Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (884)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (147.12 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m ≤ .
C. m ≥ .
D. m > .
A. m < .
4
4
4
4
Câu 2. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 10 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
2x + 1
Câu 3. Tính giới hạn lim
x→+∞ x + 1
1


A. 2.
B. .
C. −1.
D. 1.
2
Câu 4. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 0.
B. −3.
C. 3.
D. −6.
2
x − 3x + 3
Câu 5. Hàm số y =
đạt cực đại tại
x−2
A. x = 2.
B. x = 0.
C. x = 1.
D. x = 3.
Câu 6. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2]. Giá
trị của biểu thức P = (m2 − 4M)2019
A. 22016 .
B. 1.
C. 0.
D. e2016 .


2

1


3i lần lượt l√
Câu 7. Phần thực √
và phần ảo của số phức
z
=


A. Phần thực là √2, phần ảo là 1 − √3.
B. Phần thực là 2 −√1, phần ảo là − √3.
C. Phần thực là 2 − 1, phần ảo là 3.
D. Phần thực là 1 − 2, phần ảo là − 3.
Câu 8. Tính diện tích hình phẳng giới hạn bởi các đường√y = xe x , y = 0, x = 1.
3
3
1
C.
.
D. .
A. 1.
B. .
2
2
2
Câu 9. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng



a 2

a 2
.
B. a 2.
.
A.
C. a 3.
D.
3
2
Câu 10. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 13 năm.
C. 11 năm.
D. 10 năm.

Câu 11. [1] Biết log6 a = 2 thì log6 a bằng
A. 6.
B. 36.
C. 108.
D. 4.
Câu 12. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (2; 2).
C. (1; −3).

D. (−1; −7).


2

Câu 13. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 2 − log2 3.
B. 1 − log2 3.
C. 1 − log3 2.
Câu 14. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) = 10.
B. f 0 (0) =
.
C. f 0 (0) = 1.
ln 10

D. 3 − log2 3.
D. f 0 (0) = ln 10.
Trang 1/10 Mã đề 1


Câu 15. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −4.
B. 4.
C. 2.

D. −2.

d = 300 .
Câu 16. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V của
√ khối lăng trụ đã cho.3 √

3

3a 3
a 3
A. V = 6a3 .
B. V =
.
C. V =
.
D. V = 3a3 3.
2
2

Câu 17. Thể tích của khối lập phương có cạnh bằng a 2



2a3 2
3
3
3
.
C. V = a 2.
D.
A. V = 2a .
B. 2a 2.
3
Câu 18. Khối đa diện đều loại {3; 5} có số đỉnh
A. 20.
B. 12.


C. 8.

D. 30.

Câu 19. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp √
S .ABCD là
2a3
2a3 3
4a3 3
4a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 20. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vuông góc
với (S BC).
√ là



√ Thể tích khối chóp S 3.ABC
3
a 2
a3 3
a3 3
a 3
.
B.
.
C.
.
D.
.
A.
4
12
6
12
Câu 21. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 27.
B. 3.
C. 10.

D. 12.

Câu 22. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tam giác.
B. Hai hình chóp tứ giác.
C. Một hình chóp tam giác và một hình chóp tứ giác.

D. Một hình chóp tứ giác và một hình chóp ngũ giác.
Câu 23. Dãy số nào sau đây có giới hạn khác 0?
1
n+1
A. .
B.
.
n
n

C.

sin n
.
n

1
D. √ .
n

Câu 24. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 6).
B. (1; 3; 2).
C. (2; 4; 4).
D. (2; 4; 3).
Câu 25. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5

a3 5
a3 5
a3 3
A.
.
B.
.
C.
.
D.
.
12
4
6
12
x+1
Câu 26. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. .
B. 1.
C. .
D. 3.
4
3
!
3n + 2
2

Câu 27. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 4.
B. 3.
C. 5.
D. 2.
Trang 2/10 Mã đề 1


Câu 28. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x y−2 z−3
x−2 y+2 z−3
=
=

.
B. =
=
.
A.
2
2
2
2
3
−1
x−2 y−2 z−3
x y z−1
C.
=
=
.
D. = =
.
2
3
4
1 1
1


4n2 + 1 − n + 2
bằng
Câu 29. Tính lim
2n − 3

3
A. .
B. 2.
C. +∞.
D. 1.
2
x+2
Câu 30. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 3.
B. Vô số.
C. 1.
D. 2.
Câu 31. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 10.
C. 30.


x
+
3
+
6−x
Câu 32.
Tìm
giá
trị

lớn
nhất
của
hàm
số
y
=


A. 2 3.
B. 3 2.
C. 3.

D. 12.
D. 2 +


3.

