Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (425)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.67 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 4].
C. m ∈ [0; 2].

log23

q
x+ log23 x + 1+4m−1 = 0
D. m ∈ [0; 1].

Câu 2. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 18 lần.
B. Tăng gấp 27 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 3 lần.
! x3 −3mx2 +m
1


nghịch biến trên khoảng
Câu 3. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
π
(−∞; +∞)
A. m , 0.
B. m ∈ (0; +∞).
C. m ∈ R.
D. m = 0.
Câu 4. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.
100.(1, 01)3
120.(1, 12)3
triệu.
B.
m
=
triệu.
A. m =
(1, 12)3 − 1
3
(1, 01)3
100.1, 03
triệu.
D. m =
triệu.
C. m =
3

(1, 01)3 − 1
d = 30◦ , biết S BC là tam giác đều
Câu 5. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
9
16
13
26
Câu 6. [1] Giá trị của biểu thức 9log3 12 bằng
A. 144.
B. 24.
C. 4.
D. 2.
Câu 7. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (1; −3).

B. (0; −2).
C. (−1; −7).

D. (2; 2).

Câu 8. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (II) đúng.

B. Cả hai câu trên sai.

C. Cả hai câu trên đúng. D. Chỉ có (I) đúng.

Câu 9. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 5%.
B. 0, 8%.
C. 0, 7%.
D. 0, 6%.
Câu 10. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?

A. A(4; −8).
B. A(4; 8).
C. A(−4; 8).
D. A(−4; −8)(.
Trang 1/10 Mã đề 1


Câu 11. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 5.
B. 3.
C. 2.
Câu 12. Khối đa diện đều loại {5; 3} có số cạnh
A. 12.
B. 30.

Câu 13. [1] Biết log6 a = 2 thì log6 a bằng
A. 6.
B. 4.

D. 1.

C. 8.

D. 20.

C. 36.

D. 108.

Câu 14. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực

x≥1
A. m ≤ 3.
B. m ≥ 3.
C. m < 3.
D. m > 3.
Câu 15. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 10 mặt.

D. 8 mặt.

Câu 16. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là

3
3

a 6
a 5
a3 15
A.
.
B.
.
C.
.
D. a3 6.
3

3
3
Câu 17. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −8.
B. x = 0.
C. x = −5.
D. x = −2.
2

Câu 18. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
2
1
B. 2 .
C. 3 .
A. √ .
e
e
2 e
Câu 19. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba mặt.
B. Hai mặt.
C. Bốn mặt.

D.

1
.
2e3


D. Năm mặt.

Câu 20. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n2 lần.
B. 3n3 lần.
C. n3 lần.
D. n lần.
Câu 21. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



3
2a 3
4a3 3
5a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3

2
log(mx)
Câu 22. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m ≤ 0.
B. m < 0 ∨ m > 4.
C. m < 0.
D. m < 0 ∨ m = 4.
Câu 23. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = −21.
C. P = −10.
D. P = 21.
Câu 24. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối lập phương.

C. Khối bát diện đều.

Câu 25. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).
B. (4; +∞).
C. (4; 6, 5].

D. Khối tứ diện đều.
D. [6, 5; +∞).

Câu 26. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?

A. Có hai.
B. Có một hoặc hai.
C. Có một.
D. Khơng có.
Z 2
ln(x + 1)
Câu 27. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 1.
B. 0.
C. −3.
D. 3.
Trang 2/10 Mã đề 1


Câu 28. Biểu thức nào sau đây √
khơng có nghĩa
−3
−1
A. (−1) .
B.
−1.

C. 0−1 .


D. (− 2)0 .


Câu 29. Tứ diện đều thuộc loại
A. {3; 4}.
B. {4; 3}.

