Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (425)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (151.67 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
1
ab
.
C. √
.
D. √
.
.
B. √
A. 2
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
x+2
Câu 2. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng


x + 5m
(−∞; −10)?
A. 1.
B. 3.
C. 2.
D. Vô số.
Câu 3. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −5.
B. −6.
C. 6.
2

D. 5.

Câu 4. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.
C. Khối lập phương.
D. Khối bát diện đều.


d = 90 , ABC
d = 30 ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 5. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



a3 3
a3 2

a3 3
2
.
B.
.
C. 2a 2.
.
A.
D.
24
12
24
Câu 6. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; +∞).
B. Hàm số đồng biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (0; 2).
D. Hàm số nghịch biến trên khoảng (−∞; 2).
Câu 7. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 20 mặt đều.

C. Khối bát diện đều.

D. Khối 12 mặt đều.

Câu 8. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m > 3.
C. m < 3.

D. m ≤ 3.
Câu 9. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

A. β = a β .
B. aαβ = (aα )β .
C. aα+β = aα .aβ .
D. aα bα = (ab)α .
a
ln2 x
m
Câu 10. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 24.
C. S = 135.
D. S = 22.
Câu 11. Phát biểu nào sau đây là sai?
1
A. lim qn = 0 (|q| > 1).
B. lim = 0.
n
1
C. lim k = 0.
D. lim un = c (un = c là hằng số).
n
x−2

Câu 12. Tính lim
x→+∞ x + 3
2
A. 2.
B. − .
C. 1.
D. −3.
3
Câu 13. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n2 lần.
B. n3 lần.
C. n3 lần.
D. 2n3 lần.
Trang 1/10 Mã đề 1


2

Câu 14. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
2
1
B. 2 .
C. 3 .
A. 3 .
2e
e
e


D.

1
√ .
2 e

Câu 15. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; 3).
B. A0 (−3; 3; 1).
C. A0 (−3; −3; −3).
D. A0 (−3; 3; 3).
Câu 16. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 160 cm2 .
C. 1200 cm2 .
D. 160 cm2 .
1 + 2 + ··· + n
Câu 17. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
A. lim un = 1.
B. lim un = 0.
1
C. Dãy số un khơng có giới hạn khi n → +∞.
D. lim un = .
2
3
2

Câu 18. Tìm giá trị của tham số m để hàm số y = −x + 3mx + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. (−∞; −3].
B. [1; +∞).
C. [−3; 1].
D. [−1; 3].
Câu 19. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (1; +∞).
B. (−∞; −1).
C. (−1; 1).

D. (−∞; 1).

Câu 20. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 3
a3 5
a3 5
.
B.
.
C.
.
D.
.
A.
6
12

12
4
Câu 21. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 7 năm.
B. 8 năm.
C. 10 năm.
D. 9 năm.
Câu 22. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m = 0.
B. m < 0.
C. m , 0.

D. m > 0.

Câu 23. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. 3n3 lần.
B. n2 lần.
C. n3 lần.
D. n lần.
Câu 24. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = (−2; 1).
B. D = R.
C. D = R \ {1; 2}.

D. D = [2; 1].

Câu 25. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).

B. (4; 6, 5].
C. [6, 5; +∞).

D. (4; +∞).

2

Câu 26. [1] Đạo hàm của hàm số y = 2 x là
1
1
.
B. y0 =
.
C. y0 = 2 x . ln 2.
A. y0 = x
2 . ln x
ln 2
Câu 27. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
A. − .
B. − .
C. −e.
2e
e
Câu 28. Khối chóp ngũ giác có số cạnh là
A. 10 cạnh.
B. 9 cạnh.
C. 11 cạnh.


D. y0 = 2 x . ln x.

D. −

1
.
e2

D. 12 cạnh.

Câu 29. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a + b + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. 9.
B. .
C. 6.
D. .
2
2
2

2

Trang 2/10 Mã đề 1


Câu 30.

