Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (807)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.54 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Khối đa diện đều loại {3; 3} có số đỉnh
A. 4.
B. 5.

C. 3.

D. 2.

Câu 2. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 4.

C. 3.

D. 2.

Câu 3. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Cả hai đều sai.



C. Cả hai đều đúng.

D. Chỉ có (II) đúng.
d = 120◦ .
Câu 4. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
D. 2a.
A. 3a.
B. 4a.
C.
2
Câu 5. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
A.
.
B. .
C. 7.
D. 5.
2
2
Câu 6. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 3.
B. 2.
C. 1.
D. 5.
Câu 7. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của

môđun z.




5 13
B. 26.
C.
.
D. 2.
A. 2 13.
13
2

Câu 8. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
2
1
A. 2 .
B. 3 .
C. 3 .
e
e
2e
Câu 9. Dãy số! nào có giới hạn bằng 0?!
n
n
−2
6
A. un =

.
B. un =
.
3
5

C. un =

n3 − 3n
.
n+1

D.

1
√ .
2 e

D. un = n2 − 4n.

Câu 10. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tứ giác.
B. Một khối chóp tam giác, một khối chóp tứ giác.
C. Một khối chóp tam giác, một khối chóp ngữ giác.
D. Hai khối chóp tam giác.

Câu 11. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là



a3 3
a3 3
a3
3
A.
.
B. a 3.
C.
.
D.
.
12
3
4
Câu 12. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 2).
B. Hàm số đồng biến trên khoảng (0; +∞).
C. Hàm số đồng biến trên khoảng (0; 2).
D. Hàm số nghịch biến trên khoảng (0; 2).
Trang 1/10 Mã đề 1


Câu 13. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √

a3 3
a3 3
a3

a3 3
.
B.
.
C.
.
D.
.
A.
4
12
8
4
Câu 14. Khối đa diện đều loại {4; 3} có số cạnh
A. 12.
B. 20.
C. 10.
D. 30.
Câu 15. Khối lập phương thuộc loại
A. {3; 4}.
B. {4; 3}.

C. {3; 3}.

D. {5; 3}.

Câu 16. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng số cạnh của khối chóp.
B. Số mặt của khối chóp bằng 2n+1.
C. Số cạnh của khối chóp bằng 2n.

D. Số đỉnh của khối chóp bằng 2n + 1.
Câu 17. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. e.
B. −2 + 2 ln 2.
C. 1.

D. 4 − 2 ln 2.

Câu 18. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 10 năm.
B. 7 năm.
C. 9 năm.
D. 8 năm.
√3
4
Câu 19. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
7
5
2
A. a 8 .
B. a 3 .
C. a 3 .
D. a 3 .
Câu 20. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 2400 m.
B. 1202 m.

C. 1134 m.
D. 6510 m.
x
9
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
Câu 21. [2-c] Cho hàm số f (x) = x
9 +3
1
A. .
B. −1.
C. 2.
D. 1.
2
Câu 22. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 2).
B. (−∞; 0) và (2; +∞). C. (0; +∞).
D. (0; 2).
Câu 23. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 10 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
!x
1
1−x
Câu 24. [2] Tổng các nghiệm của phương trình 3 = 2 +

9
A. − log2 3.
B. log2 3.

C. 1 − log2 3.
D. − log3 2.
x−3 x−2 x−1
x
Câu 25. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (2; +∞).
B. [2; +∞).
C. (−∞; 2).
D. (−∞; 2].
Câu 26. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 160 cm2 .
C. 160 cm2 .
D. 1200 cm2 .
Câu 27. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. .
B. 2e.
C. 2e + 1.
e


D. 3.
Trang 2/10 Mã đề 1


Câu 28. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
B. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
C. Cả ba câu trên đều sai.
D. F(x) = G(x) trên khoảng (a; b).
Câu 29. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

a3 6
a3 6
a3 6
a3 3
.
B.
.
C.
.
D.
.
A.
24
24

48
8
Câu 30. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = loga 2.
B. log2 a =
.
C. log2 a =
.
D. log2 a = − loga 2.
loga 2
log2 a
Câu 31. Mệnh đề nào sau đây sai?
A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
!0
Z
B.
f (x)dx = f (x).
C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
D. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

π
Câu 32. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.


