Tải bản đầy đủ (.doc) (19 trang)

Giải toán hình học không gian bằng phương pháp toạ độ.

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (457.88 KB, 19 trang )

Giải bài toán hình học không gian bằng phương pháp toạ độ
Người thực hiện:Lê Thị Tường

MỞ ĐẦU
- - - - - -  - - - - - -
I - Lý do chọn đề tài:
Trong toán học nói chung và trong hình học nói riêng không có một
phương pháp nào chung để giải các bài toán. Mỗi phương pháp đều có những
ưu, nhược điểm riêng. Với mỗi loại bài toán luôn đòi hỏi một phương pháp cụ
thể để giải quyết một cách đơn giản nhất. Sự ra đời của phương pháp toạ độ
đã đơn giản hoá được phần lớn các bài toán trong hình học không gian. Thông
qua phương pháp toạ độ và phương pháp vectơ có thể xây dựng thêm một
công cụ giải toán, cho phép đại số hoá hình học, hình học hoá đại số.
Với học sinh lớp 12 hiện nay nói chung và học sinh ban cơ bản nói
riêng, thì việc giải các bài boán hình học không gian sơ cấp đang là vấn đề
nan giải. Các em rất vất vả trong việc xác định khoảng cách và góc. Đa số các
em đều bỏ qua bài toán hình học không gian trong đề thi. Vì vậy tôi quyết
định đưa ra giải pháp sử dụng phương pháp tọa độ trong không gian. Ở học
kỳ II của lớp 12 các em đã được làm quen với phương pháp tọa độ trong
không gian, vì thế có thể sử dụng phương pháp toạ độ trong không gian để
giải quyết các bài toán hình học không gian một cách thuận tiện.
II- Phạm vi , đối tượng, thời gian thực hiện:
- Khách thể: Học sinh lớp 12.
- Đối tượng nghiên cứu: Một số bài toán hình học không gian.
- Phạm vi nghiên cứu: Các bài toán sơ cấp về hình học không gian trong
chương trình PTTH.
- Thực hiện đề tài trong các giờ bài tập của học sinh lớp 12 chuyên Pháp, năm
học 2011 – 2012
III. Quá trình thực hiện đề tài:
1- Tình trạng thực tế trước khi thực hiện đề tài:
Trước khi thực hiện đề tài, tôi đã khảo sát chất lượng của học sinh


thông qua kiểm tra viết sử dụng phương pháp toạ độ trong không gian để giải
quyết các bài toán hình học không gian. Tôi đã tiến hành kiểm tra qua bài
toán sau: Tìm lời giải bằng phương pháp toạ độ:
• Cho hình lập phương ABCD. A’B’C’D’ cạnh a . Tìm khoảng cách giữa
hai mặt phẳng (AB’D’) và (C’BD).
30% học sinh biết Dựa vào giả thiết để lựa chọn gốc toạ độ sao cho toạ độ các
điểm trong bài toán được thuận tiện.
10% học sinh biết cách giải bài tập hoàn chỉnh tối ưu.
Chất lượng bài giải của học sinh thấp, kĩ năng giải toán dạng này yếu.
2- Các biện pháp thực hiện đề tài:
2
Giải bài toán hình học không gian bằng phương pháp toạ độ
Người thực hiện:Lê Thị Tường
Bước 1: Hệ thống hoá các kiến thức
Bước 2: Đưa ra một số ví dụ điển hình
Bước 3: Rèn luyện kĩ năng giải các bài tập ứng cho học sinh thông qua một
số bài tập bổ sung nâng cao. Gợi mở cho học sinh những hướng phát triển,
mở rộng .
3 - Kết quả thực hiện đề tài:
Tôi đã tiến hành kiểm tra qua bài toán sau: Tìm lời giải bằng phương pháp toạ
độ: Cho hình vuông ABCD cạnh bằng a. Từ trung điểm H của cạnh AB dựng
SH vuông góc với mp(ABCD) sao cho góc giữa hai mặt phẳng (SAD) và
(ABCD) có số đo bằng 60
0
.
a. Tính SH và khoảng cách từ H đến mp(SCD).
b. Gọi K là trung điểm của cạnh AD. Chứng minh CK

SD và tính số
đo góc giữa hai mặt phẳng (SAD) và (SCD).

c. Tính góc giữa hai mặt phẳng (SBC) và (SCK).
Kết quả :
100% học sinh biết Dựa vào giả thiết để lựa chọn gốc toạ độ sao cho toạ độ
các điểm trong bài toán được thuận tiện.
80% Phiên dịch đúng từ bài toán hình học không gian sang ngôn ngữ toạ độ
75% học sinh biết cách giải bài tập hoàn chỉnh tối ưu.
IV– Những bài học kinh nghiệm và kiến nghị sau khi thực hiện đề tài
Qua kết quả điều tra khảo sát thực tiễn ta thấy rằng khi giải các bài toán
hình học không gian, học sinh thường không chú ý đến phương pháp toạ độ
và tính ưu việt của nó hoặc rất lúng túng khi giải bằng phương pháp toạ độ.
Do đó học sinh rất ngại khi giải các bài toán không gian.
Vì vậy, để giúp học sinh có hứng thú học môn hình học không gian và
thấy được tính ưu việt của phương pháp toạ độ khi giải bài tập hình học
không gian, thầy, cô giáo cần đề ra giải pháp khi giải bài toán hình học không
gian bằng phương pháp toạ độ.
- Lựa chọn những bài toán có thể quy về toạ độ trong hệ toạ độ thích
hợp.
- Dựa vào giả thiết để lựa chọn gốc toạ độ sao cho toạ độ các điểm
trong bài toán được thuận tiện.
- Phiên dịch đúng từ bài toán hình học không gian sang ngôn ngữ toạ
độ và ngược lại.
3
Giải bài toán hình học không gian bằng phương pháp toạ độ
Người thực hiện:Lê Thị Tường
NỘI DUNG
- - - - - -  - - - - - -
Chương I
MỘT SỐ KIẾN THỨC CƠ BẢN.
1/ Hệ trục toạ độ.
Cho ba trục toạ độ x’Ox, y’Oy, z’Oz vuông góc với nhau từng đôi một

