dãy
!n số nào sau đây có giới
!n hạn là 0?
5
4
A. − .
B.
.
3
e
!n
5
C.
.
3
!n
1
D.
.
3
C.
Câu 93. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng
√
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3
Trang 7/10 Mã đề 1
√
2 3
A. 2.
B.
.
3
Câu 94. Tứ diện đều thuộc loại
A. {4; 3}.
B. {3; 4}.
√
C.
D. 1.
3.
C. {3; 3}.
D. {5; 3}.
1
Câu 95. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 0 < m ≤ 1.
C. 2 < m ≤ 3.
D. 2 ≤ m ≤ 3.
Câu 96. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 10 năm.
C. 11 năm.
D. 13 năm.
Câu 97. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng
√
√
√
√
a 2
a 2
.
C.
.
D. a 2.
B.
A. a 3.
2
3
√
Câu 98. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vô số.
B. 62.
C. 64.
D. 63.
Câu 99. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 10 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
2
2
sin x
Câu 100. [3-c]
+ 2cos x√lần lượt là
√ Giá trị nhỏ nhất và giá trị lớn nhất của hàm√số f (x) = 2
B. 2 và 3.
C. 2 2 và 3.
D. 2 và 3.
A. 2 và 2 2.
Câu 101. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 102. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.
C. V = 3S h.
D. V = S h.
3
2
Câu 103. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 3 đỉnh, 3 cạnh, 3 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 6 cạnh, 4 mặt. D. 4 đỉnh, 8 cạnh, 4 mặt.
Câu 104. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 2.
B. 5.
C. 1.
D. 3.
x2 −3x+8
Câu 105. [2] Tổng các nghiệm của phương trình 3
= 92x−1 là
A. 6.
B. 5.
C. 7.
D. 8.
Câu 106. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 1.
B. e.
C. 4 − 2 ln 2.
D. −2 + 2 ln 2.
Câu 107. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
Thể tích khối chóp S .ABC √là
√ với đáy và S C = a 3.3 √
√
3
a 6
a 3
2a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
12
4
9
2
Câu 108. Bát diện đều thuộc loại
A. {4; 3}.
B. {3; 4}.
C. {5; 3}.
D. {3; 3}.
Trang 8/10 Mã đề 1
! x3 −3mx2 +m
1
Câu 109. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m = 0.
B. m ∈ R.
C. m ∈ (0; +∞).
D. m , 0.
2n + 1
Câu 110. Tính giới hạn lim
3n + 2
3
2
1
C. .
D. .
A. 0.
B. .
2
2
3
Câu 111. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 2ac
3b + 3ac
A.
.
B.
.
C.
.
D.
.
c+2
c+2
c+3
c+1
Câu 112. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 84cm3 .
B. 64cm3 .
C. 48cm3 .
D. 91cm3 .
cos n + sin n
Câu 113. Tính lim
n2 + 1
A. −∞.
B. +∞.
C. 0.
D. 1.
2mx + 1
1
Câu 114. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 0.
B. 1.
C. −2.
D. −5.
x−1
Câu 115. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
√ đều ABI có hai đỉnh A,√B thuộc (C), đoạn thẳng AB
√ có độ dài bằng
A. 2 2.
B. 6.
C. 2 3.
D. 2.
Câu 116.
Các khẳng định nàoZsau đây là sai?
Z
f (x)dx = F(x) +C ⇒
!0
Z
C.
f (x)dx = f (x).
A.
f (u)dx = F(u) +C. B.
Z
Z
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.
Z
Z
D.
k f (x)dx = k
f (x)dx, k là hằng số.
Câu 117. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≥ 3.
B. −3 ≤ m ≤ 3.
C. −2 ≤ m ≤ 2.
D. m ≤ 3.
Câu 118. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog
√
a
√
5
bằng
1
.
5
Câu 119. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
24
6
36
x+2
Câu 120. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 1.
B. 2.
C. Vơ số.
D. 3.
A. 25.
B. 5.
C.
5.
D.
Câu 121. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 9 cạnh.
C. 10 cạnh.
Câu 122. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.
C. f (x) liên tục trên K.
B. f (x) có giá trị lớn nhất trên K.
D. f (x) có giá trị nhỏ nhất trên K.
D. 11 cạnh.
Trang 9/10 Mã đề 1
Câu 123. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của
P = xy + x + 2y + 17
A. −9.
B. −5.
C. −15.
D. −12.
1
Câu 124. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 2.
B. 4.
C. 1.
D. 3.
tan x + m
nghịch biến trên khoảng
Câu 125. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
m tan x + 1
π
0; .
4
A. (1; +∞).
B. (−∞; 0] ∪ (1; +∞). C. (−∞; −1) ∪ (1; +∞). D. [0; +∞).
Câu 126. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 210 triệu.
B. 216 triệu.
C. 220 triệu.
D. 212 triệu.
Câu 127. [1] Đạo hàm của làm số y = log x là
1
1
.
B.
.
A. y0 =
x ln 10
10 ln x
7n2 − 2n3 + 1
Câu 128. Tính lim 3
3n + 2n2 + 1
2
A. 1.
B. - .
3
1
C. y0 = .
x
D. y0 =
C. 0.
D.
ln 10
.
x
7
.
3
x2
Câu 129. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
C. M = e, m = .
D. M = e, m = 1.
A. M = e, m = 0.
B. M = , m = 0.
e
e
1 + 2 + ··· + n
Câu 130. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
A. lim un = 0.
B. Dãy số un khơng có giới hạn khi n → +∞.
1
C. lim un = .
D. lim un = 1.
2
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
D
2.
D
3.
D
4.
D
5.
D
6. A
7.
B
9.
C
11. A
13.
10.
B
12.
B
14.
C
15. A
C
16. A
D
17.
19. A
18.
C
20.
C
21.
C
22.
23.
C
24. A
25. A
C
C
B
28.
29.
B
30.
31.
B
32.
D
33.
35.
B
26.
27.
37.
C
8.
B
D
34. A
C
36.
B
38.
B
39.
D
40. A
41.
D
42.
C
C
43.
B
44.
D
45.
B
46.
D
48.
D
50.
D
47.
49.
C
B
51.
52.
C
54.
53. A
55.
D
58.
57.
D
B
59. A
C
60. A
61. A
62.
B
63.
64.
B
65.
66.
68.
B
D
D
B
67.
69.
C
1
D
B
70.
D
72. A
71.
D
73.
D
74.
C
75. A
76.
C
77.
B
78.
C
79.
B
81.
B
83.
B
80. A
82.
D
84. A
85.
86.
88.
B
89.
90.
B
91.
D
97.
B
C
B
99.
C
D
101.
C
100.
D
95.
96. A
98.
B
93. A
C
94.
D
87.
C
92.
C
102. A
103.
C
104. A
105.
C
106.
B
107. A
108.
B
109. A
110.
112.
D
111.
113.
C
114. A
115.
C
116. A
117.
118. A
119. A
120.
B
B
B
121.
122.
C
123.
124.
C
125. A
126.
128.
130.
D
127. A
129. A
B
C
2
B
C
D