[12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23

√ i
h
3

có ít nhất một nghiệm thuộc đoạn 1; 3
A. m ∈ [0; 2].
B. m ∈ [0; 1].

C. m ∈ [−1; 0].

q
x+ log23 x + 1+4m−1 = 0

D. m ∈ [0; 4].

Câu 31. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm tứ diện đều.
B. Một tứ diện đều và bốn hình chóp tam giác đều.
C. Bốn tứ diện đều và một hình chóp tam giác đều.
D. Năm hình chóp tam giác đều, khơng có tứ diện đều.
Câu 32. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
√ tích khối chóp S .ABC
√ với đáy và S C = a 3. 3Thể
√là

3
3

2a 6
a 3
a3 3
a 6
.
B.
.
C.
.
D.
.
A.
12
9
2
4
Câu 33. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD

√ là
3
3
3
3
8a 3
4a 3
a 3
8a 3
A.

.
B.
.
C.
.
D.
.
9
9
9
3
Câu 34. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có hai.
B. Khơng có.
C. Có một.
D. Có vơ số.
Câu 35. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tứ giác và một hình chóp ngũ giác.
B. Hai hình chóp tứ giác.
C. Hai hình chóp tam giác.
D. Một hình chóp tam giác và một hình chóp tứ giác.
Câu 36. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; +∞).
B. (−∞; 0) và (2; +∞). C. (0; 2).

D. (−∞; 2).

Câu 37. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng

rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 10 năm.
C. 12 năm.
D. 14 năm.
Câu 38. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
23
5
13
9
.
B. −
.
C. − .
D.
.
A.
25
100
16
100
!
1
1
1
Câu 39. [3-1131d] Tính lim +
+ ··· +

1 1+2
1 + 2 + ··· + n
5
3
A. .
B. +∞.
C. .
D. 2.
2
2


Câu 40. Phần thực√và phần ảo của số phức
z
=
2

1

3i lần lượt √l


A. Phần thực là 2 −√1, phần ảo là − √3.
B. Phần thực là √2, phần ảo là 1 − √3.
C. Phần thực là 1 − 2, phần ảo là − 3.
D. Phần thực là 2 − 1, phần ảo là 3.
Câu 41. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
Trang 3/10 Mã đề 1



(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (II) và (III).

B. (I) và (II).

Câu 42. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 4.

C. (I) và (III).

D. Cả ba mệnh đề.

C. 8.

D. 6.

Câu 43. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 3 mặt.

D. 4 mặt.

Câu 44. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?

A. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
B. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
D. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Câu 45. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 10 cạnh, 6 mặt.
Câu 46. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −3.
C. m = −1.

D. m = −2.


Câu 47. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là 1.
B. Phần thực là −1, phần ảo là 4.
C. Phần thực là 4, phần ảo là −1.
D. Phần thực là −1, phần ảo là −4.
Câu 48. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5}.
B. {2}.
C. {5; 2}.
D. {3}.
Câu 49. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P.
B. d nằm trên P hoặc d ⊥ P.
C. d song song với (P).
D. d ⊥ P.
Câu 50. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 2.
C. Vô nghiệm.
D. 1.

3
4
Câu 51. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
7
2
5
5
B. a 3 .

C. a 3 .
D. a 8 .
A. a 3 .
Câu 52. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A. a3 .
B.
.
C.
.
D.
.
6
24
12
x+1
Câu 53. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. 1.
B. .
C. .
D. .

2
3
6
Trang 4/10 Mã đề 1


Câu 54. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp là


A. 6, 12, 24.
B. 2, 4, 8.
C. 8, 16, 32.
D. 2 3, 4 3, 38.
Câu 55. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng là hình lăng trụ đều.
B. Hình lăng trụ tứ giác đều là hình lập phương.
C. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
!
1
1
1
+
+ ··· +
Câu 56. Tính lim
1.2 2.3
n(n + 1)
3
A. 0.

