Tải bản đầy đủ (.pdf) (162 trang)

Nghiên cứu hệ thống nhiên liệu common rail và so sánh với các hệ thống nhiện liệu diesel khác

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (4.52 MB, 162 trang )

BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƯỜNG ĐẠI HỌC CẦN THƠ
KHOA CÔNG NGHỆ

LUẬN VĂN TỐT NGHIỆP ĐẠI HỌC
ĐỀ TÀI:

NGHIÊN CỨU HỆ THỐNG NHIÊN LIỆU COMMON
RAIL VÀ SO SÁNH VỚI CÁC HỆ THỐNG NHIỆN
LIỆU DIESEL KHÁC
Giảng viên hướng dẫn:
Huỳnh Việt Phương

Sinh viên thực hiện:
Nguyễn Đức Cảnh
Lớp: Cơ Khí Giao Thơng K35
MSSV: 1090516

Cần Thơ, 11/2012


LUẬN VĂN TỐT NGHIỆP

MỞ ĐẦU
1.1 Đặt vấn đề.
Ngày nay, số lượng phương tiện giao thông ngày càng tăng, đặc biệt là các
phương tiện cá nhân, kéo theo tình trạng ơ nhiễm mơi trường mà do khói bụi từ các
phương tiện giao thông mang lại ngày càng lớn, nguồn nguyên nhiên liệu thì ngày
càng cạn kiệt do sự khai thác quá mức của con người.
Do đó, cần phải có nhiều cơng nghệ tiên tiến để giải quyết vấn đề ô nhiễm môi
trường, ô nhiễm tiếng ồn, giảm thiểu việc khai thác các nguồn tài nguyên thiên nhiên


như sử dụng năng lượng mặt trời, năng lượng điện, năng lượng sinh học, thay đổi
công nghệ của các loại động cơ truyền thống là xăng và diesel.
Với việc thay đổi công nghệ, áp dụng những tiến bộ trong việc nâng cao hiệu quả
của nhiên liệu diesel, làm cho các phương tiện sử dụng nhiên liệu diesel ngày càng
nhiều. Hiện nay công nghệ ôtô phát triển dựa trên những tiêu chí: tăng cơng suất, tốc
độ, giảm suất tiêu hao nhiên liệu, điện tử hoá quá trình điều khiển và hạn chế mức
thấp nhất thành phần ô nhiễm trong khí xả động cơ nhằm tạo ra một nền công nghiệp
ôtô phát triển và thân thiện với môi trường.
Với sự phát triển mạnh mẽ của tin học hóa, tự động hóa trong ngành sản xuất và
các sản phẩm ơ tơ. Nhờ sự giúp đỡ của máy tính để cải thiện quá trình làm việc của
động cơ và ôtô nhằm đạt hiệu quả cao và chống ô nhiễm mơi trường.
Với hệ thống nhiên liệu Common Rail thì việc giảm ô nhiễm môi trường, tiêu hao
nhiên liệu, tiếng ồn,…đã được khắc phục ở động cơ diesel. Hệ thống nhiên liệu
diesel kiểu Common Rail hiện được sử dụng rộng rãi trên các động cơ diesel, nó đã
mang lại một cuộc cách mạng trong cơng nghệ động cơ diesel, nó làm thay đổi cách
suy nghĩ của người sử dụng cho rằng động cơ diesel ồn, bẩn, chậm chạp. Nó cịn có
thể được lắp đặt trên các động cơ diesel cũ.
Vì vậy, “Nghiên cứu hệ thống nhiên liệu Common Rail và so sánh với các hệ
thống nhiên liệu Diesel khác” giúp em có kiến thức sâu hơn về chuyên ngành và đạt
được khả năng tự học, tìm kiếm tài liệu cũng như nó là hành trang cho bản thân sau
này.

1
GVHD: Huỳnh Việt Phương
SVTH: Nguyễn Đức Cảnh


LUẬN VĂN TỐT NGHIỆP

1.2 Khái quát về hệ thống nhiên liệu Common Rail

Động cơ diesel ra đời sớm và có nhiều ưu điểm vượt trội như khả năng tiết kiệm
nhiên liệu hơn động cơ xăng khoảng 30%. Nhưng đến nay, nhìn chung động cơ
diesel vẫn ít phổ biến hơn động cơ xăng chỉ do vấn đề về tiếng ồn và khí thải.
Cơng nghệ hiện đại đang khắc phục được nhiều nhược điểm của động cơ diesel.
Sự ra đời của các công nghệ như tăng áp và hệ thống phun nhiên liệu trực tiếp cách
đây vài năm đã khiến động cơ diesel mạnh mẽ khơng thua kém gì những động cơ
xăng tốt nhất, mà vẫn giữ nguyên ưu điểm tiết kiệm nhiên liệu. Bên cạnh đó, giờ đây
đã có những cơng nghệ động cơ diesel gần “sạch” bằng động cơ xăng.
Công nghệ động cơ diesel liên tục có những bước cải tiến lớn. Đến nay, tiếng ồn
của động cơ đã giảm, nhờ hệ thống cách âm và kiểm sốt q trình đốt nhiên liệu tốt
hơn; khói thải giảm xuống và thời gian khởi động nhanh gần bằng động cơ xăng, nhờ
cải tiến buồng đốt.
Để đáp ứng yêu cầu về khí thải ngày càng ngặt nghèo của các tổ chức môi
trường, và vấn đề giảm thiểu tiếng ồn, hệ thống nhiên liệu Common Rail đã không
ngừng phát triển và từng bước đáp ứng được những yêu cầu ngày càng gắt gao đối
với nhiên liệu diesel. Ngày nay trên một số phương tiện giao thơng sử dụng hệ thống
nhiên liệu diesel thì nhiên liệu diesel sử dụng hệ thống Common Raid đã đáp ứng
được yêu cầu về khí thải Euro 5.