A. T = 3 3 + 1.
B. T = 2 3.
C. T = 2.
D. T = 4.
x+2
đồng biến trên khoảng
Câu 33. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x + 5m
(−∞; −10)?
A. 1.
B. 3.
C. 2.
D. Vô số.
Câu 34. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. Vô nghiệm.
C. 1.
D. 2.
mx − 4
Câu 35. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 45.
B. 26.
C. 34.
D. 67.
Câu 36. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 2.
B. 1.

C. 3.

D. 0.

Câu 37. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lăng trụ tam giác.
B. Khối tứ diện.
C. Khối bát diện đều.
D. Khối lập phương.
Câu 38. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. 3n3 lần.
B. n2 lần.
C. n lần.
D. n3 lần.
Câu 39.
√ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ
A. 10.
B. 1.
C. 2.
D. 2.
Câu 40. Trong các mệnh đề dưới đây, mệnh đề nào sai?
!
un
A. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!
un
B. Nếu lim un = a > 0 và lim vn = 0 thì lim

= +∞.
vn
Trang 3/10 Mã đề 1


C. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
D. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
Câu 41. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó không rút tiền
ra.
A. 220 triệu.
B. 212 triệu.
C. 210 triệu.
D. 216 triệu.
Câu 42. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = 1 + ln x.

C. y0 = 1 − ln x.

D. y0 = ln x − 1.

Câu 43. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:

A. Tăng gấp 27 lần.
B. Tăng gấp 9 lần.
C. Tăng gấp 18 lần.
D. Tăng gấp 3 lần.
Câu 44. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
= .
A. lim [ f (x) − g(x)] = a − b.
B. lim
x→+∞
x→+∞ g(x)
b
C. lim [ f (x) + g(x)] = a + b.
D. lim [ f (x)g(x)] = ab.
x→+∞
x→+∞
q
2
Câu 45. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 1].
C. m ∈ [−1; 0].
D. m ∈ [0; 4].
Câu 46. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {5; 3}.

B. {3; 4}.
C. {4; 3}.

D. {3; 3}.

Câu 47. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể
√ tích khối chóp S .ABCD là
3
10a 3
.
C. 10a3 .
D. 20a3 .
A. 40a3 .
B.
3
Câu 48. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
D. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
Câu 49. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e2 − 2; m = e−2 + 2.
B. M = e−2 + 1; m = 1.
−2
C. M = e + 2; m = 1.
D. M = e−2 − 2; m = 1.
!
5 − 12x
Câu 50. [2] Phương trình log x 4 log2

= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 1.
B. Vô nghiệm.
C. 3.
D. 2.
!4x
!2−x
2
3
Câu 51. Tập các số x thỏa mãn


3
2
#
"
!
#
"
!
2
2
2
2
A. −∞; .
B. − ; +∞ .
C. −∞; .
D.
; +∞ .

5
3
3
5
Câu 52. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. 2.
C. 1.
D. Vô số.
Trang 4/10 Mã đề 1


x+1
Câu 53. Tính lim
bằng
x→+∞ 4x + 3
1
A. .
B. 3.
4
Câu 54. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
C. f (x) có giá trị nhỏ nhất trên K.

1
.
3

C.


D. 1.

B. f (x) xác định trên K.
D. f (x) có giá trị lớn nhất trên K.

x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
B thuộc (C), đoạn thẳng AB có độ dài bằng
√ đều ABI có hai đỉnh A, √

A. 6.
B. 2 2.
C. 2.
D. 2 3.
Câu 55. [3-1214d] Cho hàm số y =

Câu 56. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
B. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
C. Z
F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
u0 (x)
dx = log |u(x)| + C.
D.
u(x)
Câu 57. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?

A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 58. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
B. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
D. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Câu 59. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 2.
B. 0, 3.
C. 0, 4.

D. 0, 5.
Câu 60. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
A. 25.
B. .
C. 5.
D. 5.
5
Câu 61. Cho hình chóp S .ABCD có đáy ABCD là hình thang vuông tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
Thể tích khối chóp S .ABCD là
√ phẳng vng góc với 3(ABCD).