B. 2.
C. .
2
2−n
Câu 57. Giá trị của giới hạn lim
bằng
n+1
A. 1.
B. 2.
C. 0.

D. 1.

D. −1.

Câu 58. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 27 lần.
B. Tăng gấp 9 lần.
C. Tăng gấp 3 lần.
D. Tăng gấp 18 lần.
Câu 59. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. 3.
C. Vô nghiệm.
D. 2.
Câu 60. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể
√ tích khối chóp S .ABCD là
3

10a
3
A. 40a3 .
B.
.
C. 10a3 .
D. 20a3 .
3
Câu 61. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 24.
B. 3, 55.
C. 20.
D. 15, 36.
2

Câu 62. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 7.
B. 8.
C. 5.

D. 6.

Câu 63. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.
C. 3 mặt.

D. 5 mặt.


Câu 64. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
B. Cả ba câu trên đều sai.
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. F(x) = G(x) trên khoảng (a; b).
Câu 65. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên đúng. B. Chỉ có (II) đúng.

C. Chỉ có (I) đúng.

D. Cả hai câu trên sai.
Trang 5/10 Mã đề 1


Câu 66. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 10.
B. 12.
C. 27.


D. 3.

Câu 67. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (II) sai.

B. Khơng có câu nào C. Câu (I) sai.
sai.

Câu 68.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2
a 2
.
B.
.
A.
2
12


a3 2
C.
.

4

D. Câu (III) sai.

a3 2
D.
.
6

Câu 69. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới
" đây?
!
5
5
;3 .
C. 2; .
D. [3; 4).
A. (1; 2).
B.
2
2


ab.

Câu 70. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 12.
B. ln 14.
C. ln 10.

D. ln 4.
Câu 71. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m ≥ .
C. m ≤ .
D. m > .
4
4
4
4
Câu 72. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = 0.
B. x = −5.
C. x = −8.
D. x = −2.
1
Câu 73. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e + 1.
B. xy = e + 1.
C. xy0 = −ey − 1.

D. xy0 = ey − 1.
Câu 74. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là√

a3
4a3 3
2a3 3
a3
A.
.
B.
.
C.
.
D.
.
6
3
3
3
Câu 75. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất

√ của hàm số. Khi đó tổng
√M + m
A. 7 3.
B. 8 3.
C. 16.
D. 8 2.
Câu 76. [1] Tập

! xác định của hàm số y != log3 (2x + 1) là
!
1
1
1
A. − ; +∞ .
B. −∞; − .
C. −∞; .
2
2
2

!
1
D.
; +∞ .
2

Câu 77. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −15.
B. −9.
C. −12.
D. −5.
Câu 78. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
A. −7.

B. −4.

C. −2.


D.

67
.
27
Trang 6/10 Mã đề 1


Câu 79. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
C. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.

Câu 80. √
Thể tích của khối lập phương có cạnh bằng a 2

2a3 2
A.
.
B. 2a3 2.
C. V = 2a3 .
3
Câu 81.
Z Trong các khẳng định sau, khẳng định nào sai? Z
0dx = C, C là hằng số.

A.
Z

C.

B.
Z

1
dx = ln |x| + C, C là hằng số.
x

Câu 82. [1-c] Giá trị của biểu thức
A. −2.

log7 16
log7 15 − log7

B. 4.

D.

15
30

xα dx =


D. V = a3 2.

xα+1
+ C, C là hằng số.
α+1


dx = x + C, C là hằng số.

bằng
C. −4.

D. 2.
tan x + m
Câu 83. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (−∞; −1) ∪ (1; +∞). B. (1; +∞).
C. [0; +∞).
D. (−∞; 0] ∪ (1; +∞).
Câu 84.
bằng 1 là:
√ Thể tích của khối lăng√trụ tam giác đều có cạnh √
3
3
3
3
.
B.
.
C.
.
D. .

A.
2
12
4
4
x
x
Câu 85. [3-1225d] Tìm tham số thực m để phương trình log2 (5 − 1) log4 (2.5 − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m < 3.
C. m > 3.
D. m ≤ 3.
Câu 86. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
A.
.
B. .
C. 5.
D. 7.
2
2
Câu 87. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. 1.
C. 2.
D. Vô nghiệm.
Câu 88. Khối đa diện đều loại {4; 3} có số mặt
A. 10.