2
GVHD: Huỳnh Việt Phương
SVTH: Nguyễn Đức Cảnh


LUẬN VĂN TỐT NGHIỆP

1.2.1 Trên thế giới:
Châu Âu đi tiên phong trong việc sử dụng động cơ diesel chiếm trên 50% thị
phần, có hơn 1/3 số xe mới sử dụng nhiên liệu diesel. Tại một vài quốc gia, diesel đã
lấn sân hồn tồn xăng và đó là ngun nhân mà châu lục này ít phụ thuộc vào giá

xăng hơn Mỹ, tại Pháp, Áo, Đức, Thụy Sỹ thì động cơ diesel nhiều hơn động cơ
xăng, việc giảm thiểu tiêu thụ nhiên liệu cũng tăng lượng xe động cơ diesel tại Mỹ
và các nước châu Á trong thời gian qua.
Áp dụng công nghệ hiện đại như đa van, phun nhiên liệu trực tiếp, kiểm soát
cháy nổ, động cơ diesel phát triển mạnh mẽ. đến nay động cơ diesel đã đáp ứng được
các tiêu chuẩn Euro 1,2,3,4,5 và hướng đến là Euro 6. Với sự nỗ lực của các nhà
công nghiệp dầu mỏ thì hàm lượng lưu huỳnh đã giảm từ 500 ppm (phần triệu)
xuống còn 50 ppm vào cuối năm 2004 tại 1 số nước. Nhật với hàm lượng lưu huỳnh
dưới 50ppm đã được cung cấp nhiều nơi trên thế giới. Kết hợp thêm bộ xúc tác ơ xy
hóa cao mà bộ lọc bụi diesel với khả năng phục hồi liên tục đã trở thành hiện thực.
Năm 2007 , nhiên liệu diesel với hàm lượng lưu huỳnh dưới 10ppm đã được cung
cấp. có thể áp dụng cơng nghệ xúc tác để giảm khí NOx như NSR (NOx storage
reduction- bộ xử lý NOx) và DPNR (diesel particulates and NOx reduction- bộ giảm
lượng NOx và bụi cho động cơ Diesel) điều này giúp động cơ cực kỳ sạch và thân
thiện với môi trường, sử dụng động cơ diesel sẽ ngày càng thông dụng. Tạo momen
xoắn lớn , xe có sức kéo mạnh hơn, khả năng leo dốc và vươt địa hình phức tạp cao.

3
GVHD: Huỳnh Việt Phương
SVTH: Nguyễn Đức Cảnh


LUẬN VĂN TỐT NGHIỆP

1.2.2 Tại Việt Nam:
Theo VAMA (hiệp hôi các nhà sản xuất ô tô Việt Nam), động cơ diesel chiếm
21,75% thị trường ô tô mới (gần 40000 chiếc), tăng đáng kể so với năm 2001 chỉ
dưới 10%. Ford là nhà sản xuất tiên phong và tiêu thụ ô tô sử dụng động cơ diesel,
năm 2005 xe chạy dầu diesel chiếm 90% lượng xe bán ra của dòng Ford Transit,
75% với dòng Ford Everest. Các máy sử dụng động cơ diesel phát huy tốt khả năng

đáp ứng các yêu cầu trong các lĩnh vực Nông –Lâm -Ngư nghiệp, xây dựng và khai
khoáng.

4
GVHD: Huỳnh Việt Phương
SVTH: Nguyễn Đức Cảnh


LUẬN VĂN TỐT NGHIỆP

1.3 Lịch sử hình thành và phát triển của hệ thống nhiên liệu Common Rail.
Năm 1916: Vickers sử dụng hệ thống Common Rail trên các động cơ tàu ngầm.
Từ 1921 đến 1980: Doxford Engine LTD sử dụng hệ thống Common Rail, sử
dụng bơm nhiên liệu đa xylanh với áp suất phun lên đến 600 bar.
Năm 1942: hệ thống Common Rail đã được sử dụng trên các động cơ hàng hải
như động cơ Coopre- Bessmer GN-8.
Năm 1943- 1946: hệ thống Common Rail được phát triển trên các động cơ xe và
Clessie Lyle Cummins nhận được bằng sáng chế , người sáng lập hãng chế tạo động
cơ diesel nổi tiếng thế giới Cummins Engine Co (USA).
Cuối những năm 1960, hệ thống Common Rail được phát triển bởi Robert Huber
người Thụy Sỹ, sau đó được phát triển bởi Marco Ganser tại Viện Công nghệ Liên
bang Thụy Sỹ tại Zurich, sau đó được phát triển bởi Ganser- Hudromag AG (năm
1995) ở Oberagri.
Tháng 2 năm 1976: thử nghiệm một động cơ diesel cho xe khách Volkswagen
Golf.
Từ 1976 đến 1992: hệ thống vòi phun Cummins Common Rail được phát triển
thêm bởi ETH Zurich.
Năm 1985: động cơ diesel với bộ phận làm nguội trung gian ATI từ DAS, xe tải
sử dụng hệ thống Common Rail ở châu Âu với các loại xe IFA W50 được giới thiệu.
Những năm 1990: hệ thống Common Rail được sử dụng trên các loại xe được

