Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn thi thpt 6 (447)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (151.42 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là −4.
B. Phần thực là 4, phần ảo là −1.
C. Phần thực là 4, phần ảo là 1.
D. Phần thực là −1, phần ảo là 4.
Câu 2. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 2.
B. −1.
C. 6.
Câu 3. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối tứ diện đều.

C. Khối bát diện đều.

Câu 5. Khối đa diện đều loại {3; 3} có số mặt
A. 3.
B. 2.

C. 5.

D. 1.



D. Khối 12 mặt đều.
!
3n + 2
2
Câu 4. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử của
n+2
S bằng
A. 4.
B. 2.
C. 3.
D. 5.

Câu 6. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. R.
B. (2; +∞).
C. (0; 2).
Câu 7. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể
là:
A. 64cm3 .
B. 91cm3 .
C. 84cm3 .
ln x p 2
ln x + 1 mà F(1) =
Câu 8. Gọi F(x) là một nguyên hàm của hàm y =
x
1
8
8

A. .
B. .
C. .
9
3
9

D. 4.
D. (−∞; 1).
tích của khối lập phương đó

D. 48cm3 .
1
. Giá trị của F 2 (e) là:
3
1
D. .
3
8
Câu 9. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 81.
B. 96.
C. 82.
D. 64.

Câu 10. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị ngun dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. Vô số.

C. 62.
D. 63.
Câu 11. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. .
B. − .
C. −2.
2
2

D. 2.

Câu 12. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
A. 25.
B. .
C. 5.
D. 5.
5
4x + 1
bằng?
Câu 13. [1] Tính lim
x→−∞ x + 1
A. −4.
B. −1.
C. 2.
D. 4.
x−1

Câu 14. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
√ có độ dài bằng

√ đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB
A. 2 3.
B. 2.
C. 2 2.
D. 6.


Trang 1/10 Mã đề 1


Câu 15. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
C. .
D.
.
A. a.
B. .
3
2
2

Câu 16. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là
√ hình chóp S .ABCD với mặt

2
2
2
a 7
a 2
11a
a2 5
A.
.
B.
.
C.
.
D.
.
8
4
32
16
2n + 1
Câu 17. Tìm giới hạn lim
n+1
A. 0.

B. 3.
C. 1.
D. 2.
Câu 18. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC theo a


a3
a3 5
a3 15
a3 15
.
B.
.
C.
.
D.
.
A.
25
3
25
5
Câu 19. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 1.
C. Vô nghiệm.
D. 3.
Câu 20. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước

đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 212 triệu.
B. 216 triệu.
C. 210 triệu.
D. 220 triệu.
Câu 21. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 40 .(3)10
C 20 .(3)30
C 10 .(3)40
C 20 .(3)20
B. 50 50 .
C. 50 50 .
D. 50 50 .
A. 50 50 .
4
4
4
4

Câu 22. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị nhỏ nhất của biểu thức P = x + 2y thuộc tập nào dưới
" đây?
!
"
!

5
5
A. (1; 2).
B. [3; 4).
C.
;3 .
D. 2; .
2
2
Câu 23. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; 6, 5].
B. (−∞; 6, 5).
C. [6, 5; +∞).

D. (4; +∞).

Câu 24. [1] Đạo hàm của làm số y = log x là
1
1
1
ln 10
.
B. y0 = .
C.
.
D. y0 =
.
A. y0 =
x ln 10
x

10 ln x
x
Câu 25. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 72.
B. −7, 2.
C. 7, 2.
D. 0, 8.

2
Câu 26. [1228d] Cho phương trình (2 log3 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vô số.
B. 63.
C. 62.
D. 64.
Câu 27.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
A.

[ f (x) + g(x)]dx =

f (x)dx +

g(x)dx, với mọi f (x), g(x) liên tục trên R.
Trang 2/10 Mã đề 1


Z

B.

k f (x)dx = k

Z
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.

Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
D.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
C.