tại điểm O. Gọi
, ,i j k
r r r
là các véctơ đơn vị tương ứng trên các trục x’Ox, y’Oy,
z’Oz.
Hệ ba trục toạ độ như vậy gọi là hệ trục toạ độ Đề các vuông góc Oxyz
hoặc đơn giản là hệ toạ độ Oxyz.
+ Trục Ox gọi là trục hoành.
+ Trục Oy gọi là trục tung.
+ Trục Oz gọi là trục cao.
+ Điểm O gọi là gốc của hệ toạ
độ.
2/ Vectơ đối với hệ toạ độ.
+ Cho hệ toạ độ Oxyz và một
vectơ tuỳ ý
v
r
. Vì ba vectơ
, ,i j k
r r r
không đồng phẳng nên có duy nhất bộ ba số
x, y, z sao cho:
v xi y j zk= + +
r r r r
Bộ ba số (x; y; z) gọi là toạ độ của vectơ
v
r
, kí hiệu là
( ; ; )v x y z
r

hoặc
( ; ; )v x y z=
r
. Số x gọi là hoành độ, số y gọi là tung độ và số z gọi là cao độ của
vectơ
v
r
.
+ Với hai điểm
( )
1 1 1 1
, ,M x y z

( )
2 2 2 2
, ,M x y z
thì:
( )
1 2 2 1 2 1 2 1
, ,M M x x y y z z= − − −
uuuuuur
+ Nếu có hai vectơ
1 1 1 1
( , , )v x y z=
ur

2 2 2 2
( , , )v x y z=
uur
thì:

(i).
( )
1 2 1 2 1 2 1 2
, ,v v x x y y z z+ = + + +
ur uur
(ii).
( )
1 2 1 2 1 2 1 2
, ,v v x x y y z z− = − − −
ur uur
(iii).
1 1 1 1
( , , )kv kx ky kz=
ur
(iv).
1 2 1 2 1 2 1 2
. . . .v v x x y y z z= + +
ur uur
(v).
1 2 1 2 1 2 1 2
0v v x x y y z z⊥ ⇔ + + =
ur uur
4
x
O
y
z
j
r
k

r
i
r
Giải bài toán hình học không gian bằng phương pháp toạ độ
Người thực hiện:Lê Thị Tường
(vi). Tích có hướng của hai vectơ
1 1 1 1
( , , )v x y z=
ur

2 2 2 2
( , , )v x y z=
uur
là một vectơ
v
r
được xác định bởi:
1 1 1 1 1 1
1 2
2 2 2 2 2 2
, , ,
y z z x x y
v v v
y z z x x y
 
 
= =
 ÷
 
 

r ur uur
3/ Khoảng cách giữa hai điểm.
Cho hai điểm
( )
1 1 1 1
, ,M x y z

( )
2 2 2 2
, ,M x y z
, thì khoảng cách d giữa
1
M

2
M
là độ dài của vectơ
1 2
M M
uuuuuur
:
( ) ( ) ( )
2 2 2
1 2 1 2 1 2 1 2
d M M x x y y z z= = − + − + −
uuuuuur
.
4/ Chia một đoạn thẳng cho trước theo một tỷ số cho trước.
Điểm
( )

, ,M x y x
chia đoạn thẳng
1 2
M M
theo tỉ số k:
1 2
MM k MM=
uuuuur uuuuur

được xác định bởi công thức:
1 2
1 2
1 2
1
1
1
x kx
x
k
y ky
y
k
z kz
z
k


=






=





=



Đặc biệt nếu k= - 1, thì M là trung điểm của
1 2
M M
, khi đó toạ độ của M là:
1 2
1 2
1 2
2
2
2
x x
x
y y
y
z z
z
+


=


+

=


+

=


5/ Góc giữa hai vectơ
Góc
α
giữa hai vectơ
1 1 1 1
( , , )v x y z=
ur

2 2 2 2
( , , )v x y z=
uur
xác định bởi:
1 2 1 2 1 2
1 1 1 2 2 2
1 1 1 2 2 2
. . .

cos
.
x x y y z z
x y z x y z
α
+ +
=
+ + + +
.
6/ Hai vectơ cùng phương
Hai vectơ
1 1 1 1
( , , ) 0v x y z= ≠
ur r