nghiên cứu lần đầu tiên ở Nhật Bản bởi tiến sĩ Shohei Itol và Masahiki Miyaki của
Tổng công ty Denzo.
Năm 1993: hệ thống Common Rail được phát triển bởi một công ty nghiên cứu
của tập đồn Fiat có tên là Elasis ở Naples và sau đó được Bosch mua lại bằng sáng
chế này.
Năm 1995: thành công đầu tiên của việc sử dụng hệ thống Common Rail trong
việc sản xuất xe là dòng xe Denso ở Nhật Bản, dòng xe Hino với Rising Ranger với
hệ thống Common Rail ECU-U2. Sử dụng bơm cao áp lên đến 1579 atm cung cấp
nhiên liệu sơ cấp tới các đầu phun.
5
GVHD: Huỳnh Việt Phương
SVTH: Nguyễn Đức Cảnh


LUẬN VĂN TỐT NGHIỆP
Tháng 10 năm 1997: hệ thống Common Rail được sử dụng đầu tiên trên dòng xe
chở khách với dòng Alfa Romeo và Mercedes- Benz với áp suất phun lên đến 1350
bar.
Năm 1998: Mercedes giới thiệu công nghệ CDI.
Năm 1999: động cơ diesel đầu tiên của Common Rail trên dòng xe tải của hãng
Renaul đạt tiêu chuẩn Euro 3 với áp suất phun lên đến 1400 bar.
Năm 2001: hệ thống Common Rail thế hệ thứ 2 cho xe ô tô chở khách được sử
dụng và đạt hiệu quả kinh kế hơn, sạch hơn, êm hơn và mạnh hơn, áp suất phun lên
đến 1600 bar và được sử dụng lần đầu tiên trên dòng xe Volvo và BMW.
Năm 2002: hệ thống Common Rail thế hệ thứ 2 cho xe tải được nâng cấp với
lượng khí thải thấp hơn, tiêu thụ nhiên liệu được cải thiện và tăng công suất hơn, áp
suất phun lên đến 1600 bar, được sử dụng lần đầu tiên trên dòng xe của Man.
Cũng trong năm này, Denso tung ra hệ thống Common Rail với áp suất phun lên
đến 1800 bar, với số lần phun lên đến 5 lần giúp hệ thống đáp ứng được yêu cầu khí
thải Euro 4 mà khơng cần bộ lọc diesel.

Năm 2003: hệ thống Common Rail thế hệ thứ 3 được sử dụng chung cho các loại
xe, ưu điểm của nó là giảm đến 20% lượng khí thải, tăng 5% cơng suất, giảm 3%
nhiên liệu và tiếng ồn giảm đến 3 dB. Áp suất phun 1600 bar và được sử dụng đầu
tiên trên dịng xe Audi.
Ở thế hệ thứ 3 thì hệ thống Common Rail sử dụng vòi phun Piezo giúp cho hệ
thống phun đạt độ chính xác cao hơn lên đến 1800 bar/ 26000psi. Trong động cơ
xăng nó được sử dụng trong công nghệ phun xăng trực tiếp. Kim phun Piezo có thể
đạt khoảng thời gian phun mồi (pilot injections ) là 0,1 phần nghìn giây.
Năm 2004: ở Tây Âu, tỷ lệ ô tô chở khách với động cơ diesel vượt quá 50%. Hệ
thống chọn lọc xúc tác- Selective catalytic reduction- SCR trên dòng xe Mercedes,
Euro 4 với hệ thống hồn lưu khí thải (EGR) và hạt phân tử lọc của Man, công nghệ
áp điện kim phun của Bosch.
Năm 2008: hơn một nửa số xe mới đăng ký ở Tây Âu được dự kiến sẽ là động cơ
diesel Common Rail thế hệ thứ 3 từ hãng Bosch, đặc trưng bởi sự chuyển đổi nhanh
chóng, nhỏ gọn, điện áp- nội tuyến- vịi phun. Các hệ thống phun sáng tạo làm lượng
khí thải thấp trong động cơ diesel V6 mới của Audi A8.
Đối với thế hệ Common Rail thứ tư của hãng Bosch được thiết kế thì áp suất
phun cao lên đến 2000 bar, những kim phun với những dạng hình học thay đổi.
6
GVHD: Huỳnh Việt Phương
SVTH: Nguyễn Đức Cảnh