3
3

a 2
a 3
a 3
A.
.
B.
.
C.
.
D. a3 3.
2
2
4

Câu 62. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; 8).
B. A(4; −8).
C. A(−4; −8)(.
D. A(−4; 8).


Câu 63. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m > .
C. m ≤ .
D. m < .
4
4
4
4
Câu 64. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 7.
B. 3.
C. 1.
D. 2.
Trang 5/10 Mã đề 1


Câu 65. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1

1
1
C. − .
D. − 2 .
A. −e.
B. − .
2e
e
e
Câu 66. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).

B. (I) và (II).

C. Cả ba mệnh đề.

D. (II) và (III).

Câu 67. Hàm số y = −x + 3x − 1 đồng biến trên khoảng nào dưới đây?
A. (0; 2).
B. R.
C. (−∞; 1).

D. (2; +∞).


Câu 68. Giá√trị cực đại của hàm số y√= x3 − 3x2 − 3x + 2

A. −3 − 4 2.
B. 3 + 4 2.
C. 3 − 4 2.


D. −3 + 4 2.

3

2

2

2

Câu 69. [3-c] Giá trị nhỏ nhất và√giá trị lớn nhất của hàm√số f (x) = 2sin x + 2cos x lần lượt
√ là
C. 2 và 3.
D. 2 và 2 2.
A. 2 và 3.
B. 2 2 và 3.
Câu 70. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là

3
3
a

4a 3
a3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
3
6
3
Câu 71. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn mặt.
B. Hai mặt.
C. Năm mặt.
D. Ba mặt.
Câu 72. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.

C. Khối tứ diện đều.

D. Khối lập phương.

Câu 73. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng

23
1637
1079
1728
.
B.
.
C.
.
D.
.
A.
4913
68
4913
4913
x−2 x−1
x
x+1
Câu 74. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−3; +∞).

B. (−∞; −3).
C. [−3; +∞).
D. (−∞; −3].
n−1
Câu 75. Tính lim 2
n +2
A. 2.
B. 0.
C. 1.
D. 3.
Câu 76. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai ngun hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Khơng có câu nào B. Câu (II) sai.
sai.

C. Câu (III) sai.

D. Câu (I) sai.
Trang 6/10 Mã đề 1


Câu 77. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.

B. 27 m.
C. 25 m.
D. 1587 m.
Câu 78. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số nghịch biến trên khoảng (−∞; 0).
D. Hàm số đồng biến trên khoảng (1; 2).
Câu 79. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 0.
B. 13.
C. Không tồn tại.

D. 9.

Câu 80. [2D1-3] Tìm giá trị của tham số m để f (x) = −x + 3x + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
B. m > − .
C. m ≤ 0.
D. m ≥ 0.
A. − < m < 0.
4
4
!
x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
Câu 81. [3] Cho hàm số f (x) = ln 2017 − ln
x

2016
2017
4035
A.
.
B.
.
C.
.
D. 2017.
2017
2018
2018
2n2 − 1
Câu 82. Tính lim 6
3n + n4
2
B. 0.
C. 2.
D. 1.
A. .
3
 π π
3
Câu 83. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 3.
B. 7.
C. −1.
D. 1.

3

2

Câu 84. Tính thể tích khối lập phương biết tổng diện tích √
tất cả các mặt bằng 18.
A. 9.
B. 27.
C. 3 3.
D. 8.
Câu 85. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 8 mặt.

D. 10 mặt.
! x3 −3mx2 +m
1
nghịch biến trên
Câu 86. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
π
khoảng (−∞; +∞)
A. m ∈ (0; +∞).
B. m = 0.
C. m ∈ R.
D. m , 0.
Câu 87. Cho hàm số y = x3 − 2x2 + x + 1.
! Mệnh đề nào dưới đây đúng?
!
1

1
B. Hàm số nghịch biến trên khoảng ; 1 .
A. Hàm số đồng biến trên khoảng ; 1 .
3
3
!
1
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng −∞; .
3

2
Câu 88. √Xác định phần ảo của số
√ phức z = ( 2 + 3i)
A. −6 2.
B. 6 2.
C. −7.
D. 7.
Câu 89. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng



a 3
a 3
2a 3
A.
.
B.
.