Câu 33. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
B. a.
C. .
D.
.
A. .

3
2
2
Câu 34. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Cả hai đều sai.
Câu 35. [1] Đạo hàm của hàm số y = 2 x là
1
A. y0 = x
.
B. y0 = 2 x . ln x.
2 . ln x
Câu 36. Tứ diện đều thuộc loại
A. {4; 3}.
B. {3; 3}.
4x + 1
Câu 37. [1] Tính lim
bằng?
x→−∞ x + 1
A. 4.
B. 2.
Câu 38. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 11 cạnh.

C. Cả hai đều đúng.


D. Chỉ có (II) đúng.

C. y0 = 2 x . ln 2.

D. y0 =

C. {5; 3}.

D. {3; 4}.

C. −4.

D. −1.

C. 10 cạnh.

D. 9 cạnh.

C. +∞.

D. 1.

1
.
ln 2

Câu 39. Giá trị của lim (3x2 − 2x + 1)
x→1

A. 2.


B. 3.

Câu 40.
Z Các khẳng định nào sau
Z đây là sai?
f (x)dx = F(x) + C ⇒

A.
Z
C.

f (x)dx = F(x) +C ⇒

f (t)dt = F(t) + C. B.

Z

f (u)dx = F(u) +C. D.

Z
Z

Z

k f (x)dx = k
f (x)dx, k là hằng số.
!0
f (x)dx = f (x).
Trang 3/10 Mã đề 1



Câu 41. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; −8)(.
B. A(4; 8).
C. A(4; −8).
D. A(−4; 8).
Câu 42.! Dãy số nào sau đây có giới! hạn là 0?
n
n
5
5
A.
.
B. − .
3
3
x−3
bằng?
Câu 43. [1] Tính lim
x→3 x + 3
A. 0.
B. −∞.

!n
4
C.
.
e


!n
1
D.
.
3

C. 1.

D. +∞.

0 0 0 0
0
Câu 44.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 3
a 6
a 6
a 6
A.
.
B.
.
C.
.
D.
.
2
3
7

2
Câu 45. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên

hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (I) đúng.
Z 3
Câu 46. Cho I =

B. Chỉ có (II) đúng.
x


dx =

0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 28.
B. P = −2.

C. Cả hai câu trên sai.


D. Cả hai câu trên đúng.

a
a
+ b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
d
d
C. P = 4.

D. P = 16.

Câu 47. [2]√Tìm m để giá trị nhỏ nhất của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng 2√
B. m = ±3.
C. m = ±1.
D. m = ± 3.
A. m = ± 2.
9x
Câu 48. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. −1.
B. 2.
C. 1.
D. .
2
3
2
Câu 49. Hàm số y = −x + 3x − 1 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).

B. (2; +∞).
C. (0; 2).
D. R.
3

2
Câu 50. Tính
√4 mô đun của số phức z biết
√ (1 + 2i)z = 3 + 4i.
A. |z| = 5.
B. |z| = 2 5.
C. |z| = 5.

2

x

D. |z| =


5.

Câu 51. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng (S AB). Thiết diện của
√mặt phẳng (AIC) có diện
√tích là
√ hình chóp S .ABCD với
2
2

2
2
11a
a 7
a 5
a 2
A.
.
B.
.
C.
.
D.
.
32
8
16
4
Câu 52. Thể tích của khối lăng√trụ tam giác đều có cạnh √
bằng 1 là:

3
3
3
3
A. .
B.
.
C.
.

D.
.
4
12
2
4
Câu 53. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 6 cạnh, 4 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.
x2 − 5x + 6
Câu 54. Tính giới hạn lim
x→2
x−2
A. 1.
B. 5.