LUẬN VĂN TỐT NGHIỆP
Với những cải tiến, hệ thống Common Rail tương lai sẽ có thể phun với áp suất
phun lên trên 2000 bar.
Hệ thống Common Rail thế hệ thứ tư cho xe thượng mại hạng nặng với một vòi
phun mới được phát triển với bộ chuyển đổi áp lực. Áp suất nhiên liệu đã lên tới
2100 bar, với những tính năng đặc biệt như bộ chuyển đổi áp suất có thể được kích
hoạt độc lập ở các vịi phun. Thiết kế tự do hơn ở áp suất phun do đó giảm thiểu các

chất ơ nhiễm.
Áp suất hiện nay đã được đưa lên đến 2200 bar, được sử dụng cho các động cơ
của BMW.
Ngày nay, hệ thống Common Rail đã mang lại cuộc cách mạng trong công nghệ
động cơ diesel. Robert Bosch GmbH, Delphi Automotive Systems, Denso
Corporation và Siemens VDO (nay thuộc sở hữu của của Continental AG) là nhà
cung cấp chính của hệ thống Common Rail. Các nhà sản xuất động cơ ô tô ngày nay
đã phát triển công nghệ phun nhiên liệu của riêng mình từ hệ thống Common Rail:
BMW với động cơ D (cũng được sử dụng cho xe Land Rover Freelander TD4).
Cummins và Scania xpi (phát triển động cơ với liên doanh của họ).
Cummins với CCR (bơm Cummins với kim phun Bosch).
Daimler với công nghệ CDI (và trên xe Jeep của Chrysler chỉ đơn giản là công
nghệ CRD).
Fiat Group (Fiat, Alfa Romeo và Lancia) JTD (cũng mang nhãn hiệu như
MultiJet, JTDm, Ecotec CDTi, TID, TTiD, DDiS, Quadra-Jet).
Duratorq TDCi của Ford Motor Company và Powerstroke.
General Motors Opel / Vauxhall CDTi (sản xuất bởi Fiat và GM Daewoo) và
DTI (Isuzu).
General Motors Daewoo / Chevrolet VCDi (được cấp phép từ VM Motori, cùng
thương hiệu như Ecotec CDTi).
Honda có cơng nghệ i-CTDi.
Hyundai-Kia có cơng nghệ CRDi.
"Storm" của Land Rover TD5 có nguồn gốc từ động cơ L-Series Rover.

7
GVHD: Huỳnh Việt Phương
SVTH: Nguyễn Đức Cảnh


LUẬN VĂN TỐT NGHIỆP

Mahindra có cơng nghệ CRDe.
Maruti Suzuki có công nghệ DDiS (sản xuất theo giấy phép của Fiat).
Mazda có cơng nghệ CiTD.
Mitsubishi DI-D (mới được phát triển gần đây với dịng xe gia đình dùng động cơ
4N1 sử dụng thế hệ kế tiếp với áp suất phun 200 MPa (2000 bar)).
Nissan có cơng nghệ dCi.
PSA Peugeot Citrn có công nghệ HDI (1,6 HDI và 2,0 HDI phát triển theo liên
doanh với Ford).
Renault có cơng nghệ 'dCi.
SsangYong có cơng nghệ XDi (hầu hết những động cơ này được sản xuất bởi
Daimler AG).
Subaru có cơng nghệ Legacy TD (tính đến tháng 1 năm 2008).
Tata có cơng nghệ DICOR.
Toyota có cơng nghệ D-4D.
Volkswagen Group: với động cơ 4,2L V8 TDI và mới nhất 2,7L và 3.0L TDI
(V6) động cơ đặc trưng trên các mơ hình Audi hiện nay sử dụng hệ thống Common
Rail, nhưng trái ngược với trước đó bởi số lượng phun. TDI 2.0 trong Volkswagen
Tiguan SUV sử dụng hệ thống Common Rail, cũng như mơ hình Audi A4 2008. Tập
đồn Volkswagen đã thơng báo rằng động cơ 2.0 TDI (Common Rail) sẽ có sẵn cho
Volkswagen Passat cũng như Volkswagen Jetta 2009.
Volvo 2.4D và D5 động cơ.
Skoda với công nghệ TDI.(1)

(1): />AA&url=http%3A%2F%2Fwww.4x4community.co.za%2Fforum%2Fattachment.php%3Fattachmentid%3D1
15272%26d%3D1317390589&ei=t_spUN2sN9CUiAfZgoDIBA&usg=AFQjCNHrIKs_qzEZjIFUEK1r0e_Q8
rNPQg

