Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (725)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (151.73 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = 3S h.
C. V = S h.
2
3
!
1
1
1
+ ··· +
Câu 2. [3-1131d] Tính lim +
1 1+2
1 + 2 + ··· + n
3
5
A. .
B. .
C. 2.
2


2
Câu 3. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 1.
B. 3.
C. 2.

D. 0.

Câu 4. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.

D. Khối tứ diện đều.

C. Khối 20 mặt đều.

D. V = S h.

D. +∞.

Câu 5. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b. Khoảng cách giữa hai đường thẳng
BB0 và AC 0 bằng
1
ab
ab
1
A. √
.
B. √
.
C. 2

.
D. √
.
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
Câu 6. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −9.
B. −15.
C. −5.
D. −12.
2
x − 3x + 3
đạt cực đại tại
Câu 7. Hàm số y =
x−2
A. x = 3.
B. x = 0.
C. x = 2.
D. x = 1.
0

0

0

0


Câu 8. Trong các khẳng định sau, khẳng định nào sai?
A. Z
F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
u0 (x)
dx = log |u(x)| + C.
B.
u(x)
C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
1
bằng
Câu 9. [1] Giá trị của biểu thức log √3
10
1
A. 3.
B. − .
C. −3.
3
Câu 10. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m ≥ 0.
B. m > 1.
C. m > 0.

D.

1
.
3


D. m > −1.

Câu 11. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất

√ của hàm số. Khi đó tổng
√M + m
B. 8 3.
C. 16.
D. 8 2.
A. 7 3.
Câu 12. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
2n + 1
Câu 13. Tìm giới hạn lim
n+1
A. 0.
B. 2.
C. 3.
D. 1.
Trang 1/10 Mã đề 1


Câu 14. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 2.
B. 6.

C. 1.
D. −1.


Câu 15.

√ Tìm giá trị lớn nhất của hàm
√ số y = x + 3 + 6 − x
A. 2 3.
B. 2 + 3.
C. 3.
D. 3 2.
9t
Câu 16. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 2.
B. 1.
C. 0.
D. Vô số.
Câu 17. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 18 lần.
B. Tăng gấp 3 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 27 lần.
Câu 18. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1

1
1
B. m < .
C. m > .
D. m ≤ .
A. m ≥ .
4
4
4
4
Câu 19. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; 8).
B. A(−4; −8)(.
C. A(4; −8).
D. A(−4; 8).
2−n
bằng
Câu 20. Giá trị của giới hạn lim
n+1
A. −1.
B. 0.
C. 1.
D. 2.
mx − 4
Câu 21. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 45.
B. 67.
C. 34.

D. 26.
Câu 22. Khối chóp ngũ giác có số cạnh là
A. 10 cạnh.
B. 9 cạnh.

C. 12 cạnh.
D. 11 cạnh.
1
Câu 23. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 0 ≤ m ≤ 1.
C. 2 < m ≤ 3.
D. 0 < m ≤ 1.
Câu 24.√Thể tích của tứ diện đều √
cạnh bằng a

3
3
a 2
a 2
a3 2
A.
.
B.
.
C.
.
6
2

4
Câu 25. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. R.
B. (2; +∞).
C. (0; 2).


a3 2
D.
.
12
D. (−∞; 1).

Câu 26. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (1; 2).
B. (−∞; +∞).
C. [1; 2].
D. [−1; 2).
1
Câu 27. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = e + 1.
B. xy = −e − 1.
C. xy0 = ey − 1.
D. xy0 = −ey + 1.

d = 30◦ , biết S BC là tam giác đều
Câu 28. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
26
9
13
16
π
Câu 29. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu thức T = a + b 3.


A. T = 4.

B. T = 2 3.
C. T = 2.
D. T = 3 3 + 1.
Câu 30. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−1; 0).
B. (−∞; −1) và (0; +∞). C. (−∞; 0) và (1; +∞). D. (0; 1).
Trang 2/10 Mã đề 1


Câu 31. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −5.
B. Khơng tồn tại.
C. −3.

x2 + 3x + 5
Câu 32. Tính giới hạn lim
x→−∞
4x − 1
1
A. 0.
B. .
C. 1.
4
Câu 33. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 2).
B. (0; +∞).
C. (0; 2).
Câu 34. Tính
√4 mơ đun của số phức z√biết (1 + 2i)z = 3 + 4i.
B. |z| = 5.