C. 0.

D. −1.
Trang 4/10 Mã đề 1


Câu 55. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2
3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng

3


2 3
.
C. 3.
A. 1.
B.
D. 2.
3
!
!
!
4x
1
2
2016
Câu 56. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 2016.
B. T =
.
C. T = 1008.

D. T = 2017.
2017
1
Câu 57. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 0 < m ≤ 1.
C. 2 ≤ m ≤ 3.
D. 0 ≤ m ≤ 1.
!x
1
Câu 58. [2] Tổng các nghiệm của phương trình 31−x = 2 +

9
A. 1 − log2 3.
B. − log3 2.
C. log2 3.
D. − log2 3.
log2 240 log2 15

+ log2 1 bằng
log3,75 2 log60 2
B. −8.
C. 1.

Câu 59. [1-c] Giá trị biểu thức
A. 3.

D. 4.


Câu 60. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là −1.
B. Phần thực là −1, phần ảo là 4.
C. Phần thực là 4, phần ảo là 1.
D. Phần thực là −1, phần ảo là −4.
Câu 61. [2] Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8
C. m = ± 2.
D. m = ±3.
A. m = ±1.
B. m = ± 3.
Câu 62. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vơ nghiệm.
B. 2.
C. 1.
D. 3.
5
Câu 63. Tính lim
n+3
A. 3.
B. 2.
C. 1.
D. 0.
Câu 64. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 65.√Thể tích của tứ diện đều √
cạnh bằng a



3
3
a 2
a3 2
a3 2
a 2
A.
.
B.
.
C.
.
D.
.
4
2
12
6
Câu 66. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Khơng có.
B. Có hai.
C. Có một.
D. Có một hoặc hai.

Câu 67. Xác định phần ảo của số phức z = ( 2 + 3i)2


A. 7.

B. −7.
C. −6 2.
D. 6 2.
Câu 68. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≥ 0.
B. m > − .
C. m ≤ 0.
D. − < m < 0.
4
4
2
Câu 69. Giá trị giới hạn lim (x − x + 7) bằng?
x→−1
A. 9.
B. 0.
C. 5.
D. 7.
Trang 5/10 Mã đề 1



Câu 70. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. Vơ số.
C. 64.
D. 63.

Câu 71. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = 1 + ln x.

C. y0 = ln x − 1.

D. y0 = 1 − ln x.

Câu 72. Tính thể tích khối lập phương biết tổng diện tích √
tất cả các mặt bằng 18.
D. 27.
A. 9.
B. 8.
C. 3 3.
1
Câu 73. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; 3).
B. (1; +∞).
C. (−∞; 1) và (3; +∞). D. (−∞; 3).
Câu 74. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC) một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √

a3
a3 3
a3 3
a3 3
A.
.
B.

.
C.
.
D.
.
4
12
4
8
Câu 75. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; 6, 5].
B. (4; +∞).
C. [6, 5; +∞).
x − 12x + 35
25 − 5x

D. (−∞; 6, 5).

2

Câu 76. Tính lim
x→5

2
A. − .
5

B. +∞.

2

.
5

C.

D. −∞.

Câu 77. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 1; m = 1.
B. M = e−2 + 2; m = 1.
C. M = e2 − 2; m = e−2 + 2.
D. M = e−2 − 2; m = 1.
Câu 78. Khối đa diện đều loại {3; 5} có số cạnh
A. 30.
B. 20.

C. 8.

D. 12.

Câu 79. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị
"
!
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới đây?
5
5
B. (1; 2).
C. [3; 4).
D.

;3 .
A. 2; .
2
2


ab.

Câu 80. Cho hàm số y = x3 − 2x2 + x + 1. !Mệnh đề nào dưới đây đúng?
1
A. Hàm số nghịch biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng (1; +∞).
3
!
!
1
1
C. Hàm số nghịch biến trên khoảng −∞; .
D. Hàm số đồng biến trên khoảng ; 1 .
3
3
Câu 81. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
1
A. .
B. 5.
C. 25.
5


Câu 82. [1] Đạo hàm của làm số y = log x là

1
1
A.
.
B. y0 = .
10 ln x
x

C. y0 =

1
.
x ln 10


D.