B. 12.

C. 8.

D. 6.

Câu 89. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.
B. 22.
C. 23.
D. 24.
Câu 90. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.
120.(1, 12)3
(1, 01)3
A. m =
triệu.
B.
m
=
triệu.
(1, 12)3 − 1
(1, 01)3 − 1
100.1, 03
100.(1, 01)3

C. m =
triệu.
D. m =
triệu.
3
3
Trang 7/10 Mã đề 1



Câu 91. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã



√ cho là
3
πa3 3
πa3 3
πa3 6
πa 3
.
B. V =
.
C. V =
.
D. V =
.
A. V =
3

2
6
6
x2
Câu 92. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
D. M = , m = 0.
A. M = e, m = 0.
B. M = e, m = 1.
C. M = e, m = .
e
e
2

Câu 93. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 3 − log2 3.
B. 1 − log2 3.
C. 1 − log3 2.

D. 2 − log2 3.

Câu 94. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 10 năm.
C. 13 năm.

D. 12 năm.
1
Câu 95. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 2 < m ≤ 3.
C. 0 < m ≤ 1.
D. 2 ≤ m ≤ 3.
2n − 3
bằng
Câu 96. Tính lim 2
2n + 3n + 1
A. +∞.
B. 0.
C. 1.
D. −∞.



x = 1 + 3t




Câu 97. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua





z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là











x
=
−1
+
2t
x
=
1
+
3t
x
=
−1
+
2t

x = 1 + 7t
















A. 
C. 
.
y = −10 + 11t . B. 
y = 1 + 4t .
y = −10 + 11t . D. 
y=1+t

















z = 6 − 5t
z = 1 − 5t
z = −6 − 5t
z = 1 + 5t
Câu 98. [1] Giá trị của biểu thức 9log3 12 bằng
A. 2.
B. 24.

C. 144.

D. 4.

Câu 99. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 0.
B. 3.
C. 2.

D. 1.

Câu 100. Mệnh đề nào sau đây sai?

A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Z
B. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z
C.
f (x)dx = f (x).

f (x)dx = F(x) + C.

D. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
Câu 101. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng 2n.
B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số mặt của khối chóp bằng 2n+1.
D. Số mặt của khối chóp bằng số cạnh của khối chóp.
Trang 8/10 Mã đề 1


Câu 102. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.




5 13
B. 26.
C. 2.
D.
.

A. 2 13.
13
3
2
Câu 103. Giá
√ trị cực đại của hàm số√y = x − 3x − 3x + 2 √

A. −3 + 4 2.
B. 3 + 4 2.
C. 3 − 4 2.
D. −3 − 4 2.

Câu 104. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. Vô số.
C. 64.
D. 62.
Câu 105. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
1
2
9
1
.
B. .
C. .
D.
.
A.

10
5
5
10
Câu 106. Tứ diện đều thuộc loại
A. {3; 3}.
B. {3; 4}.
C. {4; 3}.
D. {5; 3}.
Câu 107. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình chóp.
B. Hình lăng trụ.
C. Hình tam giác.

D. Hình lập phương.

Câu 108. Khối đa diện đều loại {5; 3} có số đỉnh
A. 12.
B. 20.

D. 30.

C. 8.

Câu 109. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; −8).
B. A(−4; −8)(.
C. A(−4; 8).
D. A(4; 8).
Câu 110. Giá trị của lim (3x2 − 2x + 1)

x→1

A. 3.

B. +∞.

C. 1.

D. 2.

Câu 111. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (2; +∞).
C. (0; 2).

D. R.

Câu 112. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.
B. 12.

C. 20.

D. 10.

Câu 113. Khối đa diện đều loại {5; 3} có số cạnh
A. 20.
B. 12.