C. {5; 3}.

D. {3; 3}.

Câu 30. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt√bên (S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
3
3
3
3
8a 3
8a 3
4a 3
a 3
.
B.
.
C.
.
D.
.
A.
9
9
3

9
log 2x
Câu 31. [1229d] Đạo hàm của hàm số y =

x2
1 − 2 ln 2x
1 − 2 log 2x
1
1 − 4 ln 2x
0
0
0
.
B.
y
=
.
C.
y
=
.
D.
y
=
.
A. y0 =
2x3 ln 10
x3 ln 10
x3
2x3 ln 10

n−1
Câu 32. Tính lim 2
n +2
A. 0.
B. 3.
C. 2.
D. 1.
Câu 33. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
0 0
(AB0C) và
√ (A C D) bằng



a 3
2a 3
a 3
C.
A.
.
B. a 3.
.
D.
.
2
3
2




x = 1 + 3t




Câu 34. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là











x
=
−1
+

2t
x
=
1
+
3t
x
=
1
+
7t
x = −1 + 2t
















A. 
C. 

.
D. 
y = −10 + 11t . B. 
y = 1 + 4t .
y=1+t
y = −10 + 11t .
















z = 6 − 5t
z = 1 − 5t
z = 1 + 5t
z = −6 − 5t
d = 300 .
Câu 35. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V của khối lăng trụ đã cho. √



3a3 3
a3 3
3
3
C. V =
.
D. V =
.
A. V = 6a .
B. V = 3a 3.
2
2
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
Câu 36. [12210d] Xét các số thực dương x, y thỏa mãn log3
x + 2y
Pmin của P = x +
√ y.



18 11 − 29
9 11 − 19
9 11 + 19
2 11 − 3
A. Pmin =
. B. Pmin =
. C. Pmin =
. D. Pmin =

.
21
9
9
3
Câu 37. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
A. .
B. .
C. 1.
D. 3.
2
2
3
2
Câu 38. Giá√trị cực đại của hàm số y =
√ x − 3x − 3x + 2


A. −3 − 4 2.
B. −3 + 4 2.
C. 3 − 4 2.
D. 3 + 4 2.

Câu 39. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới đây?
"

!
5
5
A. 2; .
B. (1; 2).
C. [3; 4).
D.
;3 .
2
2
Trang 3/10 Mã đề 1


Câu 40. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tam giác.
B. Hai hình chóp tứ giác.
C. Một hình chóp tam giác và một hình chóp tứ giác.
D. Một hình chóp tứ giác và một hình chóp ngũ giác.
Câu 41. [2-c] Cho hàm số f (x) =
A. 1.

B.

1
.
2

9x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)

9x + 3
C. −1.

D. 2.

Câu 42. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 7 năm.
B. 10 năm.
C. 9 năm.
D. 8 năm.
Câu 43. Mệnh đề nào sau đây sai?
Z
A. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

B. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
!0
Z
D.
f (x)dx = f (x).
Câu 44. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; +∞).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số đồng biến trên khoảng (0; 2).
d = 90◦ , ABC

d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 45. Cho hình chóp S .ABC có BAC
Thể tích khối chóp S .ABC là




a3 3
a3 3
a3 2
2
B.
.
C.
.
D.
.
A. 2a 2.
24
12
24
Câu 46. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
√ góc với đáy, S C = a3 √3. Thể tích khối chóp S .ABCD là
3
a 3
a 3
a3
A.

.
B.
.
C. a3 .
D.
.
3
9
3
Câu 47. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


a3
a3 3
a3 3
A.
.
B.
.
C.
.
D. a3 .
3
6
2
a
1
Câu 48. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là

4 b ln 3
A. 2.
B. 7.
C. 1.
D. 4.
1
Câu 49. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e − 1.
B. xy = −e + 1.
C. xy0 = ey − 1.
D. xy0 = ey + 1.
Câu 50. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 135.
B. S = 22.

ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e

C. S = 32.


D. S = 24.
Trang 4/10 Mã đề 1


Câu 51. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 1.
B. Vô số.
C. 3.
D. 2.
Câu 52. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 6 mặt.
C. 9 mặt.

D. 4 mặt.

Câu 53. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
C.
.
D. .
A. a.
B. .
2
2

3
log7 16
Câu 54. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. 2.
B. 4.
C. −2.
D. −4.
Câu 55. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên khoảng (−2; 1).
C. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
Câu 56.