Câu 28. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 8 cạnh, 4 mặt. B. 3 đỉnh, 3 cạnh, 3 mặt. C. 4 đỉnh, 6 cạnh, 4 mặt. D. 6 đỉnh, 6 cạnh, 4 mặt.
Câu 29. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
 π π
3
Câu 30. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 7.

B. 1.
C. 3.
D. −1.
Câu 31. Khối đa diện đều loại {3; 5} có số mặt
A. 30.
B. 20.

C. 12.

D. 8.

Câu 32. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc√với đáy và S C = a 3. √
Thể tích khối chóp S .ABC√là

3
3
a 3
a3 6
a3 3
2a 6
.
B.
.
C.
.
D.
.
A.

9
2
12
4
Câu 33. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m < 3.
C. m ≤ 3.
D. m ≥ 3.



x=t




Câu 34. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x + 3)2 + (y + 1)2 + (z + 3)2 = .

B. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x + 3) + (y + 1) + (z − 3) = .
D. (x − 3) + (y + 1) + (z + 3) = .
4
4
2
x −9
Câu 35. Tính lim
x→3 x − 3
A. 3.
B. 6.
C. −3.
D. +∞.
1 − xy
Câu 36. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.




2 11 − 3
9 11 − 19
9 11 + 19
18 11 − 29
A. Pmin =
.
B. Pmin =
. C. Pmin =
. D. Pmin =
.
3
9
9
21

x2 + 3x + 5
Câu 37. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. 1.
B. 0.
C. − .
D. .
4
4
Câu 38. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình tam giác.

B. Hình lập phương.
C. Hình lăng trụ.
D. Hình chóp.
Trang 3/10 Mã đề 1


x+2
Câu 39. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. Vô số.
B. 1.
C. 3.
D. 2.
Câu 40. Khối đa diện đều loại {3; 3} có số cạnh
A. 5.
B. 6.

C. 4.

D. 8.

Câu 41. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.
B. 20.

C. 8.

D. 12.


log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m ≤ 0.
D. m < 0.

Câu 42. [3-1226d] Tìm tham số thực m để phương trình
A. m < 0 ∨ m = 4.

B. m < 0 ∨ m > 4.

Câu 43. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 4.

B. 3.

C. 2.

D. 1.

Câu 44. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Trục ảo.
C. Hai đường phân giác y = x và y = −x của các góc tọa độ.
D. Trục thực.

Câu 45. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một hoặc hai.
B. Có một.
C. Khơng có.
D. Có hai.
Câu 46. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim− f (x) = f (b).
B. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a

x→b

C. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a

x→b

Z
Câu 47. Cho
A. 1.

1

2

x→a

x→b


x→a

x→b

D. lim+ f (x) = f (a) và lim+ f (x) = f (b).

ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
B. 3.
C. 0.

D. −3.

Câu 48. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. 3.
C. Vô nghiệm.
D. 1.
Câu 49. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 27.
B. 10.
C. 3.
Câu 50. [2] Tổng các nghiệm của phương trình 2
A. 6.
B. 5.

D. 12.


x2 +2x

= 82−x là
C. −6.

Câu 51. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 + 2e
1 − 2e
A. m =
.
B. m =
.
C. m =
.
4e + 2
4e + 2
4 − 2e

D. −5.
D. m =

1 + 2e
.
4 − 2e
Trang 4/10 Mã đề 1


Câu 52. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng

1
ab
ab
1
.
B. √
.
C. √
.
D. 2
.
A. √
a + b2
2 a2 + b2
a2 + b2
a2 + b2
Câu 53. Dãy số nào sau đây có giới hạn là 0?
n2 + n + 1
1 − 2n
A. un =
.
B. un =
.
2
(n + 1)
5n + n2

C. un =

n2 − 3n

.
n2

Câu 54. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 1.

B. 2.

D. un =
1
3|x−1|

C. 4.

n2 − 2
.
5n − 3n2

= 3m − 2 có nghiệm duy

D. 3.

t

9
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
+ m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 0.

