Tải bản đầy đủ (.pdf) (13 trang)

Đề ôn toán thpt (725)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (156.43 KB, 13 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD) cùng
vuông góc với đáy, S C = a 3. Thể
√ tích khối chóp S .ABCD là

3
3
a 3
a3 3
a
3
.
B.
.
C. a .
D.
.
A.
3
9
3
Câu 2. Khối chóp ngũ giác có số cạnh là


A. 11 cạnh.
B. 10 cạnh.

C. 12 cạnh.

D. 9 cạnh.

Câu 3. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 12.
B. 11.
C. 10.
D. 4.
Câu 4. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
B. Hàm số nghịch biến trên khoảng (0; 1).
C. Hàm số nghịch biến trên khoảng (−∞; 0).
D. Hàm số đồng biến trên khoảng (1; 2).

A. 2 ≤ m ≤ 3.

B. 0 ≤ m ≤ 1.

1

= m − 2 có nghiệm
3|x−2|
C. 2 < m ≤ 3.
D. 0 < m ≤ 1.


Câu 5. [3-12214d] Với giá trị nào của m thì phương trình
1
có giá trị cực đại là
x
B. −1.

C. −2.

D. 1.

Câu 7. Khối đa diện đều loại {5; 3} có số mặt
A. 8.
B. 20.

C. 30.

D. 12.

Câu 6. Hàm số y = x +
A. 2.

Câu 8. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.




5 13
A. 26.
B. 2.

C. 2 13.
D.
.
13
Câu 9. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều rộng
bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 160 cm2 .
C. 1200 cm2 .
D. 160 cm2 .
Câu 10. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a 3
a
a
A. a.
B.
.
C. .
D. .
2
3
2
Câu 11. [1] Tính lim
A. 0.

1 − n2
bằng?
2n2 + 1

1
B. − .
2

C.

1
.
2

D.

1
.
3

Câu 12. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 210 triệu.
B. 212 triệu.
C. 220 triệu.
D. 216 triệu.
Trang 1/10 Mã đề 1


!2x−1
!2−x

3
3
Câu 13. Tập các số x thỏa mãn


5
5
A. [3; +∞).
B. (+∞; −∞).
C. (−∞; 1].

D. [1; +∞).

Câu 14. [1] Tập xác định của hàm số y = 2
A. D = R \ {1}.
B. D = R.

D. D = (0; +∞).

x−1


C. D = R \ {0}.

Câu 15. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?

B. y = loga x trong đó a = 3 − 2.
A. y = log π4 x.
D. y = log √2 x.
C. y = log 14 x.

x+1
bằng
x→−∞ 6x − 2
1
B. .
6

Câu 16. Tính lim
A. 1.

C.

1
.
2

D.

1
.
3

! x3 −3mx2 +m
1
Câu 17. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m , 0.
B. m ∈ R.

C. m = 0.
D. m ∈ (0; +∞).
tan x + m
Câu 18. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (−∞; 0] ∪ (1; +∞). B. (1; +∞).
C. (−∞; −1) ∪ (1; +∞). D. [0; +∞).
Câu 19. Khối đa diện đều loại {5; 3} có số đỉnh
A. 20.
B. 8.

C. 12.

D. 30.

Câu 20. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của hình chóp S .ABCD với√mặt phẳng (AIC) có diện√tích là

2
11a2
a2 7
a2 5
a 2
.

B.
.
C.
.
D.
.
A.
4
32
8
16
x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
Câu 21. [4-1212d] Cho hai hàm số y =
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3].
B. (−∞; −3).
C. (−3; +∞).
D. [−3; +∞).
Câu 22. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.

(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Cả hai đều đúng.

C. Chỉ có (I) đúng.

D. Cả hai đều sai.

Câu 23. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d song song với (P).
C. d nằm trên P hoặc d ⊥ P.
D. d nằm trên P.
Câu 24. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục thực.
B. Đường phân giác góc phần tư thứ nhất.
C. Trục ảo.
D. Hai đường phân giác y = x và y = −x của các góc tọa độ.
Trang 2/10 Mã đề 1


Câu 25. Tính lim

x→+∞

x−2
x+3

2

C. − .
D. 1.
3
Câu 26. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. 3n3 lần.
B. n3 lần.
C. n lần.
D. n2 lần.
A. −3.

B. 2.

Câu 27. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (II) đúng.