C. |z| = 5.
A. |z| = 5.
!2x−1
!2−x
3
3


Câu 35. Tập các số x thỏa mãn
5
5
A. [1; +∞).
B. (+∞; −∞).
C. [3; +∞).
2

D. −7.

1
D. − .
4
D. (−∞; 0) và (2; +∞).

D. |z| = 2 5.

D. (−∞; 1].

Câu 36. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối lăng trụ tam giác.

C. Khối lập phương.
D. Khối bát diện đều.
Câu 37. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
B. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn !
un
C. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
!
un
= −∞.
D. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
vn
Câu 38. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 10 mặt.
C. 6 mặt.

D. 8 mặt.

Câu 39. Giá trị của lim(2x − 3x + 1) là
x→1
A. 1.
B. 2.


D. +∞.

2

C. 0.

Câu 40. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối

√ chóp S .ABCD là

a3 6
a3 3
a3 3
a3 2
A.
.
B.
.
C.
.
D.
.
48
48
24
16
Câu 41. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5

5
A. − < m < 0.
B. m ≤ 0.
C. m > − .
D. m ≥ 0.
4
4
Câu 42. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể
√ tích khối chóp S .ABCD là
3
10a 3
A. 20a3 .
B.
.
C. 10a3 .
D. 40a3 .
3


2

Câu 43. [12215d] Tìm m để phương trình 4 x+ 1−x
3
9
A. 0 ≤ m ≤ .
B. 0 ≤ m ≤ .
4
4
Câu 44. Tìm giá trị của tham số m để hàm số y =

(−∞; +∞).
A. [−1; 3].
B. [1; +∞).



− 3m + 4 = 0 có nghiệm
3
C. 0 < m ≤ .
D. m ≥ 0.
4
−x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
− 4.2 x+

1−x2

C. [−3; 1].

D. (−∞; −3].
Trang 3/10 Mã đề 1


Câu 45. Khối đa diện đều loại {5; 3} có số đỉnh
A. 12.
B. 30.

C. 8.

Câu 46. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng


1
A. 5.
B. .
C. 5.
5

D. 20.



D. 25.

d = 300 .
Câu 47. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
0
Độ dài cạnh bên CC = 3a. Thể tích V của
√ khối lăng trụ đã cho.

3

3a
3
a3 3
3
3
.
C. V = 3a 3.
.
A. V = 6a .
B. V =

D. V =
2
2
Câu 48. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp
√ là 1728. Khi đó, các kích thước của hình hộp là
√ đã cho
B. 8, 16, 32.
C. 6, 12, 24.
D. 2, 4, 8.
A. 2 3, 4 3, 38.
Câu 49. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −2.
B. x = −8.
C. x = −5.

D. x = 0.

2
Câu 50. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2√
D. m = ± 2.
A. m = ±1.
B. m = ±3.
C. m = ± 3.

Câu 51. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng

2
.

e
Câu 52. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 1200 cm2 .
B. 120 cm2 .
C. 160 cm2 .
D. 160 cm2 .
A. 2e + 1.

B. 2e.

C. 3.

Câu 53. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 3.
B. 12.
C. 27.
4x + 1
bằng?
Câu 54. [1] Tính lim
x→−∞ x + 1
A. 4.
B. −1.
C. 2.

D.

D. 10.

D. −4.


Câu 55. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
C là


3
a3 3
a
3
a3
A.
.
B. a3 .
C.
.
D.
.
6
2
3
Câu 56. [2] Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8
A. m = ±1.
B. m = ± 3.
C. m = ± 2.
D. m = ±3.
Câu 57. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số nghịch biến trên khoảng (−∞; 0).