B. 2.
C. Vô số.
D. 1.

Câu 55. [4] Xét hàm số f (t) =

9t

Câu 56. Cho z là nghiệm của phương trình√ x2 + x + 1 = 0. Tính P =√z4 + 2z3 − z
−1 + i 3
−1 − i 3
.
C. P =
.
D. P = 2i.
A. P = 2.
B. P =
2
2
!
x+1
Câu 57. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2016
4035
2017
A. 2017.
B.
.

C.
.
D.
.
2017
2018
2018
Câu 58. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
B. T = e + 3.
C. T = e + .
D. T = e + 1.
A. T = 4 + .
e
e
Câu 59. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể tích khối chóp S .ABC là √


a3 3
a3
a3 3
a3 3
A.
.
B.
.

C.
.
D.
.
12
4
8
4
5
Câu 60. Tính lim
n+3
A. 3.
B. 0.
C. 1.
D. 2.
Câu 61. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai cạnh.
B. Ba cạnh.
C. Bốn cạnh.

D. Năm cạnh.

Câu 62. [2] Cho chóp đều S .ABCD có đáy là hình vuông tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
B. a 6.

C. a 3.
D.
.
A. 2a 6.
2
n−1
Câu 63. Tính lim 2
n +2
A. 3.
B. 2.
C. 1.
D. 0.
Câu 64. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Nhị thập diện đều. B. Tứ diện đều.
C. Thập nhị diện đều.

D. Bát diện đều.

Câu 65. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 3 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 27 lần.
Trang 5/10 Mã đề 1


Câu 66. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 9.
B. 0.

C. 13.

D. Không tồn tại.

Câu 67. Khối đa diện đều loại {4; 3} có số cạnh
A. 12.
B. 30.

D. 10.

C. 20.

Câu 68. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m < .
C. m > .
D. m ≤ .
A. m ≥ .
4
4
4
4
Câu 69.
Z Trong cácα+1khẳng định sau, khẳng định nào sai? Z
x
A.
xα dx =

+ C, C là hằng số.
B.
0dx = C, C là hằng số.
α+1
Z
Z
1
C.
dx = ln |x| + C, C là hằng số.
D.
dx = x + C, C là hằng số.
x
Câu 70. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
A.
.
B.
.
C.
.
D. a 6.
3
2
6

Câu 71. Phát biểu nào sau đây là sai?
1
A. lim qn = 1 với |q| > 1.
B. lim k = 0 với k > 1.
n
1
C. lim √ = 0.
D. lim un = c (Với un = c là hằng số).
n
Câu 72. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
C. −e.
D. − .
B. − .
A. − 2 .
e
e
2e
0 0 0
Câu 73. [4-1214h] Cho khối lăng trụ ABC.A B C , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
3
2
. Thể tích khối lăng trụ đã cho bằng
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =

3 √

2 3
A. 3.
B. 1.
C.
.
D. 2.
3


4n2 + 1 − n + 2
Câu 74. Tính lim
bằng
2n − 3
3
A. +∞.
B. .
C. 1.
D. 2.
2
Câu 75. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
.
B. .
C. 7.
D. 5.
A.
2

2
Câu 76. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a 3. Thể tích khối chóp S .ABCD



3
3
a
a 3
a3 3
3
A.
.
B. a .
C.
.
D.
.
3
3
9
Câu 77. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng

2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 1; 6).
B. ~u = (2; 2; −1).
C. ~u = (1; 0; 2).
D. ~u = (3; 4; −4).
Câu 78. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.

C. Khối 12 mặt đều.

D. Khối 20 mặt đều.
Trang 6/10 Mã đề 1


Câu 79. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −5.
B. −7.
C. −3.

D. Không tồn tại.

Câu 80. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
B. 1.
C. 3.

D. .
A. .
2
2
3
x −1
Câu 81. Tính lim
x→1 x − 1
A. 3.
B. 0.
C. +∞.
D. −∞.
Câu 82. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 4 mặt.
C. 6 mặt.

D. 3 mặt.

Câu 83. Khối đa diện đều loại {3; 4} có số đỉnh
A. 6.
B. 10.