B. Cả hai câu trên đúng. C. Cả hai câu trên sai.

Câu 28. Dãy số nào sau đây có giới hạn khác 0?
1
1

A. .
B. √ .
n
n

C.

sin n
.
n

D. Chỉ có (I) đúng.

D.

n+1
.
n

2

Câu 29. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 7.
B. 6.
C. 8.

D. 5.

Câu 30. Hàm số nào sau đây khơng có cực trị
1

x−2
C. y = x + .
D. y =
.
x
2x + 1
Câu 31. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất khơng thay đổi?
A. 102.016.000.
B. 102.016.000.
C. 102.424.000.
D. 102.423.000.
1
Câu 32. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 ≤ m ≤ −1.
B. (−∞; −2] ∪ [−1; +∞). C. (−∞; −2) ∪ (−1; +∞). D. −2 < m < −1.
A. y = x4 − 2x + 1.

B. y = x3 − 3x.

2

Câu 33. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 3 − log2 3.
B. 2 − log2 3.
C. 1 − log2 3.


D. 1 − log3 2.

Câu 34. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = 1 + ln x.
C. y0 = 1 − ln x.
D. y0 = ln x − 1.
x−3 x−2 x−1
x
Câu 35. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].
B. [2; +∞).
C. (−∞; 2).
D. (2; +∞).
Câu 36. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m > 0.
B. m , 0.
C. m = 0.

D. m < 0.


Câu 37. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
1
ab
ab
A. √
.
B. √
.
C. √
.
D. 2
.
a + b2
2 a2 + b2
a2 + b2
a2 + b2
0

0

0

0

Trang 3/10 Mã đề 1



Câu 38. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 2ac
.
B.
.
C.
.
A.
c+2
c+1
c+3
Câu 39. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng 2n.
B. Số mặt của khối chóp bằng số cạnh của khối chóp.
C. Số đỉnh của khối chóp bằng 2n + 1.
D. Số mặt của khối chóp bằng 2n+1.
Câu 40. [3-1132d] Cho dãy số (un ) với un =
1
A. lim un = .
2
C. lim un = 0.

D.

3b + 3ac
.
c+2


1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
n2 + 1
B. lim un = 1.
D. Dãy số un khơng có giới hạn khi n → +∞.

Câu 41. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. 5.
B. 7.
C. .
D.
.
2
2
Câu 42. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 3.
B. 10.
C. 12.
D. 27.
2n − 3
Câu 43. Tính lim 2
bằng
2n + 3n + 1
A. +∞.
B. −∞.
C. 0.
D. 1.
Câu 44. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).

Hai mặt√bên (S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
a3 3
8a3 3
4a3 3
8a3 3
A.
.
B.
.
C.
.
D.
.
9
9
9
3
x+3
Câu 45. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 3.
B. Vô số.
C. 2.
D. 1.

Câu 46. Thể tích của khối lập phương
√ có cạnh bằng a 2

3


2a
2
A. V = 2a3 .
B.
.
C. 2a3 2.
D. V = a3 2.
3



x=t




Câu 47. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9

B. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
A. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x + 3) + (y + 1) + (z + 3) = .
D. (x − 3) + (y − 1) + (z − 3) = .
4
4
Câu 48. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {5; 3}.
B. {4; 3}.
C. {3; 5}.
D. {3; 4}.
Câu 49. Phát biểu nào sau đây là sai?
A. lim qn = 1 với |q| > 1.
C. lim un = c (Với un = c là hằng số).

1
B. lim √ = 0.
n
1
D. lim k = 0 với k > 1.

n
Trang 4/10 Mã đề 1


Câu 50. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 72.
B. −7, 2.
C. 0, 8.

D. 7, 2.

Câu 51. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. Vơ nghiệm.
C. 2.
D. 3.
Câu 52. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −8.
B. x = 0.
C. x = −2.
Câu 53. [2] Tổng các nghiệm của phương trình 3
A. 5.
B. 2.

D. x = −5.

x2 −4x+5

= 9 là
C. 4.


D. 3.

Câu 54. Cho hàm số y = x − 2x + x + 1. Mệnh
! đề nào dưới đây đúng?
1
B. Hàm số nghịch biến trên khoảng (1; +∞).
A. Hàm số nghịch biến trên khoảng −∞; .
!3
!
1
1
D. Hàm số đồng biến trên khoảng ; 1 .
C. Hàm số nghịch biến trên khoảng ; 1 .
3
3
3

2

Câu 55. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Tứ diện đều.
B. Nhị thập diện đều. C. Thập nhị diện đều.