2 2 2 2
( , , ) 0v x y z= ≠
uur r
cùng phương với
nhau khi và chỉ khi tồn tại số thực k sao cho:
5
Giải bài toán hình học không gian bằng phương pháp toạ độ
Người thực hiện:Lê Thị Tường
2 1
v kv=
uur ur

cả ba định thức sau đều bằng 0:
1 1 1 1 1 1
2 2 2 2 2 2

, ,
y z z x x y
y z z x x y
.
7/ Phương trình mặt phẳng.
a. Khái niệm.
Một vectơ
0n ≠
r r
được gọi là một vectơ pháp tuyến của mặt phẳng
( )
α

nếu nằm trên đường thẳng vuông góc với
( )
α
.
Mặt phẳng
( )
α
hoàn toàn xác định nếu cho biết một điểm
0
( )M
α


một vectơ pháp tuyến của nó.
b. Định lý.
Mỗi mặt phẳng là tập hợp tất cả những điểm có toạ độ thoả mãn
phương trình dạng:

2 2 2
0 ( 0)Ax By Cz D A B C+ + + = + + ≠
và ngược lại mỗi phương trình dạng đó là phương trình của một mặt phẳng.
8/ Phương trình đường thẳng
a. Định nghĩa: Vectơ
a
r
là vectơ chỉ phương của đường thẳng (d)
0
/ /( )
a
a d







r r
r
b. Phương trình tổng quát của đường thẳng:
Vì đường thẳng (d) trong không gian có thể xem là giao tuyến của hai
mặt phẳng (P) và (Q) nào đó, nên phương trình tổng quát của (d) có dạng:
( )
( )
1 1 1 1
2 2 2 2
0 1
( ):

0 2
A x B y C z D
d
A x B y C z D
+ + + =


+ + + =


với điều kiện
1 1 1 2 2 2
: : : :A B C A B C≠
trong đó (1), (2) theo thứ tự là phương trình của hai mặt phẳng (P) và (Q).
9/ Phương trình mặt cầu
Trong hệ toạ độ Oxyz tập hợp các điểm cách điểm
( , , )I a b c
cho trước
một khoảng R>0 không đổi là một mặt cầu có phương trình:
2 2 2 2
( ) ( ) ( )x a y b z c R− + − + − =
.
6
Giải bài toán hình học không gian bằng phương pháp toạ độ
Người thực hiện:Lê Thị Tường
Chương II
GIẢI BÀI TOÁN HÌNH HỌC KHÔNG GIAN BẰNG
PHƯƠNG PHÁP TOẠ ĐỘ.
I/ Hướng dẫn học sinh sử dụng phương pháp toạ độ.
Để giải các bài toán hình học nói chung và hình học không gian nói

riêng chúng ta phải dựa vào các yếu tố, các quan hệ về hình học, đồng phẳng,
song song, vuông góc, bằng nhau. . . Nếu ta chọn một hệ toạ độ thích hợp thì
ta có thể chuyển thể bài toán hình học sang bài toán đại số với những số,
những chữ, vectơ với phép toán trên nó. Với bài toán đại số này chúng ta có
sự định hướng rõ ràng hơn và khả năng tìm được lời giải nhanh hơn. Để thực
hiện được điều đó, đòi hỏi học sinh phải có sự luyện tập, vận dụng các kiến
thức và cần nắm được quy trình giải toán bằng phương pháp toạ độ thích hợp.
Bước 1: Chọn hệ toạ độ thích hợp.
Bước 2: Phiên dịch bài toán từ ngôn ngữ hình học sang ngôn ngữ toạ
độ.
Bước 3: Dùng các kiến thức về toạ độ để giải toán.
Bước 4: Phiên dịch kết quả bài toán từ ngôn ngữ toạ độ sang ngôn ngữ
hình học.
Trong các bước trên, bước 2 và bước 4 học sinh có thể hoàn toàn làm
được nhờ các kiến thức liên hệ giữa hình học không gian và hệ toạ độ đã biết,
ở bước 3 học sinh có thể sử dụng các kiến thức trên hệ toạ độ một cách sáng
tạo để giải các bài toán. Bước 1 học sinh gặp khó khăn hơn cả do không có
phương pháp cụ thể. Để khắc phục khó khăn đó, học sinh phải tập luyện và
phải biết dựa vào một số đặc điểm của bài toán này. Chọn hệ toạ độ sao cho
gốc trùng với điểm cố định đã biết, dựa vào các đường thẳng vuông góc để
gắn với các trục toạ độ, các điểm đã biết gắn với các toạ độ đơn giản, thuận
lợi.
II/Giải bài toán định lượng trong hình học không gian.
Đối với loại bài toán tính toán, nếu không chuyển về phương pháp toạ
độ thì rất khó khăn vì hầu hết sử dụng đến khoảng cách mà chỉ có phương
pháp toạ độ ta mới biểu diễn được khoảng cách một cách đơn giản.
PHƯƠNG PHÁP CHUNG
Ta thực hiện theo các bước sau:
7
Giải bài toán hình học không gian bằng phương pháp toạ độ