[3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23
√ i
h
3

0 có ít nhất một nghiệm thuộc đoạn 1; 3
A. m ∈ [−1; 0].
B. m ∈ [0; 1].
Câu 57. [1] Tính lim
x→3

A. 0.


x−3
bằng?
x+3
B. +∞.

q
x+ log23 x + 1+4m−1 =

C. m ∈ [0; 2].

D. m ∈ [0; 4].

C. −∞.

D. 1.

Câu 58. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 24 m.
B. 16 m.
C. 8 m.
D. 12 m.
2x + 1
Câu 59. Tính giới hạn lim
x→+∞ x + 1
1
A. 1.
B. −1.
C. .
D. 2.

2
Câu 60. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
23
5
13
9
.
B. − .
C.
.
D.
.
A. −
100
16
100
25
Câu 61. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −2.
B. 2.
C. 4.
Câu 62. Hàm số nào sau đây khơng có cực trị
1
B. y = x3 − 3x.
A. y = x + .
x

C. y =


D. −4.
x−2
.
2x + 1

D. y = x4 − 2x + 1.

Câu 63. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 1.
B. 0.
C. 22016 .
D. e2016 .
Câu 64. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
A. − .
B. −e.
C. − .
2e
e

D. −

1
.
e2
Trang 5/10 Mã đề 1



Câu 65. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Hai mặt.
B. Bốn mặt.
C. Ba mặt.

D. Một mặt.

Câu 66. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
A. 12.
B. 27.
C. 18.
D.
2
Câu 67. Khối đa diện đều loại {4; 3} có số cạnh
A. 12.
B. 20.
C. 10.
D. 30.

2
Câu 68. √Xác định phần ảo của số
√ phức z = ( 2 + 3i)
A. −6 2.
B. 6 2.
C. −7.
D. 7.
Câu 69. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu

A. f (x) có giới hạn hữu hạn khi x → a.
B. lim+ f (x) = lim− f (x) = a.
C. lim+ f (x) = lim− f (x) = +∞.
x→a

x→a

x→a

x→a

D. lim f (x) = f (a).
x→a

Câu 70. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 4}.
B. {5; 3}.
C. {3; 3}.

D. {4; 3}.

Câu 71. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 0.
B. 3.
C. −6.
D. −3.
Câu 72. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
.
B. f 0 (0) = 1.

C. f 0 (0) = ln 10.
D. f 0 (0) = 10.
A. f 0 (0) =
ln 10
ln x p 2
1
Câu 73. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
8
1
1
A. .
B. .
C. .
D. .
3
9
3
9
Câu 74. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tam giác.
B. Một khối chóp tam giác, một khối chóp ngữ giác.
C. Một khối chóp tam giác, một khối chóp tứ giác.
D. Hai khối chóp tứ giác.
Câu 75. Khối đa diện đều loại {3; 3} có số mặt
A. 3.
B. 5.


C. 2.

D. 4.

Câu 76. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
B. Z
F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
u0 (x)
C.
dx = log |u(x)| + C.
u(x)
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
Câu 77. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m = 0.
B. m < 0.
C. m , 0.

D. m > 0.

Câu 78. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5; 2}.
B. {5}.
C. {2}.
D. {3}.
Câu 79. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.
B. 6.


C. 12.

D. 8.
Trang 6/10 Mã đề 1


Câu 80. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 5}.
C. {3; 4}.

D. {4; 3}.

Câu 81. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
1
ab
.
B. √
A. 2
.
C. √
.
D. √
.
2
2

2
2
2
a +b
2 a +b
a +b
a2 + b2
Câu 82. Tính lim
x→5

x2 − 12x + 35
25 − 5x

A. +∞.

2
B. − .
5

C.

2
.
5

D. −∞.

Câu 83. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √

tích khối chóp S .ABC là √

3
3
a 3
a3 6
a3 6
a 6
.
B.
.
C.
.
D.
.
A.
8
24
24
48
1
Câu 84. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 2.
B. 1.
C. 4.
D. 3.
Câu 85. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1

1
1
1
A. m < .
B. m ≤ .
C. m ≥ .
D. m > .
4
4
4
4
Câu 86. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 4 lần.
B. Tăng gấp đôi.
C. Tăng gấp 6 lần.
D. Tăng gấp 8 lần.
Câu 87. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.