D. Bát diện đều.
d = 60◦ . Đường chéo
Câu 56. Cho lăng trụ đứng ABC.A B C có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0






a3 6
2a3 6
4a3 6
.
B.
.
C.
.
D. a3 6.
A.
3
3
3
log 2x
Câu 57. [1229d] Đạo hàm của hàm số y =

x2
1 − 2 log 2x
1 − 2 ln 2x
1 − 4 ln 2x
1
.
B. y0 =
.
D. y0 = 3
.
A. y0 =

.
C. y0 = 3
3
3
2x ln 10
x
2x ln 10
x ln 10
Câu 58. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 = 2 x . ln 2.
B. y0 = x
.
C. y0 =
.
D. y0 = 2 x . ln x.
2 . ln x
ln 2
Câu 59. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
D. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
Z 1
Câu 60. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

0


A. 0.

B.

0

0

1
.
4

1
1
1
Câu 61. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)

C. 1.

D.

1
.
2


!

3
.
2
Câu 62. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
A. lim
= .
B. lim [ f (x) + g(x)] = a + b.
x→+∞ g(x)
x→+∞
b
C. lim [ f (x) − g(x)] = a − b.
D. lim [ f (x)g(x)] = ab.
A. 1.

x→+∞

B. 2.

C. 0.

D.

x→+∞

Câu 63. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là

A. Phần thực là 3, phần ảo là 4.
B. Phần thực là 3, phần ảo là −4.
C. Phần thực là −3, phần ảo là −4.
D. Phần thực là −3, phần ảo là 4.
Trang 5/10 Mã đề 1


Câu 64. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
1
A. .
B. − .
C. −2.
D. 2.
2
2
Câu 65. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim+ f (x) = f (b).
B. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a

x→b

x→a

x→b

C. lim+ f (x) = f (a) và lim+ f (x) = f (b).


x→a

x→b

x→a

x→b

D. lim+ f (x) = f (a) và lim− f (x) = f (b).

Câu 66. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới
" đây?
!
5
5
;3 .
C. 2; .
D. (1; 2).
A. [3; 4).
B.
2
2
1 − 2n
Câu 67. [1] Tính lim
bằng?
3n + 1
2
2
B. − .

A. .
3
3


ab.

1
.
3
q
Câu 68. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 4].
C. m ∈ [0; 2].
D. m ∈ [0; 1].
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
Câu 69. [3-1214d] Cho hàm số y =
x+2
tam giác
AB có độ dài bằng

√ đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng √
A. 2 3.
B. 2.
C. 6.

D. 2 2.
!
!
!
4x
1
2
2016
Câu 70. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
.
D. T = 2016.
A. T = 1008.
B. T = 2017.
C. T =
2017
C. 1.

Câu 71. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
A. 25.
B. 5.

C. .
5

D.



D. 5.

Câu 72. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 5.

B. 9.

C. 0.

D. 7.

Câu 73. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.
B. log2 a = − loga 2.
C. log2 a = loga 2.
D. log2 a =
.
loga 2

log2 a
π
Câu 74. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu thức T = a + b 3.


A. T = 2.
B. T = 4.
C. T = 3 3 + 1.
D. T = 2 3.
Câu 75. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 8.
B. 4.
C. 3.
D. 6.
Câu 76. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. 9.
B. 6.
C. .
D. .
2
2
Trang 6/10 Mã đề 1



Câu 77. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 0.
B. 1.
C. 22016 .
D. e2016 .
1
2mx + 1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 78. Giá trị lớn nhất của hàm số y =
m−x
3
A. 0.
B. −5.
C. −2.
D. 1.



x = 1 + 3t




Câu 79. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua





z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là











x
=
1
+
3t
x
=
−1
+
2t
x
=
1
+

7t
x = −1 + 2t
















A. 
B. 
.
D. 
y = 1 + 4t .
y = −10 + 11t . C. 
y=1+t
y = −10 + 11t .

















z = 1 − 5t
z = −6 − 5t
z = 1 + 5t
z = 6 − 5t
Câu 80. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng




a 2
a 2
B.
.
C.
.
D. a 3.
A. a 2.

2
3
Câu 81. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + sin x cos x.
B. 1 − sin 2x.
C. 1 + 2 sin 2x.