Người thực hiện:Lê Thị Tường
Bước 1: Thiết lập hệ trục toạ độ thích hợp, từ đó suy ra toạ độ của các
điểm cần thiết.
Bước 2: Thiết lập biểu thức giải tích cho giá trị cần xác định, thông
thường bao gồm:
- Khoảng cách từ điểm đến đường thẳng hoặc mặt phẳng.
- Góc, khoảng cách giữa hai đường thẳng chéo nhau.
- Tính độ dài đoạn thẳng.
1. Các hình chóp và lăng trụ có sẵn ba cạnh cùng xuất phát từ một điểm
lần lượt vuông góc với nhau từng đôi một, ta chọn ba trục Ox, Oy, Oz lần
lượt là ba cạnh đó.
Bài 1: Cho hình lập phương ABCD. A’B’C’D’

cạnh bằng a.
a. Tính góc và khoảng cách giữa hai đường thẳng A’B và AC’.
b. Gọi K là trung điểm DD’. Tính góc và khoảng cách giữa 2 đường
thẳng CK và A’D’.
c. Mặt phẳng (P) qua BB’ và hợp với hai đường thẳng BC’, B’D hai
góc bằng nhau. Tính các góc này.
Giải.
Chọn hệ trục toạ độ Axyz với
,B Ax D Ay∈ ∈

A Az


, khi đó:
( ) ( ) ( ) ( )
0;0;0 , ;0;0 , ; ;0 , 0; ;0A B a C a a D a
( ) ( ) ( ) ( )

0;0; , ;0; , ; ; , 0; ; .A a B a a C a a a D a a
′ ′ ′ ′
a. Ta có
( ) ( )
;0; & ; ;A B a a AC a a a
′ ′

uuur uuuur
Gọi
α
là góc tạo bở A’B và AC’ ta có:
.
cos 0
2
' . '
A B AC
A B AC
π
α α
′ ′
= = ⇔ =
uuur uuuur
uuuur uuuur
.
Gọi d
1
là khoảng cách giữa A’B và AC’. ta có:
1
' , ' . '
6

' , '
A B A C AA
a
d
A B A C
 
 
= =
 
 
uuuur uuuur uuur
uuuur uuuur
.
b. Ta có:
( )
0; ; , ;0; & ' 0; ; .
2 2
a a
K a KC a A D a a

   

 ÷  ÷
   
uuur uuuur
Gọi
β
là góc tạo bởi CK và A’D, ta có:
. '
1

cos
10
. '
KC A D
KC A D
β
= =
uuur uuuur
uuur uuuur
.
8
A’
C’
D’
B’
x
y
z
B
A
C
D
Giải bài toán hình học không gian bằng phương pháp toạ độ
Người thực hiện:Lê Thị Tường
Gọi d
2
là khoảng cách giữa CK và A’D, ta có:
2
, ' ,
3

, '
KC A D KD
a
d
KC A D
 
 
= =
 
 
uuur uuuur uuur
uuur uuuur
c. Ta có BB’ là giao tuyến của hai mặt phẳng (ABB’A’) và (BCC’B’) nên:
( ) ( )
0 0
' : ' :
0
y x a
BB BB
x a y
= − =
 

 
= =
 
Mặt phẳng (P) qua BB’ có dạng:
( ) ( ) ( )
: 0 : 0 1; ;0P x a my P x my a vtpt n m− + = ⇔ + − = ⇒
r

Vì (P) hợp với BC’, B’D (có vtcp là
( )
1
0;1;1u
ur

( )
2
1; 1;1u −
uur
) hai góc
bằng nhau ( giả sử là
γ
) nên:
( ) ( )
2
2 2
1
sin 3 2 1 4 2 0
2 1 3 1
m m
m m m m
m m
γ

= = ⇔ = − ⇔ + − =
+ +
2 6m⇔ = − ±
.
Với

2 6m = − +
ta được:
( )
( )
2
2
6 2 6 2 6 2 6 1
sin
5
22 8 6
4 6
2 6 2 1
γ
− − − −
= = = =
 


− +
 
 
Với
2 6m = − −
ta được:
( )
( )
2
2
6 2 6 2 6 2 6 1
sin

5
22 8 6
4 6
2 6 2 1
γ
+ + + +
= = = =
 
+
+
− − +
 
 
.
Bài 2 : Cho tứ diện OABC có OA, OB, OC đôi một vuông góc , OA= a.
OB= b, OC= c. Điểm M cố định thuộc tam giác ABC có khoảng cách lần
lượt đến các mặt phẳng (OBC), (OCA), (OAB) là 1, 2, 3. Tính a, b, c để thể
tích tứ diện OABC nhỏ nhất.
Giải
Chọn hệ trục toạ độ Oxyz như hình
vẽ ta có:
(0;0;0); ( ;0;0)
(0; ;0); (0;0; )
O A a
B b C c
= =
= =
( )
, 3 3d M OAB z= ⇒ = 
 

Tương tự
( )
1;2;3M⇒

( )
: 1
x y z
PT ABC
a b c
+ + =
9
Giải bài toán hình học không gian bằng phương pháp toạ độ
Người thực hiện:Lê Thị Tường
( ) ( )
1 2 3
1 1M ABC
a b c
∈ ⇒ + + =
( )
1
2
6
OABC
V abc=
( )
3
1 2 3 1 2 3
1 1 3 . .
a b c a b c
⇔ = + + ≥