5.

D. y0 =

ln 10
.
x

Câu 83. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 18 tháng.

B. 15 tháng.
C. 17 tháng.
D. 16 tháng.
Trang 6/10 Mã đề 1


Câu 84. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1079
1637
23
1728
A.
.
B.
.
C.
.
D.
.
4913
4913
68
4913
Câu 85. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 2e.
B. 2e + 1.
C. .
e


D. 3.

[ = 60◦ , S O
Câu 86. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc

√ với mặt đáy và S O = a. Khoảng cách từ O đến (S
√ BC) bằng

a 57
2a 57
a 57
.
B. a 57.
.
D.
.
A.
C.
19
19
17
Câu 87. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
! của A lên BC là
!
8
5
7

A. (2; 0; 0).
B.
; 0; 0 .
C.
; 0; 0 .
D.
; 0; 0 .
3
3
3
Câu 88. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 3.
B. 0.
C. 1.

D. 2.

Câu 89. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 0).
B. Hàm số nghịch biến trên khoảng (0; 1).
C. Hàm số đồng biến trên khoảng (1; 2).
D. Hàm số nghịch biến trên khoảng (1; +∞).
Câu 90. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 3.
B. 1.
C. 0.

D. 2.

Câu 91. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng

nhau?
A. 3.
B. 6.
C. 8.
D. 4.
Câu 92. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 9.
B. Không tồn tại.
C. 0.

D. 13.

Câu 93. [1] Giá trị của biểu thức 9log3 12 bằng
A. 144.
B. 2.

C. 24.

D. 4.

Câu 94. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối lập phương.
B. Khối 12 mặt đều.

C. Khối tứ diện đều.

D. Khối bát diện đều.

Câu 95. [12214d] Với giá trị nào của m thì phương trình
A. 0 ≤ m ≤ 1.


B. 0 < m ≤ 1.

1
3|x−2|

= m − 2 có nghiệm

C. 2 < m ≤ 3.

D. 2 ≤ m ≤ 3.

Câu 96. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 6.
B. V = 3.
C. V = 4.
D. V = 5.
Câu 97. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 72.
B. 0, 8.
C. −7, 2.

D. 7, 2.

Câu 98. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.

Câu 99. Khối đa diện đều loại {4; 3} có số mặt
A. 6.
B. 10.

C. 8.

D. 12.
Trang 7/10 Mã đề 1


Câu 100. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 21.
B. P = −10.
C. P = 10.
D. P = −21.
Câu 101. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối bát diện đều.
B. Khối tứ diện.
C. Khối lập phương.
D. Khối lăng trụ tam giác.
Câu 102. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. n3 lần.
C. 2n2 lần.
D. 2n3 lần.
Câu 103. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P hoặc d ⊥ P.
B. d nằm trên P.
C. d song song với (P).

D. d ⊥ P.
Câu 104. ZCho hai hàmZy = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
f (x)dx =

A. Nếu
Z

g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
C. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
B. Nếu

f 0 (x)dx =

g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z

4

Câu 105. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 :
7

5
2
A. a 3 .
B. a 8 .
C. a 3 .

√3
a2 bằng
5

D. a 3 .

Câu 106. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa


√ hai đường thẳng BD và S C bằng

a 6
a 6
a 6
.
B. a 6.
.
D.
.
C.
A.
6
3

2
Câu 107. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 2).
B. Hàm số đồng biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
Câu 108. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 8 mặt.
C. 10 mặt.

D. 6 mặt.

Câu 109. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD là

a3 3
a3
a3 3
3
A. a .
B.
.
C.
.
D.
.
9
3

3
Câu 110. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
a
5a
2a
8a
A. .
B.
.
C.
.
D.
.
9
9
9
9
Câu 111. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. Vô nghiệm.
C. 2.
D. 1.
Câu 112. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm
0
A đến đường
√ thẳng BD bằng




c a2 + b2
b a2 + c2
abc b2 + c2
a b2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Trang 8/10 Mã đề 1


2n + 1
Câu 113. Tìm giới hạn lim
n+1
A. 3.
B. 2.
2n2 − 1
Câu 114. Tính lim 6
3n + n4
A. 1.
B. 2.