D. −1 + 2 sin 2x.

Câu 82. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m > 3.
C. m ≤ 3.
D. m < 3.
3

Câu 83. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e.
B. e2 .
C. e3 .

D. e5 .

Câu 84. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. e.
B. −2 + 2 ln 2.
C. 1.

D. 4 − 2 ln 2.


Câu 85. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
x
Câu 86. Tính diện tích hình phẳng
√ giới hạn bởi các đường y = xe , y = 0, x = 1.
3
3
1
A. .
B.
.
C. 1.
D. .
2
2
2
x
y
Câu 87. [4-c] Xét các số thực dương x, y thỏa mãn 2 + 2 = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 12.
B. 18.
C.
.
D. 27.

2
2n + 1
Câu 88. Tính giới hạn lim
3n + 2
2
1
3
A. 0.
B. .
C. .
D. .
3
2
2
Câu 89. Khối đa diện đều loại {3; 4} có số mặt
A. 10.
B. 6.
C. 8.
D. 12.

Trang 7/10 Mã đề 1


Câu 90. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −9.
B. −12.
C. −5.
D. −15.
Câu 91. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?

A. 5 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 6 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 5 mặt.
Câu 92. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
√ phẳng vng góc với (ABCD). Thể tích khối chóp
√ S .ABCD là
3
3
3

a 2
a 3
a 3
A.
.
B.
.
C. a3 3.
D.
.
2
4
2
Câu 93. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 2020.
B. log2 2020.
C. 13.
D. log2 13.
Câu 94. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm tứ diện đều.

B. Bốn tứ diện đều và một hình chóp tam giác đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Một tứ diện đều và bốn hình chóp tam giác đều.
Câu 95. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


3
3
a 2
a3 3
a3 6
a 3
.
B.
.
C.
.
D.
.
A.
24
16
48
48
Câu 96. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1637
1079

1728
23
.
B.
.
C.
.
D.
.
A.
68
4913
4913
4913
Câu 97. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. Vơ nghiệm.
B. 2 nghiệm.
C. 1 nghiệm.
√3
4
Câu 98. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
7
2
A. a 8 .
B. a 3 .
C. a 3 .
Câu 99. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 7 mặt.
B. 8 mặt.

C. 9 mặt.

D. 3 nghiệm.
5

D. a 3 .
D. 6 mặt.

Câu 100. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 4 mặt. B. 4 đỉnh, 6 cạnh, 4 mặt. C. 3 đỉnh, 3 cạnh, 3 mặt. D. 4 đỉnh, 8 cạnh, 4 mặt.
Câu 101. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9
tháng thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không
thay đổi trong thời gian gửi.
A. 0, 7%.
B. 0, 6%.
C. 0, 5%.
D. 0, 8%.
!
1
1
1
Câu 102. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
A. 2.
B. .
C. +∞.

D. .
2
2
Câu 103.
√ Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
A. 3 3.
B. 9.
C. 27.
D. 8.
Trang 8/10 Mã đề 1


Câu 104. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng
(cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
A. 18 tháng.
B. 15 tháng.
C. 16 tháng.
D. 17 tháng.
Câu 105. [12215d] Tìm m để phương trình 4 x+
9
A. 0 ≤ m ≤ .
B. m ≥ 0.
4


1−x2




− 3m + 4 = 0 có nghiệm
3
3
C. 0 ≤ m ≤ .
D. 0 < m ≤ .
4
4

− 4.2 x+

1−x2

Câu 106. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 6.
B. −5.
C. −6.
2

D. 5.

3
2
x
Câu 107. [2]
2
√ Tìm m để giá trị nhỏ nhất của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng √
A. m = ± 2.
B. m = ±3.
C. m = ±1.

D. m = ± 3.
un
Câu 108. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. +∞.
B. −∞.
C. 0.
D. 1.
1
Câu 109. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. .
B. − .
C. 3.
D. −3.
3
3
[ = 60◦ , S O
Câu 110. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S√BC) bằng

a 57
a 57
2a 57
A.

.
B.
.
C.
.
D. a 57.
17
19
19
Câu 111. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
A. 2.
B.
.
C. .
D. 1.
2
2
Câu 112. Khối đa diện đều loại {3; 3} có số cạnh
A. 4.
B. 6.
C. 8.
D. 5.