8
GVHD: Huỳnh Việt Phương
SVTH: Nguyễn Đức Cảnh



LUẬN VĂN TỐT NGHIỆP

9
GVHD: Huỳnh Việt Phương
SVTH: Nguyễn Đức Cảnh


LUẬN VĂN TỐT NGHIỆP
Chương 2: NGHIÊN CỨU HỆ THỐNG NHIÊN LIỆU COMMON RAIL
VÀ SO SÁNH VỚI CÁC HỆ THỐNG NHIÊN LIỆU DIESEL KHÁC
2.1 Nhiệm vụ, yêu cầu, chức năng của hệ thống nhiên liệu common rail
2.1.1 Nhiệm vụ của hệ thống nhiên liệu Common Rail.
Hệ thống cung cấp nhiên liệu vào trong động cơ phải đảm bảo kết hợp tốt giữa số
lượng, phương hướng, hình dạng, kích thước của các tia phun với hình dạng buồng
cháy và với cuờng độ và phương hướng chuyển động của môi chất trong buồng cháy
để hồ khí được hình thành nhanh và đều.
Lượng nhiên liệu cung cấp cho mỗi chu trình phải phù hợp với chế độ làm việc
của động cơ.
Lưu lượng nhiên liệu vào các xylanh phải đúng thời điểm, đồng đều, đúng quy
luật mong muốn.
Phải phun nhiên liệu vào xylanh qua lỗ phun nhỏ với chênh áp lớn phía trước và
sao lỗ phun , để nhiên liệu được xé tơi tốt.
Dự trữ nhiên liệu đảm bảo cho động cơ có thể làm việc liên tục trong một thời
gian nhất định, không cần cấp thêm nhiêu liệu, lọc sạch nước, tạp chất cơ học lẫn
trong nhiên liệu, giúp nhiên liệu chuyển động thông thoáng trong hệ thống.
Việc tạo ra áp suất và việc phun nhiên liệu hoàn toàn tách biệt với nhau trong hệ
thống Common Rail. Áp suất phun được tạo ra độc lập với tốc độ động cơ và lượng
nhiên liệu phun ra.

Nhiên liệu được trữ với áp suất cao trong bộ tích áp suất cao (high-pressure
accumulator) và sẵn sàng để phun. Lượng nhiên liệu phun ra được quyết định bởi
người lái xe, và thời điểm phun cũng như áp lực phun được tính tốn bằng ECU và
các biểu đồ đã lưu trong bộ nhớ của nó. Sau đó ECU sẽ điều khiển các kim phun
phun tại mỗi xy lanh động cơ để phun nhiên liệu.
2.1.2 Yêu cầu của hệ thống nhiên liệu Common Rail.
Tăng tốc độ phun để làm giảm nồng độ bồ hóng do tăng tốc hịa trộn nhiên liệu
khơng khí.
Tăng áp suất phun, đặc biệt là đối với động cơ phun trực tiếp.
Điều chỉnh dạng quy luật phun theo khuynh hướng kết thúc nhanh quá trình phun
để làm giảm hành trình.
10
GVHD: Huỳnh Việt Phương
SVTH: Nguyễn Đức Cảnh


LUẬN VĂN TỐT NGHIỆP
Tiêu hao nhiên liệu thấp.
Khí thải ra môi trường sạch hơn
Đông cơ làm việc êm dịu, giảm được tiếng ồn.
Cải thiện được tính năng của động cơ.
Thiết kế phù hợp để thay thế cho các động cơ diesel cũ đang sử dụng.
Hoạt động lâu bền, có độ tin cậy cao.
Dễ dàng và thuận tiện trong sử dụng và sửa chữa bảo dưỡng.
So với động cơ xăng, động cơ diesel đốt cháy nhiên liệu khó bay hơi hơn (nhiệt
độ sơi cao hơn) nên việc hịa trộn hỗn hợp khơng khí chỉ diễn ra trong giai đoạn phun
và bắt đầu cháy, mà cịn trong suốt q trình cháy, kết quả là hỗn hợp kém đồng
nhất, động cơ diesel luôn hoạt động ở chế độ nghèo, mức tiêu hao nhiên liệu, muội
than, CO, HC sẽ tăng nếu không đốt cháy ở chế độ nghèo hợp lý.
Tỷ lệ hịa khí được quyết định dựa vào các thông số:

Áp suất phun, thời gian phun, kết cấu lỗ phun, thời điểm phun, vận tốc dịng khí
nạp, khối lượng khơng khí nạp
Tất cả các đại lượng nêu trên đều ảnh hưởng đến mức độ tiêu hao nhiên liệu và
nồng độ khí thải, nhiệt độ quá trình cháy quá cao và lượng oxy nhiều sẽ làm tăng
lượng NOx, muội than sinh ra hỗn hợp quá nghèo.
2.1.3 Chức năng của hệ thống nhiên liệu Common Rail.
Chức năng chính: Điều khiển việc phun nhiên liệu đúng thời điểm, đúng lưu
lượng, đúng áp suất, đảm bảo cho động cơ diesel khơng chỉ hoạt động êm dịu mà cịn
tiết kiệm nhiên liệu.
Chức năng phụ: Điều khiển vịng kín và vịng hở, khơng những giảm độ độc hại
của khí thải và lượng nhiên liệu tiêu thụ mà còn làm tăng tính an tồn, sự thoải mái
và tiện nghi.

11
GVHD: Huỳnh Việt Phương
SVTH: Nguyễn Đức Cảnh


LUẬN VĂN TỐT NGHIỆP
2.2 Nguyên lý hoạt động của hệ thống nhiên liệu common rail.