C. 0.

D. 1.

2
.
3
Câu 115. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 3
a 6
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
24
8
48

24
Câu 116.
Cho hàm số
Z
Z f (x), g(x) liên tục trên R. Trong các
Z mệnh đề sau, mệnhZđề nào sai? Z
k f (x)dx = f

A.
Z
C.

f (x)g(x)dx =

Z

f (x)dx, k ∈ R, k , 0.
Z
f (x)dx g(x)dx.

C. 0.

( f (x) − g(x))dx =

B.
Z
D.

D.


( f (x) + g(x))dx =

f (x)dx −
Z

f (x)dx +

g(x)dx.
Z
g(x)dx.

Câu 117. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. (−∞; −3].
B. [−1; 3].
C. [−3; 1].
D. [1; +∞).
Câu 118. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≤ 3.
B. m ≥ 3.
C. −2 ≤ m ≤ 2.
D. −3 ≤ m ≤ 3.
Câu 119. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc
45◦ . Tính
.ABC theo a

√ thể tích của khối chóp 3S√
3
a 15
a3

a3 15
a 5
.
B.
.
C.
.
D.
.
A.
25
25
3
5
Câu 120. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên khoảng (−2; 1).
C. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 121. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
A. 2.
B. .
C. 1.
D.
.
2
2
Câu 122. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành

d0 ?
A. Có một.
B. Khơng có.
C. Có vơ số.
D. Có hai.
Câu 123. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 0.
B. m ≥ 0.
C. m > −1.

D. m > 1.

Câu 124. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. 2.
C. 1.
D. Vô nghiệm.
Câu 125. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất
điểm đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 8 m.
C. 12 m.
D. 24 m.
Câu 126. Khối đa diện đều loại {5; 3} có số mặt
A. 8.
B. 20.

C. 12.

D. 30.


Câu 127. Khối đa diện đều loại {4; 3} có số đỉnh
A. 8.
B. 6.

C. 10.

D. 4.
Trang 9/10 Mã đề 1


Câu 128. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là

3
3
3
3
4a 3
8a 3
a 3
8a 3
.
B.
.
C.
.
D.

.
A.
3
9
9
9
Câu 129. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −5.
B. −6.
C. 6.
2

D. 5.

Câu 130. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 7 năm.
B. 8 năm.
C. 9 năm.
D. 10 năm.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.


B

2. A

3. A

4.

5.
7.

C

6.

B

C

8. A

9.

D

10. A

11.


D

12. A
D

14.

13. A
D

15.
17.

B

B

19.

16.

B

18.

B

20.

D


21.

B

22. A

23.

B

24. A

D

25. A

26. A

27. A

28.

D
D

29.

D


30.

31.

D

32.

33.

D

34.

B
C

35.

B

36.

B

37. A

38.

C


39. A

40.

C

41.

42.

B

43. A

44.

45.

D

C
C

C

48.

49.


C

50. A

B

53. A
55.

D

61.

67.

D

54.

D
C

58.

D

60. A

B


62.

C

63.
65.

52.
56.

57. A
59.

B

46.

47.
51.

D

D

B

64. A
66.

C

D

68.
1

D
B


69. A
71.

70. A
B

74.

C

73.

C

72.

75. A

D

76.


77.

D

78. A

79.

D

80. A

81.

C

82.

C

83.

D

84.

85.

D


86.

C
B
C

87.

B

88.

89.

B

90.

C

91. A

92.

C

93. A

94.


95.

C

96.

97.

C

98. A

B

C
D

102. A
104.

103. A
C

105.
107.

D

100.


99. A
101.

B

D

106. A

B

108.

D

109.

C

110.

D

111.

C

112.


D

113.

B

115.

D

117.
119.

C
B

121. A
123.

C

114.

C

116.

C

118.


D

120.

D

122.

D

124.

C

125. A

126.

C

127. A

128.

C

129. A

130.


C

2



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×