1
27
6
abc⇒ ≥
( )
( )
min
3
1 2 3 1
2 27 6
3
9
OABC
a
V b
a b c
c
=


⇒ = ⇔ = = = ⇔ =


=

2. Các dạng toán khác : Ta xác định chân đường cao, lấy chân đường cao
làm gốc O, trục Oz chính là đường cao, từ O trong mặt phẳng đáy dựng hai
trục còn lại vuông góc với nhau.
Bài 1: Cho hình chóp S.ABC có SA vuông góc với đáyvà tam giác ABC
vuông tại C. Độ dài các cạnh là

4, 3, 1SA AC BC= = =
. Gọi M là trung điểm
AB, H là điểm đối xứng của C qua M. Tính cosin của góc tạo bởi hai mặt
phẳng (SBH) và (SBC).
Giải
Trong mp(ABC) dựng tia Ax vuông góc
với AC. Chọn hệ trục tọa độ như hình vẽ.
Khi đó :
( ) ( ) ( )
0;0;0 , 1;3;0 , 0;3;0A B C
( ) ( ) ( )
0;0;4 1;0;0 , 1;3; 4S H SB⇒ −
uur
( ) ( )
0;3; 4 , 1;0; 4SC SH− −
uuur uuur
.
( ) ( )
, 0;4;3 , , 12;0; 3SB SC SB SH
   
= = − −
   
uur uuur uur uuur
( ) ( )
1 2
0;4;3 , 4;0;1
SBC SBH
n n n n⇒ = = = =
uuuur ur uuuur uur
( ) ( )

( )
1 2
1 2
.
3 17
cos ,
85
n n
SBC SBH
n n
⇒ = =
ur uur
ur uur

Giải: Gọi O là hình chiếu của S trên mp(ABC), suy ra O là trọng tâm tam
giác ABC. Gọi I là trung điểm của BC khi đó :
10
y
z
S
M
x
A
B
C
H
Bài 2: Cho hình chóp tam giác đều S.ABC có độ dài cạnh đáy là a. Gọi M, N là trung
điểm SB, SC. Tính theo a diện tích tam giác AMN biết mp(AMN) vuông góc với
mp(SBC).
Giải bài toán hình học không gian bằng phương pháp toạ độ

Người thực hiện:Lê Thị Tường
3 3 3
, , ,
2 3 6 2
a a a a
AI OA OI IB IC= = = = =
Trong mp(ABC), ta vẽ tia Oy vuông góc với OA. Đặt SO=h, chon hệ trục tọa
độ như hình vẽ ta có :
( ) ( )
3
0;0;0 , 0;0; , ;0;0 ,
3
a
O S h A
 
 ÷
 
3 3 3
;0;0 , ; ;0 , ; ;0
6 6 2 6 2
a a a a a
I B C
     
− − − −
 ÷  ÷  ÷
     
3 3
; ; , ; ;
12 4 2 12 4 2
a a h a a h

M N
   
− − −
 ÷  ÷
   
( )
2
5 3
, ;0;
4 24
AMN
ah a
n AM AN
 
 
= =
 ÷
 
 
uuuuuur uuuur uuur
( )
2
3
, ;0;
6
SBC
a
n SB SC ah
 
 

= = −
 ÷
 
 
uuuuur uur uuur
( ) ( )
2
2
5
12
a
AMN SBC h⊥ ⇔ =
2
1 10
,
2 16
AMN
a
S AM AN

 
⇒ = =
 
uuuur uuur
.
*Bài tập làm thêm
Giải
Vì tam giác ABC đều nên
HC AB⊥
.

Chọn hệ trục tọa độ như hình vẽ. Khi đó
( )
3
0;0;0 , ;0;0 , ;0;0 , 0; ;
2 2 2
a a a
H A B C o
 
   

 ÷
 ÷  ÷
   
 
( )
3
0;0; . ; ;0
2
a
S a BA CD D a
 
= ⇒ −
 ÷
 
uuur uuur
O là trung điểm AC
3
; ;0
4 4
a a

O
 
⇒ −
 ÷
 
a. Mặt phẳng (SBC) có phương trình là :
2 2
1 2 3 2 3 3 0
3
x y z
x y z a
a a
a
+ + = ⇔ + + − =
11
x
A
y
O
B
A
I
M
S
z
N
C
h
a
Bài 3: Cho hình thoi ABCD tâm O, cạnh bằng a và AC=a. Từ trung điểm H của cạnh

AB dựng SH vuông góc với mp(ABCD) và SH = a.
a. Tính khoảng cách từ O đến mp(SBC).
b. Tính góc giữa hai mặt phẳng (SBC) và (SCD).
x
y
A
O
H
B
C
D
S
z
Giải bài toán hình học không gian bằng phương pháp toạ độ
Người thực hiện:Lê Thị Tường
( )
( )
57
,
19
a
d O SBC⇒ =
.
b. Theo câu trên thì
( )
( )
2 3;2; 3
SBC
n =
uuuuur

, còn
2
2
3
, 0; ;
2
a
SC SD a
 
 
=
 ÷
 
 
uuur uuur
( )
( )
0;2; 3
SCD
n⇒ =
uuuuur
( ) ( )
( )
7
cos ,
19
SBC SCD⇒ =
Bài 1: Cho hình lăng trụ tứ giác đều ABCDA’B’C’D’ đường cao h. Mặt phẳng
(A’BD) hợp với mặt bên (ABB’A’) một góc
α