Sơ đồ nguyên lý hoạt động hệ thống cung cấp nhiên liệu Common Rail
1. Thùng nhiên liệu; 2. Bơm cao áp Common rail; 3. Lọc nhiên liệu; 4. Đường cấp
nhiên liệu cao áp; 5. Đường nối cảm biến áp suất đến ECU ; 6. Cảm biến áp suất; 7.
Common Rail tích trữ và điều áp nhiên liệu (hay còn gọi ắcquy thuỷ lực) ; 8. Van an
tồn (giới hạn áp suất); 9. Vịi phun; 10. Các cảm biến nối đến ECU và Bộ điều
khiển thiết bị (EDU); 11.Đường về nhiên liệu (thấp áp) ; EDU: (Electronic Driver
Unit) và ECU : (Electronic Control Unit).
Tương tự như hệ thống nhiên liệu diesel thông thường, nhiên liệu được bơm cung
cấp đẩy đi từ thùng chứa nhiên liệu trên đường ống thấp áp qua bầu lọc (3) đến bơm

cao áp (2), từ đây nhiên liệu được bơm cao áp nén đẩy vào ống tích trữ nhiên liệu áp
suất cao (7) hay còn gọi là ắc quy thủy lực- và được đưa đến vòi phun Common Rail
(9) sẵn sàng để phun vào xylanh động cơ. Việc tạo áp suất và phun nhiên liệu hoàn
toàn tách biệt với nhau trong hệ thống Common Rail. Áp suất phun được tạo ra độc
12
GVHD: Huỳnh Việt Phương
SVTH: Nguyễn Đức Cảnh


LUẬN VĂN TỐT NGHIỆP
lập với tốc độ và lượng nhiên liệu phun ra. Nhiên liệu được trữ với áp suất cao trong
ắc quy thủy lực. Lượng phun ra được quyết định bởi điều khiển bàn đạp ga, thời
điểm phun cũng như áp suất phun được tính tốn bằng ECU dựa trên các biểu đồ dữ
liệu đã lưu trên nó. Sau đó ECU và EDU sẽ điều khiển các kim phun của các vòi
phun tại mỗi xylanh động cơ để phun nhiên liệu nhờ thông tin từ các cảm biến (10)
với áp suất phun có thể lên đến 2100 bar. Nhiên liệu thừa của vòi phun đi qua ắc quy
thủy lực trở về bơm cao áp, van điều khiển áp suất phun tại bơm mở để nó trở về
thùng nhiên liệu (1). Trên ắc quy thủy lực có gắn cảm biến áp suất và đầu cuối có bố
trí van an tồn (8), nếu áp suất tích trữ trong ắc quy thủy lực (7) lớn quá giới hạn van
an toàn sẽ mở để nhiên liệu tháo về thùng chứa.
Với phương pháp này, áp suất lên đến 2100 bar có thể thực hiện ở mọi thời điểm
ngay cả động cơ lúc thấp tốc.
2.3 Cấu tạo của hệ thống common rail
Một hệ thống Common Rail gồm có 4 thành phần căn bản:

Mạch áp suất thấp.
Bơm áp suất cao với van điều chỉnh áp suất và van đo lường.
Các cảm biến (tốc độ trục khuỷu, trục cam, bàn đạp ga, lưu lượng khơng khí và nước
làm mát, cảm biến áp suất,..).
Các cơ cấu chấp hành (vòi phun điều khiển bằng van solenoid, bộ tăng áp, bộ hồi lưu

khí xả, các đồng hồ đo áp suất,..).
13
GVHD: Huỳnh Việt Phương
SVTH: Nguyễn Đức Cảnh


LUẬN VĂN TỐT NGHIỆP

Bộ điều khiển điện tử (CU, EDU) kiểm sốt lượng phun chính xác, điều chỉnh áp
suất và giám sát các điều kiện hoạt động của động cơ.
Mạch dầu hồi:

Van điều khiển áp suất mở cho phép nhiên liệu về lại thùng chứa (mũi tên chỉ cho
thấy khi van mở nhiên liệu qua bơm cao áp về lại thùng chứa).
Các cảm biến trên ô tô:

14
GVHD: Huỳnh Việt Phương
SVTH: Nguyễn Đức Cảnh


LUẬN VĂN TỐT NGHIỆP

ECU, các cảm biến và cơ cấu chấp hành.
15
GVHD: Huỳnh Việt Phương
SVTH: Nguyễn Đức Cảnh


LUẬN VĂN TỐT NGHIỆP

Vị trí các cụm chi tiết.

1.SCV (van điều khiển hút); 2. Cảm biến nhiệt độ nhiên liệu; 3. Cảm biến nhiệt độ
ống phân phối; 4. Van xả áp suất; 5. Vòi phun; 6. ECU động cơ; 7. EDU; 8. Đầu nối
DLC3; 9. Cụm rơ le; 10. Van EGR; 11. E-VRV cho EGR; 12. EGR tắt VSV; 13.
Thân van; 14. Cảm biến vị trí trục khuỷu (cảm biến NE); 15. Cảm biến vị trí trục
cam (cảm biến TDC); 16. Cảm biến vị trí chân ga; 17. Cảm biến áp suất khơng khí
vào; 18. Cảm biến lưu lượng khí (với cảm biến nhiệt độ khơng khí vào); 19. Cảm
biến nhiệt độ chất làm lạnh.
2.3.1 Bơm áp thấp.