C. a 3.
D.
.
2
3
2
Z 3
x
a
a
Câu 90. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
Trang 7/10 Mã đề 1


A. P = 4.

B. P = 28.

C. P = 16.

D. P = −2.

Câu 91. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 4.

B. ln 10.
C. ln 12.
D. ln 14.
log7 16
bằng
Câu 92. [1-c] Giá trị của biểu thức
log7 15 − log7 15
30
A. −2.
B. −4.
C. 2.
D. 4.
Câu 93. [1] Tập
! xác định của hàm số y != log3 (2x + 1) là
!
1
1
1
B. − ; +∞ .
C.
; +∞ .
A. −∞; − .
2
2
2

!
1
D. −∞; .
2


Câu 94. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất khơng thay đổi?
A. 102.016.000.
B. 102.016.000.
C. 102.423.000.
D. 102.424.000.
Câu 95. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (II) đúng.

B. Chỉ có (I) đúng.

C. Cả hai câu trên sai.

D. Cả hai câu trên đúng.

x−1 y z+1
= =


2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x + y − z = 0.
B. 10x − 7y + 13z + 3 = 0.
C. −x + 6y + 4z + 5 = 0.
D. 2x − y + 2z − 1 = 0.

Câu 96. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình

Câu 97. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −5.
B. 6.
C. 5.
D. −6.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 98. [3-12217d] Cho hàm số y = ln
x+1
0
y
0
y
A. xy = e − 1.
B. xy = −e + 1.
C. xy0 = ey + 1.
D. xy0 = −ey − 1.

2

Câu 99. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 2.
B. 3.
C. 1.
D. 0.
log 2x

Câu 100. [1229d] Đạo hàm của hàm số y =
x2
1 − 4 ln 2x
1
1 − 2 ln 2x
1 − 2 log 2x
0
0
0
A. y0 =
.
.
B.
y
=
.
C.
y
=
.
D.

y
=
2x3 ln 10
2x3 ln 10
x3 ln 10
x3
Câu 101. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất của hàm số. Khi đó tổng

√M + m

A. 16.
B. 7 3.
C. 8 3.
D. 8 2.
Câu 102. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
Thể tích khối chóp S .ABC √là
√ với đáy và S C = a 3.3 √

3
a 6
a 3
2a3 6
a3 3
A.
.
B.
.

C.
.
D.
.
12
2
9
4
Trang 8/10 Mã đề 1


Câu 103. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 84cm3 .
B. 64cm3 .
C. 91cm3 .
D. 48cm3 .
Câu 104. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = 21.
C. P = −21.
D. P = −10.
Câu 105. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
ab
1
.
B. 2

.
D. √
.
A. √
.
C. √
2
a +b
2 a2 + b2
a2 + b2
a2 + b2

Câu 106. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả
bao nhiêu giá trị ngun dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. Vô số.
C. 63.
D. 62.
4x + 1
Câu 107. [1] Tính lim
bằng?
x→−∞ x + 1
A. 4.
B. 2.
C. −1.
D. −4.
2
x − 5x + 6
Câu 108. Tính giới hạn lim
x→2

x−2
A. 5.
B. −1.
C. 1.
D. 0.
Câu 109.
√ các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất của |z|
√ [4-1246d] Trong tất cả
B. 5.
C. 1.
D. 2.
A. 3.
Câu 110. [1] Giá trị của biểu thức 9log3 12 bằng
A. 2.
B. 144.

C. 4.

D. 24.

Câu 111. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. Vô nghiệm.
C. 1.

D. 2.

Câu 112. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. Không tồn tại.
B. −7.