. Tính thể tích và diện tích xung
quanh hình lăng trụ.
Bài 2: Cho hình hộp ABCDA’B’C’D’ có đáy ABCD là hình thoi tâm O cạnh
bằng a, góc
µ
0
60A =
, B’O vuông góc với đáy ABCD, cho BB’=a.
a. Tính góc giữa cạnh bên và đáy.
b. Tính khoảng cách từ B, B’ đến mp(ACD’)
Bài 3: Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh bằng a, SA
vuông góc với đáy. Tính độ dài đoạn SA biết rằng số đo góc giữa hai mặt
phẳng (SBC) và (SCD) bằng 60
0
.
Bài 4: Cho hình vuông ABCD cạnh bằng a. Từ trung điểm H của cạnh AB
dựng SH vuông góc với mp(ABCD) sao cho góc giữa hai mặt phẳng (SAD) và
(ABCD) có số đo bằng 60
0
.
d. Tính SH và khoảng cách từ H đến mp(SCD).
e. Gọi K là trung điểm của cạnh AD. Chứng minh CK

SD và tính số
đo góc giữa hai mặt phẳng (SAD) và (SCD).
f. Tính góc giữa hai mặt phẳng (SBC) và (SCK).
III/ Giải bài toán định tính trong hình học không gian
PHƯƠNG PHÁP CHUNG
Ta thực hiện theo các bước sau:
Bước 1: Thiết lập hệ trục toạ độ thích hợp, từ đó suy ra toạ độ của các

điểm cần thiết.
Bước 2: Thiết lập biểu thức giải tích cho điểu kiện, từ đó suy ra kết quả
cần chứng minh.
Bài 1: Cho hình lập phương ABCD.A
1
B
1
C
1
D
1
; O là tâm hình vuông
BCC
1
B
1
, M là một điểm thuộc đoạn C
1
O. Mặt phẳng (MA
1
D) cắt B
1
D
1
ở I
và cắt AC tại J. Chứng minh I, M, J thẳng hàng.
Giải : Chọn hệ trục tọa độ như hình vẽ.
Giã sử cạnh của hình lập phương bằng 1.
12
B

C
D
y
D
1
C
1
A
O
x
B
1
A
1
z
M
D’
A
B
C
D
A’
B’
C’
x
y
z
M
N
Giải bài toán hình học không gian bằng phương pháp toạ độ

Người thực hiện:Lê Thị Tường
Ta có :
( ) ( ) ( ) ( )
0;0;0 , 1;0;0 , 1;1;0 , 0;1;0A B C D
( ) ( ) ( ) ( )
1 1 1 1
0;0;1 , 1;0;1 , 1;1;1 , 0;1;1A B C D
( ) ( )
1 1
1
0;1;1 : 1; ;
x
BC BC y m M m m
z m
=


⇒ = ⇒


=

uuuur
(Với
1
1
2
m< <
)
( ) ( )

( )
( )
1
1 1 1 1
1; ; 1 , 0;1; 1 , 1 2 ;1;1
A DM
A M m m A D n A M A D m
 
− − ⇒ = = −
 
uuuur uuuur uuuuuur uuuur uuuur
Suy ra
( ) ( )
1
: 1 2 1 0mp A DM m x y z− + + − =

( )
1 1 1 1
1
1;1;0 :
1
x t
B D B D y t
z
= −


− ⇒ =



=

uuuur
.
Tọa độ I là nghiệm của hệ
( )
1
1
1 2 1 0
x t
y t
z
m x y z
= −


=


=


− + + − =

1 2 1
; ;1
2 2
m
I
m m


 

 ÷
 

( )
( ) ( )
1 1
1;1;0 : ; ;0
2 1 2 1
0
x u
AC AC y u J
m m
z
=

 

⇒ = ⇒
 ÷

− −
 

=

uuur
2

1 2 2 1 2
; ;1
2 2
m m m
MI m
m m
 
− − −
= −
 ÷
 
uuur
;
2
1 2 2 1 2
; ;
2( 1) 2( 1)
m m m
MJ m
m m
 
− − −
= −
 ÷
− −
 
uuur
Suy ra :
1m
MI MJ

m

=
uuur uuur
hay ba điểm M, I, J thẳng hàng (đpcm).

Bài 2: Cho hình lập phương ABCD. A’B’C’D’ cạnh a.
Trên BD và AD’ lần lượt lấy hai điểm thay đổi M,N sao cho
(0 2)DM AN x x a= = ≤ ≤
CMR: MN luôn song song với một mặt phẳng cố định.
Giải
Chọn hệ trục toạ độ Oxyz sao cho:
(0;0;0); ( ;0;0)
(0; ;0); (0;0; )
A B a
D a A a
= =

= =
Khi đó
13
Giải bài toán hình học không gian bằng phương pháp toạ độ
Người thực hiện:Lê Thị Tường

( ; ;0)
(0; ; )
C a a
D a a
=


=
Gọi
1 1 1 2 2 2
( ; ; ), ( ; ; )M x y z N x y z= =
Ta có:
2 1 2 1 2 1
(0; ;0); ( ;0;0);
( ; ; )
BC a BA a
MN x x y y z z
= = −
= − − −
uuur uuur
uuuur
Vặt khác theo giả thiết:
(0 2)DM AN x x a= = ≤ ≤
Đặt
(0 1)
2
x
k k
a
= ≤ ≤
1 1
1 1
1 1
( )
0 0
x a k a x a ka
DM k DB y ka y ka

z z
− = − = −
 
 
= ⇔ = ⇔ =
 
 
= =
 
uuuur uuur
2
2
2
0
x ka
AN k AD y
z ka
=



= ⇔ =


=

uuur uuuur
Xét
( )
( ) ( ) ( ) ( )