16
GVHD: Huỳnh Việt Phương
SVTH: Nguyễn Đức Cảnh


LUẬN VĂN TỐT NGHIỆP
2.3.1.1 Bơm con lăn.

Bơm con lăn được dẫn động bằng điện được gắn bên trong thùng nhiên liệu. khi
bật khóa điện ECU sẽ điều khiển cho bơm hoạt động đẩy nhiên liệu cung cấp cho
bơm áp cao hoạt động để xả e ban đầu trong hệ thống. Khi động cơ làm việc ECU sẽ
điều khiển cho bơm áp thấp kiểu con lăn trong thùng nhiên liệu ngừng hoạt động.
Nhiên liệu lúc này được bơm bánh răng hút trực tiếp từ thùng nhiên liệu cung cấp
cho bơm áp cao hoạt động. Nhiệm vụ của bơm thấp áp là cấp nhiên liệu với một áp
suất xấp xỉ 3 bar cho bơm bánh răng mỗi khi động cơ bắt đầu khởi động. Điều này
cho phép động cơ hoạt động ở mọi nhiệt độ của nhiên liệu.

17
GVHD: Huỳnh Việt Phương

SVTH: Nguyễn Đức Cảnh


LUẬN VĂN TỐT NGHIỆP
2.3.1.2Bơm bánh răng.

Đây là một loại bơm cơ khí được dẫn động trực tiếp từ trục cam hút nhiên liệu từ
thùng chứa qua bầu lọc nhiên liệu cung cấp cho bơm áp cao hoạt động với áp suất từ
2- 7 bar.
- Ưu điểm của bơm bánh răng cơ khí:
Kém nhạy cảm với cặn bẩn.
Làm việc với tốc độ tin cậy cao.
Tuổi thọ cao.
Làm việc không gây ra rung động.
Cơng suất của bơm 40 lít/giờ ở số vịng quay 300 vịng/phút hoặc 120 lít/giờ ở số
vịng quay 2500 vịng/phút.
2.3.2 Bơm cao áp.
Nhiệm vụ: Bơm cao áp có nhiệm vụ cung cấp nhiên liệu cho xylanh động cơ.
Nhiên liệu có áp suất cao, tạo chênh áp lớn, trước và sau lỗ phun. Cung cấp nhiên
liệu đúng thời điểm và theo quy luật thiết kế. Cung cấp nhiên liệu đồng đều vào các
xylanh động cơ. Dễ dàng và nhanh chóng thay đổi lượng nhiên liệu cung cấp cho chu
trình phù hợp với chế độ làm việc của động cơ.
Cấu tao: bơm cao áp chủ yếu gồm 1 bơm (cam không đồng trục, cam vòng, và 2
piston), SCV (van điều khiển hút), cảm biến nhiệt độ nhiên liệu, 1 bơm cấp liệu.

18
GVHD: Huỳnh Việt Phương
SVTH: Nguyễn Đức Cảnh



LUẬN VĂN TỐT NGHIỆP
Hai piston của bơm được đặt đối diện với nhau phía bên ngồi cam vịng.

1.Van hút; 2. Pittong; 3. Cam không đồng trục; 4. SCV (van điều khiển hút); 5.
Van phân phối; 6. Bơm nạp; 7. Cảm biến nhiệt độ nhiên liệu.
Chức năng của các cụm chi tiết của bơm cao áp.
Bơm cấp liệu: hút nhiên liệu từ bình nhiên liệu đưa vào piston.
Van điều khiển: điều khiển áp suất nhiên liệu trong bơm cao áp.
SCV (van điều khiển hút): điều khiển lượng nhiên liệu đưa vào piston.
Bộ phận bơm:
-

Cam khơng đồng trục: quay cam vịng.
Cam vịng: quay piston.
Piston: luân phiên hút và nén nhiên liệu.
Van hút: ngăn không để nhiên liệu đã bị nén chảy ngược về SCV.
Van phân phối: đẩy nhiên liệu mà piston bơm lên vào ống phân phối.
Cảm biến nhiệt độ nhiên liệu: kiểm tra nhiệt độ nhiên liệu.

Nguyên lý hoạt động của bơm cao áp.
Bơm cấp liệu sẽ hút nhiên liệu từ bình nhiên liệu đến hai piston thơng qua phin lọc
và SCV (van điều khiển hút). Trục điều khiển quay roto trong và ngoài của bơm nạp.

19
GVHD: Huỳnh Việt Phương
SVTH: Nguyễn Đức Cảnh


LUẬN VĂN TỐT NGHIỆP
Khi roto quay làm thay đổi thể tích buồng bơm, sẽ hút nhiên liệu vào bộ phận hút và

bơm nhiên liệu ra khỏi bộ phận xả.

1. Roto ngoài;
2. Roto trong;
3. Buồng hút;
4. Buồng xả.

Van điều khiển:
Van điều khiển giữ cho áp suất nạp nhiên liệu (áp suất xả) thấp hơn một mức
nhất định. Nếu tốc độ bơm tăng và áp suất bơm tăng cao hơn mức van điều khiển
cho phép, van sẽ sử dụng lực lò xo để mở và đưa nhiên liệu về phía hút.