C. Hàm số đồng biến trên khoảng (1; 2).
D. Hàm số nghịch biến trên khoảng (1; +∞).
Câu 58. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
0 0 0 0
0
Câu 59.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 6
a 3
A.
.
B.
.
C.
.
D.
.
7
2
3
2
log 2x
Câu 60. [1229d] Đạo hàm của hàm số y =


x2
1 − 2 ln 2x
1 − 2 log 2x
1 − 4 ln 2x
1
A. y0 = 3
.
B. y0 =
.
C. y0 =
.
D. y0 = 3
.
3
3
x ln 10
x
2x ln 10
2x ln 10

Trang 4/10 Mã đề 1


Câu 61. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a

A. .
B.
.
C. .
D. a.
2
2
3
Z 2
ln(x + 1)
Câu 62. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 0.
B. 3.
C. −3.
D. 1.


4n2 + 1 − n + 2
bằng
Câu 63. Tính lim
2n − 3
3
A. 1.
B. +∞.
C. 2.
D. .
2

1
Câu 64. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = ey − 1.
B. xy0 = −ey + 1.
C. xy0 = ey + 1.
D. xy0 = −ey − 1.
1

Câu 65. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (1; +∞).
B. D = R \ {1}.
C. D = (−∞; 1).

D. D = R.

Câu 66. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
9
2
1
1
.
B.
.
C. .
D. .

A.
10
10
5
5
√3
4
Câu 67. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
7
2
5
B. a 8 .
C. a 3 .
D. a 3 .
A. a 3 .
x−1
Câu 68. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
√ đều ABI có hai đỉnh A,√B thuộc (C), đoạn thẳng AB
√ có độ dài bằng
B. 6.
C. 2 3.
D. 2.
A. 2 2.
Câu 69. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?

Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 210 triệu.
B. 216 triệu.
C. 212 triệu.
D. 220 triệu.
Câu 70. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 9 mặt.
C. 3 mặt.
D. 4 mặt.
Câu 71. [1] Đạo hàm của hàm số y = 2 x là

1
.
x
ln 2
Câu 72. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
A. y0 = 2 x . ln x.

B. y0 = 2 x . ln 2.

C. y0 =

1

2 x . ln

.


D. y0 =

(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.

B. Khơng có câu nào C. Câu (II) sai.
sai.

D. Câu (I) sai.
Trang 5/10 Mã đề 1


x+1
Câu 73. Tính lim
bằng
x→−∞ 6x − 2
1
1
A. .
B. .
6
3
Câu 74. Khối đa diện đều loại {3; 3} có số đỉnh
A. 3.
B. 4.

1

.
2

C. 1.

D.

C. 5.

D. 2.

Câu 75. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 6 mặt. B. 5 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 5 mặt.
Câu 76. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 1587 m.
C. 25 m.
D. 387 m.
Câu 77. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −2.
B. −7.
C.
.
D. −4.
27

 π π
3
Câu 78. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 3.
B. 1.
C. −1.
D. 7.
Câu 79. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
= .
A. lim [ f (x) − g(x)] = a − b.
B. lim
x→+∞
x→+∞ g(x)
b
C. lim [ f (x)g(x)] = ab.
D. lim [ f (x) + g(x)] = a + b.
x→+∞
x→+∞



x=t





Câu 80. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
B. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x + 3) + (y + 1) + (z + 3) = .
D. (x − 3) + (y − 1) + (z − 3) = .
4
4
Câu 81. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào

dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất khơng thay đổi?
A. 102.424.000.
B. 102.423.000.
C. 102.016.000.
D. 102.016.000.
Câu 82. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.
100.(1, 01)3
120.(1, 12)3
triệu.
B.
m
=
triệu.
A. m =
(1, 12)3 − 1
3
100.1, 03
(1, 01)3
C. m =
triệu.
D. m =
triệu.
3
(1, 01)3 − 1
8
Câu 83. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2

x
A. 64.
B. 82.
C. 81.
D. 96.
Trang 6/10 Mã đề 1


Câu 84. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
C. 1.
D. .
A. 3.
B. .
2
2
Câu 85. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
B. f (x) có giá trị lớn nhất trên K.
C. f (x) có giá trị nhỏ nhất trên K.
D. f (x) xác định trên K.
Câu 86. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 6.

C. 10.

D. 8.


Câu 87. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 2ac
3b + 3ac
3b + 3ac
A.
.
B.
.
C.
.
D.
.
c+2
c+3
c+2
c+1
Câu 88. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = loga 2.
B. log2 a =
.
C. log2 a = − loga 2.
D. log2 a =
.
loga 2
log2 a
Câu 89. Tính lim

A. 2.

2n2 − 1
3n6 + n4
B. 1.