2 1 2 1 2 1
, ', . . 0. .0 .0.D BC BA MN a a z z y y x x a= − − + − + −
uuur uuur uuuur
( ) ( ) ( ) ( )
2 1 2 1 2 1
. .0 . 0.0.x x a a y y a z z− − − − − − −
( ) ( )
( )
( )
2 2
2 1 2 1
2
2 1 2 1
2
0 0
0
a z z a y y
a z z y y
a ka ka
= − − − −
= − − − +
= − − − −
=
Suy ra
, ',BC BA MN
uuur uuur uuuur
luôn luôn đồng phẳng.
Suy ra MN luôn luôn song song với (A’BCD’) cố định.
*Bài tập làm thêm.
Bài 1: Cho hình lập phương ABCDA’B’C’D’ cạnh bằng a. CMR khoảng cách

từ một điểm bất kì trong không gian đến một trong các đường thẳng AA’,
A’C’, CD không thể đồng thời nhỏ hơn
2
a
.
Bài 2: Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh bằng a, SA
vuông góc với đáy. Gọi M, N là hai điểm theo thứ tự thuộc BC, DC sao cho
2
a
BM =
.
3
4
a
DN =
. CMR hai mặt phẳng (SAM) và (SMN) vuông góc với
14
Giải bài toán hình học không gian bằng phương pháp toạ độ
Người thực hiện:Lê Thị Tường
nhau.
Bài 3: Đường thẳng (d) tạo với 2 đường thẳng (d
1
) và (d
2
) cắt nhau các góc
bằng nhau, ngoài ra nó không vuông góc với mặt phẳng
( )
α
chứa các đường
thẳng này. CMR hình chiếu vuông góc (d’) của đường thẳng (d) lên mặt

phẳng
( )
α
cũng tạo thành những góc bằng nhau với 2 đường thẳng (d
1
) và
(d
2
)
IV/ Giải bài toán về điểm và quỹ tích trong hình học không gian
PHƯƠNG PHÁP CHUNG
Ta thực hiện theo các bước sau:
Bước 1: Thiết lập hệ trục toạ độ thích hợp, từ đó suy ra toạ độ của các
điểm cần thiết.
Bước 2: Thiết lập biểu thức giải tích cho điểm cần tìm quỹ tích, từ đó
suy ra quỹ tích của nó.
Bài 1: Cho hình lăng trụ đứng ABCA
1
B
1
C
1
có đáy ABC vuông cân với
AB=AC=a và AA
1
=h. Gọi E, F lần lượt là trung điểm của BC và A
1
C
1
. Tìm

trên đoạn EF điểm I cách đều hai mặt phẳng (ABC) và (ACC
1
A
1
). Tính
khoảng cách đó.
Giải.
Chọn hệ trục toạ độ Axyz với B

Ax, khi đó:
A(0;0;0). B(a;0;0). C(0;a;0).
A
1
(0;0;h). B
1
(a;0;h). C
1
(0;a;h).
Vì E, F là trung điểm của BC và A
1
C
1
nên:
E
( , ,0)
2 2
a a
và F
(0, , )
2

a
h
.
Phương trình đường thẳng EF được cho bởi:
2 2
( , ,0)
2 2
: .
2
( ,0, )
2
a a
x t
a a
Qua E
a
EF EF y t R
a
vtcp EF h
z ht

= −




 
⇔ = ∈
 
 



=




uuur
15
E
F
A
B
C
A
1
x
y
z
B
1
C
1
Giải bài toán hình học không gian bằng phương pháp toạ độ
Người thực hiện:Lê Thị Tường
Vì I

EF nên
( , , )
2 2 2

a a a
I t ht−
. t

[0. 1].
Vì I cách đều (ABC) và (ACC
1
A
1
) nên
( , , )
2 2 2 2 2 2
a a a ah a ah
t ht t I
a h a h a h
− = ⇔ = ⇒
+ + +
.
Khi đó điểm I chia đoạn EF theo tỉ sô k, tức là:
2
1 2 1 2
E F
I
a
x kx a a
x k
k a h k h
− −
= ⇔ = ⇔ =
− + −

*Khoảng cách từ I đến mặt phẳng (ABC) và (ACC
1
A
1
) là
.
2
I
ah
d z
a h
= =
+
Bài 2: Cho 2 điểm A, B cố định. Tìm tập hợp các điểm M sao cho:
AM:BM=k. với 0<k

1.
Giải
Chọn hệ trục toạ độ Oxyz sao cho A( - a;0;0) & B(a;0;0), khi đó với
điểm M(x;y;z) ta có:
( )
( )
( )
2
2 2
2
2
2
2
2 2

2
2
2
2 2
2 2
1
2
1 1
x a y z
AM AM
k k
BM BM
x a y Z
a k
ak
x y z
k k
+ + +
= ⇔ = =
− + +
 
+
 
⇔ + + + =
 
 ÷
− −
 
 
 