1.Chổi;
2. Piston;
3. Lò xo;
4. Nút chặn;
5. Bơm nạp;
6. SCV;
7. Vỏ bơm
SCV (van điều
khiển hút).

Nguyên lý hoạt động:

20
GVHD: Huỳnh Việt Phương
SVTH: Nguyễn Đức Cảnh


LUẬN VĂN TỐT NGHIỆP

Nếu dòng đến SCV trong một thời gian dài, vì cường độ trung bình của dịng điện
chạy đến cuộn dây tăng, van kim sẽ mở ra ngoài, SCV mở rộng hơn. Do đó, lượng
nhiên liệu hút tăng. Nếu dòng đến SCV trong một thời gian ngắn, cường độ trung
bình của dịng điện chạy đến cuộn dây giảm, lực lò xo sẽ hút van kim vào, SCV mở
hẹp đi. Do đó, lượng nhiên liệu hút giảm.
Mối tương quan giữa độ mở của SCV và lượng nhiên liệu hút vào có thể ngược
với mơ tả trên, điều này tùy thuộc vào loại xe.

1.Bơm cấp liệu;
2.Van điều khiển;
3.SCV;
A. Khi SCV mở ít ;
B. Khi SCV mở nhiều.

Cấu tạo bộ phận bơm:
Cam khơng đồng trục được
gắn vào trục quay và vịng
cam, cụm piston và van hút
được gắn tì lên cam vịng. Khi
trục quay, bánh cam sẽ quay
khơng đồng trục, vịng cam sẽ
di chuyển lên và xuống làm
cho piston di chuyển lên và
xuống.
1.Cam khơng đồng trục;
2.Cam vịng;
3.Piston;
4.Trục quay.

21

GVHD: Huỳnh Việt Phương
SVTH: Nguyễn Đức Cảnh


LUẬN VĂN TỐT NGHIỆP
Van phân phối:
Van phân phối được hợp thành một cụm. Do đó, nó bao gồm một van bi, lò xo, giá
đỡ. Khi áp suất ở piston vượt quá áp suất trong ống phân phối, van bi sẽ mở để xả
nhiên liệu ra.

1.Thân van
2.Van bi
3.Lò xo
4.Giá đỡ
5.Piston

Cảm biến nhiệt độ nhiên liệu:
Cảm biến nhiệt độ nhiên liệu có những đặc điểm của một nhiệt kế, điện trở thay đổi
theo nhiệt độ để kiểm tra nhiệt độ của nhiên liệu. Cảm biến nhiên liệu được đặt trên
bơm cao áp.

22
GVHD: Huỳnh Việt Phương
SVTH: Nguyễn Đức Cảnh


LUẬN VĂN TỐT NGHIỆP
Nguyên lý vận hành bơm cao áp:
Khi cam khơng đồng trục quay,cam vịng cũng quay khơng đồng trục. Cam vòng
quay đồng thời đẩy 1 piston lên và 1 piston xuống. Khi piston đi lên (hoặc xuống),

bơm cao áo sẽ hút nhiên liệu ra, và bơm nhiên liệu đến ống phân phối.

1.SCV (van điều
khiển hút);
2.Van điều khiển;
3.Cam không đồng
trục;
4.Cam vòng.

Do vậy chức năng của bơm cao áp chỉ thực hiện tạo nên áp suất nhiên liệu cao, cho
phép tối ưu kết cấu theo hướng tạo nên áp suất cao, thực hiện phun tơi nhiên liệu.

23
GVHD: Huỳnh Việt Phương
SVTH: Nguyễn Đức Cảnh


LUẬN VĂN TỐT NGHIỆP
1. Đường dầu cao áp; 2. Đường dầu hồi; 3. Bơm bánh răng; 4. Đường dầu cung cấp;
5. Van an toàn; 6. Van điện từ; 7. Cam lệch tâm; 8. Piston bơm; 9. Van một chiều.
Nhiên liệu từ bơm thấp áp được chuyển tới van điều khiển nạp. ECU sẽ điều
khiển van đóng mở để cung cấp nhiên liệu cho bơm áp cao làm việc. ECU nhận tín
hiệu từ cảm biến áp suất nhiên liệu trên ống Rail để điều chỉnh lượng nhiên liệu cung
cấp cho bơm áp cao. Khi áp suất nhiên liệu trên ống Rail cao ECU sẽ gửi tín hiệu
cho van điều khiển nạp để mở rộng cửa nạp tăng lượng nhiên liệu cung cấp cho bơm
áp cao. Quá trình hoạt động của bơm cứ diễn ra liên tục như vậy trong suốt quá trình
hoạt động của động cơ. Với loại bơm 3 piston đều hoạt động, nhiên liệu có áp suất
cao được bơm tạo ra chuyển tới ống Rail của hệ thống. Loại bơm này có thể tạo ra áp
suất cực đại là 1350 bar.
2.3.3 Vòi phun.


Nhiệm vụ: Vòi phun được lắp trên xylanh dùng để phun tơi nhiên liệu vào buồng
cháy của động cơ. Các vòi phun được sử dụng phổ biến trên động cơ Diesel hiện nay
24
GVHD: Huỳnh Việt Phương
SVTH: Nguyễn Đức Cảnh


×