C. Khối 20 mặt đều.

D. Khối bát diện đều.

[ = 60◦ , S A ⊥ (ABCD).
Câu 88. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối
√chóp S .ABCD là

3
3
3

a 2
a 2
a 3
A.
.
B.
.
C.
.
D. a3 3.
4
12
6
Câu 89. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 0.

B. 9.

C. 5.

D. 7.

Câu 90. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng

(S AB)
2a
8a
5a
a
.
B.
.
C.
.
D. .
A.
9
9
9
9
Câu 91. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba cạnh.
B. Bốn cạnh.
C. Hai cạnh.
Câu 92. Hàm số y =
A. x = 0.

x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 2.

C. x = 3.


Câu 93. Thể tích của khối lập phương

cạnh
bằng
a
2

3

2a 2
A. 2a3 2.
B.
.
C. V = 2a3 .
3

D. Năm cạnh.

D. x = 1.

D. V = a3 2.
Trang 7/10 Mã đề 1


 π
Câu 94. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


2 π4

3 π6
e .
B. 1.
C.
e .
A.
2
2

D.

1 π3
e .
2

Câu 95. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. 6.
B. .
C. .
D. 9.
2
2
Câu 96. Cho z là nghiệm của phương trình x2 + x + 1 = 0. Tính P =√z4 + 2z3 − z

−1 − i 3
−1 + i 3
.

D. P =
.
A. P = 2.
B. P = 2i.
C. P =
2
2
Câu 97. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là 4.
B. Phần thực là −3, phần ảo là 4.
C. Phần thực là −3, phần ảo là −4.
D. Phần thực là 3, phần ảo là −4.
Câu 98. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim+ f (x) = f (b).
B. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a

x→b

C. lim− f (x) = f (a) và lim− f (x) = f (b).

x→a

x→b

D. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→a
x→b

x→b
!
!
!
4x
1
2
2016
Câu 99. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 1008.
B. T = 2016.
C. T = 2017.
D. T =
.
2017
Câu 100. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. 5.
B. .
C. 7.
D.

.
2
2
Câu 101. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un
B. Nếu lim un
C. Nếu lim un
D. Nếu lim un

!
un
= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
= +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
= 0.
= a , 0 và lim vn = ±∞ thì lim
!vn
un
= a > 0 và lim vn = 0 thì lim
= +∞.
vn

Câu 102. Giá trị của lim (3x2 − 2x + 1)
x→1

A. 3.


B. 2.

D. +∞.

C. 1.

Câu 103. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
A. 5.
B.
.
C. 34.
D. 68.
17
Câu 104. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 13.
C. 0.
1
1
1
+
+ ··· +
1 1+2
1 + 2 + ··· + n

3
B. .
C. +∞.
2

D. 9.
!

Câu 105. [3-1131d] Tính lim
A.

5
.
2

D. 2.
Trang 8/10 Mã đề 1


Câu 106. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
A. a 3.
.
D. a 6.
B. 2a 6.

C.
2
3
2
x
Câu 107. [2]
√ Tìm m để giá trị lớn nhất của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng 8√
A. m = ± 3.
B. m = ±1.
C. m = ±3.
D. m = ± 2.

Câu 108. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 8 cạnh, 4 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 3 đỉnh, 3 cạnh, 3 mặt. D. 4 đỉnh, 6 cạnh, 4 mặt.
Câu 109. Dãy số nào sau đây có giới hạn khác 0?
1
n+1
A. √ .
B.
.
n
n

C.

1
.
n

D.

4

Câu 110. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 :
5
5
7
B. a 8 .
C. a 3 .
A. a 3 .

sin n
.
n

√3
a2 bằng
2

D. a 3 .

Câu 111.
√ [4-1245d] Trong tất cả
√ các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 2.
B. 10.
C. 2.
D. 1.
Câu 112. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
1

2
9
1
A.
.
B. .
C.
.
D. .
10
5
10
5
!x
1
Câu 113. [2] Tổng các nghiệm của phương trình 31−x = 2 +

9
A. − log2 3.
B. − log3 2.
C. log2 3.
D. 1 − log2 3.
Câu 114. Tính lim
A. −∞.

cos n + sin n
n2 + 1
B. 0.