Câu 90. Khối đa diện đều loại {4; 3} có số đỉnh
A. 6.
B. 10.
x−3
Câu 91. [1] Tính lim
bằng?
x→3 x + 3
A. 0.
B. −∞.
Câu 92. Khối đa diện đều loại {4; 3} có số mặt
A. 10.
B. 8.

2
.
3

C. 0.

D.

C. 8.

D. 4.


C. 1.

D. +∞.

C. 12.

D. 6.

Câu 93. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 6 mặt.
C. 9 mặt.
D. 4 mặt.
x+1
bằng
Câu 94. Tính lim
x→+∞ 4x + 3
1
1
A. 1.
B. .
C. 3.
D. .
4
3
Câu 95. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.





5 13
B. 26.
C. 2 13.
D.
A. 2.
.
13
Câu 96. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {0}.
B. D = (0; +∞).
C. D = R \ {1}.
D. D = R.
Câu 97. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 3 nghiệm.
B. 1 nghiệm.
C. 2 nghiệm.

D. Vô nghiệm.

Câu 98. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2

−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (1; 0; 2).
B. ~u = (2; 2; −1).
C. ~u = (2; 1; 6).
D. ~u = (3; 4; −4).
Câu 99. Khối đa diện đều loại {3; 3} có số mặt
A. 3.
B. 5.

C. 4.

D. 2.
Trang 7/10 Mã đề 1


Câu 100. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9
tháng thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không
thay đổi trong thời gian gửi.
A. 0, 6%.
B. 0, 5%.
C. 0, 7%.
D. 0, 8%.
Câu 101. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).

√ là

√ Thể tích khối chóp S 3.ABC
3

a 3
a3 3
a3 2
a 3
.
B.
.
C.
.
D.
.
A.
12
4
6
12
Câu 102. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.
C. Khối 12 mặt đều.
D. Khối lập phương.
Câu 103. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 − 2e
1 − 2e
1 + 2e
.
B. m =
.
C. m =
.

D. m =
.
A. m =
4 − 2e
4e + 2
4e + 2
4 − 2e
Câu 104. Cho hàm số y = x3 − 2x2 + x + 1.! Mệnh đề nào dưới đây đúng?
1
A. Hàm số nghịch biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng (1; +∞).
3
!
!
1
1
C. Hàm số nghịch biến trên khoảng −∞; .
D. Hàm số đồng biến trên khoảng ; 1 .
3
3
Câu 105. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD

√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng


a 2
a 2
.

B. 2a 2.
C. a 2.
D.
.
A.
4
2
Câu 106. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; −1).
B. (1; +∞).
C. (−1; 1).
D. (−∞; 1).
Câu 107. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. f (x) có giới hạn hữu hạn khi x → a.
B. lim f (x) = f (a).
x→a
C. lim+ f (x) = lim− f (x) = +∞.
D. lim+ f (x) = lim− f (x) = a.
x→a

x→a

x→a

x→a

Câu 108. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; −3).
B. A0 (−3; −3; 3).

C. A0 (−3; 3; 3).
D. A0 (−3; 3; 1).
Câu 109. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 2).
B. Hàm số đồng biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
Câu 110. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích khối
√ chóp S .ABCD là 3 √
3
3

2a 3
a 3
a 3
.
B.
.
C.
.
D. a3 3.
A.
6
3
3
Câu 111. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là 1.
B. Phần thực là 4, phần ảo là −1.

C. Phần thực là −1, phần ảo là 4.
D. Phần thực là −1, phần ảo là −4.
Câu 112. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tam giác.
B. Một khối chóp tam giác, một khối chóp ngữ giác.
C. Hai khối chóp tứ giác.
D. Một khối chóp tam giác, một khối chóp tứ giác.
Trang 8/10 Mã đề 1


Câu 113. Phần thực và√phần ảo của số phức
√ z=
A. Phần thực là 1√− 2, phần ảo là − √3.
C. Phần thực là 2 − 1, phần ảo là − 3.