C. −5.

D. −3.

1
Câu 113. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2] ∪ [−1; +∞). B. (−∞; −2) ∪ (−1; +∞). C. −2 ≤ m ≤ −1.
D. −2 < m < −1.
[ = 60◦ , S O
Câu 114. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ BC) bằng
√ với mặt đáy và S O = a.√Khoảng cách từ A đến (S

a 57
2a 57
a 57
.
B.
.
C.
.
D. a 57.
A.
17
19
19
Câu 115. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam

giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của hình chóp S .ABCD với√mặt phẳng (AIC) có diện√tích là

2
a 7
11a2
a2 5
a2 2
A.
.
B.
.
C.
.
D.
.
8
32
16
4
Câu 116. Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
A. Thập nhị diện đều. B. Tứ diện đều.
C. Bát diện đều.
D. Nhị thập diện đều.
Câu 117. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi
G la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1

1
1
A. k = .
B. k = .
C. k = .
D. k = .
15
6
18
9
Trang 9/10 Mã đề 1


Câu 118. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối bát diện đều. B. Khối lập phương.

C. Khối tứ diện đều.

D. Khối 12 mặt đều.

Câu 119. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
B. 27.
C. 12.
D. 18.
A.
2
Câu 120. Khối chóp ngũ giác có số cạnh là

A. 10 cạnh.
B. 12 cạnh.
C. 9 cạnh.
D. 11 cạnh.
2
x − 3x + 3
Câu 121. Hàm số y =
đạt cực đại tại
x−2
A. x = 1.
B. x = 2.
C. x = 3.
D. x = 0.
1 − n2
bằng?
Câu 122. [1] Tính lim 2
2n + 1
1
1
1
B. .
C. 0.
D. − .
A. .
3
2
2
Câu 123. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc
60◦ . Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n.
Thể tích√khối chóp S .ABMN là √



a3 3
5a3 3
4a3 3
2a3 3
A.
.
B.
.
C.
.
D.
.
2
3
3
3
Câu 124. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
1
A. − .
B. 2.
C. .
D. −2.
2
2
12 + 22 + · · · + n2
Câu 125. [3-1133d] Tính lim
n3

1
2
A. .
B. .
C. +∞.
D. 0.
3
3
Câu 126. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.
B. 8.
C. 20.
D. 12.
Câu 127. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tam giác và một hình chóp tứ giác.
B. Một hình chóp tứ giác và một hình chóp ngũ giác.
C. Hai hình chóp tam giác.
D. Hai hình chóp tứ giác.
Câu 128. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P.
B. d song song với (P).
C. d ⊥ P.
D. d nằm trên P hoặc d ⊥ P.

Câu 129. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √



3
a 2
a 6
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
6
6
36
18
Câu 130. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số mặt của khối chóp.
B. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh của khối chóp bằng số mặt của khối chóp.
- - - - - - - - - - HẾT- - - - - - - - - Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A


2.

3.
5.

D

4.
6.

B

7.

10.

11.

C

12.

13.

C

14. A

B


17. A

C

18.

C

20.

21.

D

22.

23.

B

24. A

25.

B

26.
D


B

C

D

29.

B

16.

19.

27.

C

8. A

C

9. A

15.

B

D
B

C

28. A
30.

B

B

31.

C

32.

D

33.

C

34.

D

35.

C

36.


D
D

37.

B

38.

39.

B

40.

B

41.

B

42.

B

44.

B


43. A
45.

C

46. A

47.

D

48.

49.

D

50. A

51.

B

52.

53. A

B

54. A


55.

D

56.

57.

B

58.

59.

B

60. A

61.

B

62. A

63.
65.

C


D
B

64.

C
B

66.
68.

67. A
1

D
B
D


69.

70.

B
D

71.
C

73.


72.

D

74.

D

75.

B

76. A

77.

B

78. A

79. A
81.

B
D

83.

80.


B

82.

B

84.

85. A

B
B

B

88.

89.

B

90. A

93.

D

92.


D

96.

97. A

D
B

98. A
D

99.

C

100.

101. A
105.

B

94.

B

95.

103.


C

86.

87.
91.

B

102. A
B

104.

D

106.

C

107. A
109.

C

D

108.


B

110.

B

111.

C

112. A

113.

C

114.

115. A

116. A

118. A

119.

120. A

121. A


122.

D

123. A

124.

D

125. A

126.

D

127.

128.

D

129.

130. A

2

B
D


C
D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×