D. 4.

C. 8.

Câu 84. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)

8a
a
2a
5a
A.
.
B. .
C.
.
D.
.
9
9
9
9
a
1
Câu 85. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 4.
B. 2.
C. 7.
D. 1.
2
1−n
Câu 86. [1] Tính lim 2
bằng?
2n + 1
1

1
1
A. 0.
B. .
C. .
D. − .
2
3
2
Câu 87.√Thể tích của tứ diện đều √
cạnh bằng a

3
3
a 2
a 2
a3 2
A.
.
B.
.
C.
.
4
12
2

Câu 88. √Xác định phần ảo của số
phức
z

=
(
2 + 3i)2

A. −6 2.
B. 6 2.
C. −7.


a3 2
D.
.
6
D. 7.

Câu 89. Hàm số nào sau đây khơng có cực trị
A. y = x3 − 3x.

B. y = x4 − 2x + 1.

1
C. y = x + .
x

D. y =

x−2
.
2x + 1


Câu 90. Phát biểu nào sau đây là sai?
1
A. lim qn = 0 (|q| > 1).
B. lim k = 0.
n
1
C. lim = 0.
D. lim un = c (un = c là hằng số).
n
Câu 91. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = −18.
B. y(−2) = 6.
C. y(−2) = 22.
D. y(−2) = 2.
Câu 92.! Dãy số nào sau đây có giới! hạn là 0?
n
n
4
5
A.
.
B. − .
e
3

!n
1
C.
.

3

Câu 93. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
A.
.
B. 2.
C. .
2
2

!n
5
D.
.
3

D. 1.
Trang 7/10 Mã đề 1


Câu 94. [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
√ min |z − 1 − i|.
C. 1.
D. 10.
A. 2.
B. 2.
0 0 0
d = 60◦ . Đường chéo

Câu 95. Cho lăng trụ đứng ABC.A B C có đáy là tam giác vuông tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0




3

4a3 6
2a
a3 6
6
A.
D.
.
B.
.
C. a3 6.
.
3
3
3
Câu 96. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 3.
B. 0.
C. 2.
D. 1.
1
Câu 97. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3

A. 2 < m ≤ 3.
B. 2 ≤ m ≤ 3.
C. 0 < m ≤ 1.
D. 0 ≤ m ≤ 1.
Câu 98. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 10 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 99. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
15
6
9
18
un
Câu 100. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 0.
B. 1.
C. −∞.

D. +∞.
Câu 101. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m , 0.
B. m > 0.
C. m = 0.

D. m < 0.

Câu 102. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. (−∞; +∞).
C. (1; 2).
D. [1; 2].
log(mx)
= 2 có nghiệm thực duy nhất
Câu 103. [1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m < 0 ∨ m > 4.
B. m < 0.
C. m < 0 ∨ m = 4.
D. m ≤ 0.
2
2n − 1
Câu 104. Tính lim 6
3n + n4
2
D. 1.
A. 2.
B. 0.
C. .

3
Câu 105. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; −1).
B. (−∞; 1).
C. (−1; 1).
D. (1; +∞).
x2 − 5x + 6
Câu 106. Tính giới hạn lim
x→2
x−2
A. 0.
B. 5.

C. 1.

D. −1.

Câu 107. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 4 − 2 ln 2.
B. −2 + 2 ln 2.
C. e.
D. 1.
Câu 108. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [−1; 0].
C. m ∈ [0; 1].


log23

q
x+ log23 x + 1+4m−1 =

D. m ∈ [0; 4].

Câu 109. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x + x − y − 12 = 0. Tìm giá trị nhỏ nhất của
P = xy + x + 2y + 17
A. −15.
B. −5.
C. −9.
D. −12.
2

Trang 8/10 Mã đề 1


Câu 110. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 111. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị lớn nhất trên K.
C. f (x) có giá trị nhỏ nhất trên K.

B. f (x) liên tục trên K.
D. f (x) xác định trên K.


Câu 112. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).