2 − 1 − 3i lần lượt√l

B. Phần thực là √2, phần ảo là 1 − √3.
D. Phần thực là 2 − 1, phần ảo là 3.

Câu 114. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0)
lần lượt là hình
! chiếu của B, C lên các !cạnh AC, AB. Tọa độ hình!chiếu của A lên BC là
8
7
5
A.
; 0; 0 .

B.
; 0; 0 .
C.
; 0; 0 .
D. (2; 0; 0).
3
3
3
Câu 115. Tính lim
x→5

x2 − 12x + 35
25 − 5x
B. +∞.

2
2
.
D. − .
5
5
Câu 116. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
2a
a
8a
5a
.
B.

.
C. .
D.
.
A.
9
9
9
9

Câu 117. [1] Biết log6 a = 2 thì log6 a bằng
A. 108.
B. 6.
C. 4.
D. 36.
A. −∞.

C.

Câu 118. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 12 năm.
C. 14 năm.
D. 10 năm.
[ = 60◦ , S A ⊥ (ABCD).
Câu 119. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh


√ S C là a. Thể tích khối chóp S .ABCD là
3
3
3

a 3
a
2
a 2
.
B.
.
C. a3 3.
D.
.
A.
4
6
12
2

Câu 120. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 7.
B. 6.
C. 8.

D. 5.

Câu 121. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành

d0 ?
A. Có hai.
B. Có một.
C. Khơng có.
D. Có vơ số.
Câu 122. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. .
D. 4.
2
4
8
x−2 x−1
x
x+1
+
+
+
và y = |x + 1| − x − m (m là tham
Câu 123. [4-1212d] Cho hai hàm số y =
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3].

B. (−3; +∞).
C. (−∞; −3).
D. [−3; +∞).
Câu 124. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
9
13
5
23
A.
.
B.
.
C. − .
D. −
.
25
100
16
100
Câu 125. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
Trang 9/10 Mã đề 1


tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đơi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 10 năm.
C. 11 năm.

D. 13 năm.
Câu 126. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 70, 128 triệu đồng. B. 20, 128 triệu đồng. C. 50, 7 triệu đồng.
D. 3, 5 triệu đồng.
Câu 127. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n2 lần.
B. n3 lần.
C. 2n3 lần.
D. n3 lần.
Câu 128. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích
hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 2.
B. 0, 3.
C. 0, 4.
D. 0, 5.
Câu 129. Khối đa diện đều loại {5; 3} có số mặt
A. 20.
B. 12.

C. 8.

D. 30.

Câu 130. Cho số phức z thỏa mãn |z√+ 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.

C. |z| = 10.
D. |z| = 17.

A. |z| = 17.
B. |z| = 10.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
3.
5.

D

8.

14.

B

16. A

17.

D

18.


19. A
C

22. A

23.

C

24.

25.

C

26.

27.

C

28.

29. A
D

D

D
B

C
D

36. A
B

38.
C

40.

41.

C

42. A

43. A

C
B

44.

45.

D

C


46.

47.

B

48.

49.

B

50. A

D
C

52.

C

53. A

C

54. A
56.

C


C

58.

57. A
C

D

60. A
D

62.

63. A

64. A

65. A

66.

67.

B

34. A

39.


61.

C

32.

B

35. A

59.

D

30. A

33.

55.

B

20. A

21.

51.

D


12.

C
D

37.

B

10.

B

15.

31.

C

6.
D

11.
13.

4.

B

7.

9.

2.

C

D

68.
1

C
B
C


69.
71.

70.

C
B

73. A
75.

D

72.


B

74.

B

76. A

77. A
79.

78.

81. A
C

85. A

82.

D

84.

D

86.

B

B

87.

C

88.

89.

C

90.

91. A
94.

B
D

96.
98. A
C

100.
102.

B

80. A


B

83.

C

C

92.

D

95.

D

97.

C

99.

C

101. A

B

103.


C

105.

104. A

D

106.

C

107.

B

108.

C

109.

B

110.

C

111.


B

112.

D

114. A
116.

D

113.

C

115.

C

117.

C

118. A

119. A

120. A


121. A

122.

B

123. A
D

124.

125. A

126.

B

127.

B

128.

B

129.

B

130.


B

2



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×