Câu 113. Giá trị của lim(2x2 − 3x + 1) là
x→1

A. 0.


B. +∞.

C. 1.

D. 2.

Câu 114. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x−2 y+2 z−3
x y z−1
A.
=
=
.
B. = =
.
2

2
2
1 1
1
x−2 y−2 z−3
x y−2 z−3
C.
=
=
.
D. =
=
.
2
3
4
2
3
−1
Câu 115. Phát biểu nào sau đây là sai?
1
A. lim un = c (un = c là hằng số).
B. lim k = 0.
n
1
C. lim qn = 0 (|q| > 1).
D. lim = 0.
n
Câu 116. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Một mặt.

B. Hai mặt.
C. Bốn mặt.
D. Ba mặt.
Câu 117. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lập phương.
B. Hình tam giác.
C. Hình lăng trụ.

D. Hình chóp.

Câu 118. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
Trang 9/10 Mã đề 1


(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 0.

B. 2.

C. 1.

D. 3.

Câu 119. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
C. .

D. .
A. 4.
B. .
2
8
4
Câu 120. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. 1.
C. Vô nghiệm.
D. 2.
9t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao
9t + m2
cho f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 2.
B. Vô số.
C. 1.
D. 0.
p
1
ln x
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
Câu 122. Gọi F(x) là một nguyên hàm của hàm y =
x
3
8
1
1
8

B. .
C. .
D. .
A. .
9
3
9
3

Câu 121. [4] Xét hàm số f (t) =

Câu 123. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (−∞; −1).
C. (−1; 1).
Câu 124. [3] Biết rằng giá trị lớn nhất của hàm số y =

D. (1; +∞).

ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là
x
e

các số tự nhiên. Tính S = m2 + 2n3
A. S = 24.
B. S = 135.

C. S = 32.


D. S = 22.

Câu 125.
hạn là 0?
!n Dãy số nào sau đây có !giới
n
4
5
.
B.
.
A.
3
e

!n
5
C. − .
3

!n
1
D.
.
3

Câu 126. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm
0
A đến đường

√ thẳng BD bằng



c a2 + b2
b a2 + c2
a b2 + c2
abc b2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 127. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng




a 2
a 2
.

D.
.
A. a 2.
B. 2a 2.
C.
2
4
3a
Câu 128. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng √
a 2
2a
a
a
A.
.
B.
.
C. .
D. .
3
3
3
4
1
Câu 129. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3

A. (−∞; 3).
B. (1; 3).
C. (1; +∞).
D. (−∞; 1) và (3; +∞).
Trang 10/10 Mã đề 1


log 2x

Câu 130. [3-1229d] Đạo hàm của hàm số y =
x2
1
1 − 2 log 2x
1 − 2 ln 2x
A. y0 = 3
.
B. y0 =
.
C. y0 = 3
.
3
2x ln 10
x
x ln 10

D. y0 =

1 − 4 ln 2x
.
2x3 ln 10


- - - - - - - - - - HẾT- - - - - - - - - -

Trang 11/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2.

B

3. A

4.

B

C

5.
7.

D

9.


D

11.

C

6.
8.

D

10. A

B

12.

B

13.

D

14.

B

15.

D


16.

B

18.

B

C

17.
19. A

20.

21. A

22. A

23.
27.

24.

C

25.

D


26.

B

29. A
31.

C

C

D
B

28.

D

30.

D

32. A

33.

B

34.


B

35.

B

36.

B

37.

D

38.

C

39. A

40. A

41.

C

42. A

43.


C

44.

B

45. A

46.

C

47. A

48.

C

49. A

50.

51.

C

52. A

53.


C

54.

55.

C

56.
D

57.
59.

C
D

58. A
60.

C

61. A

D

62. A

63.


D

64.

65.

D

66.

67.

B

B

68. A
1

C
B


69. A

70. A

71. A


72.

B

73. A

74.

B

75.

76.

C

77. A

78. A

79.

D

80.

81.

D


82. A

83.

D

84. A

C

85.
87.

C

C

86.

B
C

89.

B

88.

B


90.

B

91.

D

92.

D

93.

D

94.

D

C

95.
97.

96.

B

99.


B

98.
100.

C

101. A

102. A

103. A

104.

C
B
C

105.

C

106.

107.

C


108.

C

110.

C

109.

B

B

111. A

112.

B

113. A

114.

B

115.
117.

C


116.

B

119.

D

121. A
123.

129.

118.

B

120.

B

122. A
C

125.
127.

C


D
C

124.

C

126.

C

128.
D

130.

2

B
C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×