Phương trình trên là phương trình mặt cầu có:
tâm
( )
2
2
1
;0;0
1
a k
I
k
 
− +
 ÷
 ÷

 
bán kính
2
2
1
ak
R
k
=

.
*Bài tập làm thêm.
Bài 1: Trong mặt phẳng
α

cho đường tròn (C) đường kính AB=2R, SA=h
(0<h<2R) và vuông góc với mặt phẳng
α
. Gọi M là điểm di động trên đường
tròn (C). Tính h theo R để tồn tại điểm M trên (C) để đoạn nối trung điểm hai
đoạn AM và SB là đoạn vuông góc chung của chúng, khi đó tính độ dài của
đoạn vuông góc chung này.
16
Giải bài toán hình học không gian bằng phương pháp toạ độ
Người thực hiện:Lê Thị Tường
Bài 2: Cho hình trụ có hai đáy là hai đường tròn tâm O và O
1
, bán kính R,
chiều cao hình trụ bằng h. Trên hai đường tròn (O) và (O
1
) có hai điểm di
động A, B. Gọi I, K theo thứ tự là trung điểm OO
1
và AB.
a. CMR IK là đường vuông góc chung của OO
1
và AB.
b. Tính độ dài IK trong các trường hợp:
+ AB=kh. với 1<k<
2
2
4
1
R
h

+
+
( )
1
,OA O B
α
=
uuur uuur
Từ đó suy ra quỹ tích điểm K khi AB di động.
Bài 3: Cho góc tam diện vuông Oxyz trên Ox, Oy, Oz lấy các điểm A, B, C
sao cho OA=OB=OC. Giả sử (d) là đường thẳng qua O, các điểm A’, B’, C’ là
các điểm đối xứng với A, B, C qua (d). Các mặt phẳng đi qua A’, B’, C’ tương
ứng vuông góc với các đường thẳng OA, OB, OC cắt nhau tại M. Tìm tập hợp
các điểm M.
Bài 4: Cho hình chóp tứ giác đều S.ABCD, cạnh đáy bằng a. Xác định quỹ
tích của điểm M trong các trường hợp sau:
a)
5 15
8
a
MS MA MB MC MD+ + + + =
uuur uuur uuur uuur uuuur
Biết diện tích toàn phần của hình chap bằng
2
5
tp
S a=
.
b)
2 30

3
a
MS MA MB MC MD+ + + + =
uuur uuur uuur uuur uuuur
Biết thể tích hình chóp bằng
3
30
18
a
V =
.
Bài 5: Cho tứ diện ABCD vuông tại A và điểm M tùy ý. Chứng minh rằng :
2 2 2 2
2MA MB MC MD≤ + +
.

KẾT LUẬN
17
Giải bài toán hình học không gian bằng phương pháp toạ độ
Người thực hiện:Lê Thị Tường
- - - - -  - - - - - -
Trên đây là một số dạng toán, cũng như một số bài boán điển hình mà
tôi đã giới thiệu. Ngoài ra còn rất nhiều dạng toán hình học không gian có thể
áp dụng phương pháp tọa độ trong không gian như: Chứng minh quan hệ song
song, quan hệ vuông góc; Chứng minh các hệ thức hình học; Chứng minh bất
đẳng thức cũng như tìm cực trị hình học; Tìm các điểm cố định v v…Mỗi
dạng lại có vô số bài tập có thể tổng vét toàn bộ các dạng toán hình học không
gian sơ cấp. Nhưng do thời gian cũng như giới hạn chương trình không cho
phép nên tôi chỉ sơ lược một số dạng cũng như một số bài toán điển hình.
Trong quá trình biên soạn có điều gì sai sót mong các thầy, cô và các bạn đọc

thông cảm và góp ý chân thành. Tôi xin chân thành cảm ơn!

Thanh hóa ngày 15 tháng 5 năm 2012
Tác giả

Lê Thi Tường
MỤC LỤC
18
Giải bài toán hình học không gian bằng phương pháp toạ độ
Người thực hiện:Lê Thị Tường
Mở đầu…………………………………………………………………….2
Nội dung………………………………………………………………… 4
Chương I. Một số kiến thức cơ bản…………………………………… 4
Chương II. Giải bài toán hình học không gian bằng phương pháp toạ độ 7
1. Hướng dẫn học sinh sử dụng phương pháp toạ độ 7
2. Giải bài toán định lượng trong hình học không gian 7
3. Giải bài toán định tính trong hình học không gian… 12
4. Bài toán về điểm và quỹ tích trong không gian… 14
Kết luận ……………………………………………………………… .18
TÀI LIỆU THAM KHẢO
19
Giải bài toán hình học không gian bằng phương pháp toạ độ
Người thực hiện:Lê Thị Tường
1. Đặng Khắc Nhân, Lê Đỗ Tập. Giải các bài toán hình học trong
không gian bằng phương pháp toạ độ. NXB Giáo dục - 1997.
2. Phan Huy Khải, Phương pháp toạ độ để giải các bài toán sơ cấp.
NXB Thành phố Hồ Chí Minh
3. Văn Như Cương, Trần Đức Huyên. Hình học 11. NXB Giáo dục -
1993
4. Lê Hồng Đức, Lê Hữu Trí. Phương pháp giải toán hình học giải tích

trong không gian. Nhà xuất bản Hà Nội - 2002.
20

×