Câu 115. Khối đa diện đều loại {3; 3} có số cạnh

A. 8.
B. 6.
x+2
Câu 116. Tính lim
bằng?
x→2
x
A. 0.
B. 3.

C. 1.

D. +∞.

C. 4.

D. 5.

C. 2.

D. 1.

Câu 117.
định nào sau đây là sai?
!0
Z Các khẳng
Z
Z
A.
f (x)dx = f (x).

B.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.
Z
Z
Z
Z
C.
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C. D.
k f (x)dx = k
f (x)dx, k là hằng số.
Z
Câu 118. Cho

1

xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b

0

1
1
.
D. .
4
2
Câu 119. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. V = 4π.

B. 16π.
C. 8π.
D. 32π.
A. 1.

B. 0.

C.

Câu 120. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích
hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 5.
C. 0, 2.
D. 0, 4.
Trang 9/10 Mã đề 1


Câu 121. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 1.
B. e.
C. −2 + 2 ln 2.
D. 4 − 2 ln 2.
Câu 122. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD

√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng



a 2
a 2
C. a 2.
D.
A.
.
B. 2a 2.
.
4
2
log 2x

Câu 123. [3-1229d] Đạo hàm của hàm số y =
x2
1
1 − 4 ln 2x
1 − 2 log 2x
1 − 2 ln 2x
A. y0 = 3
.
B. y0 =
.
C. y0 =
.
D. y0 = 3
.
3
3
2x ln 10
2x ln 10

x
x ln 10




Câu 124. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
3
9
B. m ≥ 0.
C. 0 < m ≤ .
D. 0 ≤ m ≤ .
A. 0 ≤ m ≤ .
4
4
4
Câu 125. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.




5 13
A. 2 13.
.
B. 2.
C. 26.
D.
13

Câu 126. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 + ln x.
B. y0 = 1 − ln x.
C. y0 = ln x − 1.
D. y0 = x + ln x.
2

2

Câu 127. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.

Câu 128. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. Vô nghiệm.
B. 1 nghiệm.
C. 3 nghiệm.
D. 2 nghiệm.
Câu 129. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số đồng biến trên khoảng (1; 2).
B. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số nghịch biến trên khoảng (−∞; 0).
D. Hàm số nghịch biến trên khoảng (0; 1).
1

Câu 130. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R.
B. D = (1; +∞).

C. D = (−∞; 1).

D. D = R \ {1}.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2.
D

3.
5.
7.

B
D

4.

C

6. A


B

C

8.

9.

C

10.

B

11.

C

12.

B

14.

B

13.

B


15. A

16. A

17. A

18.

19. A

20.
D

21.
23.

B
B

C

26.

27.

C

28.
D


30.

C

34. A

35.

C

36.

B

38.
D

39.

D
B

42.

43.

C

45.


D

D

46.

D

C

48.

49.

C

50.

51.

D

53. A

54.

D

55.


56. A

C

44.

47.

B
C
C

57. A
59.

B

60. A

D

61. A

62.

C

64. A
66.
68.


B

40. A

41. A

58.

C

32. A

B

33.
37.

D

24.

25.

31.

C

22.


B

29.

B

63.

B

65.

B

67. A

C

69.

B
1

D


70.

71.


B

D

72.

C

73.

74.

C

75.

76.

C

77.

C
C

78.

B

79.


80.

B

81.

82.
84.

B
D

88. A
90.

B
D

B

87.

B

89.

B

93. A

95.

96. A

97.

98.

B

100.

B

101.

102.

B

103.
C
D

109.

110.

D


111.

121.

B
D

108.
C

D
D

107.
B

D

113. A

B

115.
C

118.

B

105.

D

116.

C

99. A

106.

114.

C

85.

94. A

112.

D

91. A

92.

104.

D


83.

C

86.

B

B

117.
D

C

120. A

B

122.

D
D

123.

D

124.


125.

D

126. A

127.

D

128.

129.

D

130.

2

D
B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×