B. Cả ba mệnh đề.

C. (II) và (III).

D. (I) và (III).

Câu 113. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là −4.
B. Phần thực là −3, phần ảo là 4.
C. Phần thực là 3, phần ảo là −4.
D. Phần thực là 3, phần ảo là 4.
x2 − 12x + 35
x→5
25 − 5x
2
2
A. −∞.
B. − .
C. .
D. +∞.
5
5

Câu 115. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) = 10.
B. f 0 (0) =
.
C. f 0 (0) = 1.
D. f 0 (0) = ln 10.
ln 10
mx − 4
Câu 116. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 34.
B. 45.
C. 67.
D. 26.
Câu 114. Tính lim

Câu 117. Khối đa diện đều loại {5; 3} có số cạnh
A. 12.
B. 30.

C. 8.

D. 20.

x3 −3x+3

Câu 118. [2-c] Giá trị lớn nhất của hàm số f (x) = e
trên đoạn [0; 2] là

3
5
A. e.
B. e .
C. e .
D. e2 .
Câu 119. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
Câu 120. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 22016 .
B. 1.
C. 0.
D. e2016 .
Câu 121. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3.
Tính f (2) + f (4)?
A. 10.
B. 12.
C. 4.
D. 11.
Câu 122. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt√bên (S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
3
3
3
3

a 3
8a 3
4a 3
8a 3
A.
.
B.
.
C.
.
D.
.
9
3
9
9
Trang 9/10 Mã đề 1


Câu 123. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 13.
B. 2020.
C. log2 13.
D. log2 2020.
Câu 124. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 0).
B. Hàm số nghịch biến trên khoảng (0; 1).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số đồng biến trên khoảng (1; 2).
Câu 125. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc

0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
6
12
24
36
Câu 126. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với
đáy một góc 45◦ và AB = 3a, BC = 4a.
√ Thể tích khối chóp S .ABCD là

3
10a 3
A. 10a3 .
B.
.
C. 20a3 .
D. 40a3 .
3
x−3
Câu 127. [1] Tính lim
bằng?
x→3 x + 3
A. +∞.
B. −∞.
C. 0.
D. 1.
!
1
1
1
Câu 128. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
D. .
A. +∞.
B. 2.
C. .

2
2
Câu 129. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 3ac
3b + 2ac
3b + 2ac
A.
.
B.
.
C.
.
D.
.
c+2
c+1
c+2
c+3
x−2
Câu 130. Tính lim
x→+∞ x + 3
2
A. −3.
B. 2.
C. − .
D. 1.
3
- - - - - - - - - - HẾT- - - - - - - - - -


Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

2.

B

3. A

C

4. A

5.

D

6.

C

7. A

8.


C

9. A

10.

C

11.

12. A

C
D

13.

14. A

15. A

16. A

17.
19.

D

18. A


B

20. A

21. A

22.

23. A

24. A

C

25.

B

26.

C

27.

B

28.

C


D

29.
31.

B

C

38. A
D

40.

41.

D

42. A

B

B

44.

45. A

C


46. A

47.

D

49.

48. A
50.

C

51. A

D

52.

53.

B

54. A

55.

B

56. A


57.

D

59.
61.

D

36. A

B

39.
43.

C

34.

D

37.

B

32.

33.

35.

30.

C
B

58.

B

60.

B

62.

B

63.

D

64.

65.

D

66.

68.

67. A
1

C

C
B
D


69. A

70.

71. A

72.
D

73.
75.

C
D

78.

D


80.

D

81. A

83. A

84. A

85.
D

86.

87.

C

93.

94.

C

95.
D

B

B

C

104.

105.

C

106.

107.

C

108.

109.

D
B

112. A

113.

B

114.


115.

D

B

C

116. A

B
D

119.

D

110. A

111.

127.

C

102.

103.


118.

C

120.

C
D

122.

B

123.

B

100. A

101. A

125.

D

97. A

B

98.


121.

B

91. A

92.

117.

C

89.

B

90. A

96.

C

76. A

79.

88.

D


74.

B

77.

C

C

124.

B

B

126.
128.

C

130.

129. A

2

C
B

D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×