C. 8.


D. 30.

Câu 114. Dãy
!n số nào có giới hạn bằng 0?
6
A. un =
.
B. un = n2 − 4n.
5

n3 − 3n
C. un =
.
n+1

!n
−2
D. un =
.
3

C. −∞.

D. 0.

Câu 115. Tính lim
A. +∞.

cos n + sin n

n2 + 1
B. 1.

6
Câu 116. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2 f (x3 ) − √
. Tính
3x
+
1
Z 1
f (x)dx.
0

A. 6.

B. 4.

Câu 117. Khối đa diện đều loại {3; 4} có số cạnh
A. 6.
B. 8.

C. −1.

D. 2.

C. 10.

D. 12.

Câu 118. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là

A. 0.
B. −6.
C. −3.
D. 3.
Trang 9/10 Mã đề 1


Câu 119. Dãy số nào sau đây có giới hạn khác 0?
1
1
A. √ .
B. .
n
n

C.

sin n
.
n

D.

n+1
.
n

x+3
Câu 120. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng

x−m
(0; +∞)?
A. 3.
B. Vô số.
C. 2.
D. 1.
Câu 121. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể tích khối chóp S .ABC là √


a3 3
a3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
4
4
12
8
Câu 122. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối bát diện đều. C. Khối tứ diện đều.

D. Khối 12 mặt đều.
Câu 123. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. f (x) có giới hạn hữu hạn khi x → a.
B. lim f (x) = f (a).
x→a
C. lim+ f (x) = lim− f (x) = +∞.
D. lim+ f (x) = lim− f (x) = a.
x→a

x→a

x→a

x→a

Câu 124. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 3 mặt.
C. 9 mặt.
D. 4 mặt.
Câu 125. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −2e2 .
B. −e2 .
C. 2e4 .
D. 2e2 .
Câu 126. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
C. 27.

D. 18.
A. 12.
B.
2
Câu 127. Khối đa diện đều loại {5; 3} có số mặt
A. 30.
B. 8.
C. 12.
D. 20.
Câu 128. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 4.

B. 1.

C. 3.

Câu 129. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.
C. f (x) có giá trị lớn nhất trên K.

D. 2.

B. f (x) liên tục trên K.
D. f (x) có giá trị nhỏ nhất trên K.

x

Câu 130.
√ Tính diện tích hình phẳng giới hạn bởi các đường y = xe , y = 0, x = 1.
3
1
3
A.
.
B. .
C. .
D. 1.
2
2
2

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

2.

C


3. A

4.

C

5. A

6.
D

7.

8. A

9. A

10. A

11. A
C

14.

B
B

15.

D


16.

17.

D

18.

19.

C

20.
D

21.

24.

B

C
B
C

28. A

29.


D

30.

B

C

32. A

33. A

34. A

35.

C

37. A
39.

D

36.

B

38.

B


40. A

41.

B

42.

44.

B

45. A

46.

D

49.

C
B

51.

B

52.


C

47.

48. A
D

C

53.

54. A

D

55.

56.

D

58. A
60.

D

D

59.


D

61.

D

63. A

64. A

65. A

66.

D
B
1

C

57.

62. A

68.

B

26.


27. A

50.

C

22.

C

23.

31.

C

12.

13.

25.

B

67.

B

69.


B


70.

71.

B

C
D

72.

C

73.

74.

C

75.

C

77.

C


76. A
78.
80.

79. A

C
B

81.

B
B

82.

C

83.

84.

C

85. A

86.

B


88.
90.

D
B

B

89.

B

91. A

94.

D

95.

B

98.

B

97. A
C

99. A


100.

D

101. A

102.

D

103. A

104.

D

105.

106. A
108.

D

93.

92. A
96.

87.


D

107.

C

109.

B

110.

D

D

111.

C

113.

D

115.

D

117.


D

119.

D

120. A

121.

D

122. A

123.

B

125.

B

112.

B

114.
116.


D
B

118.

124.

C

B

126.
128.
130.

D

127.
129.

C
D

2

C
B




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×