CHUYÊN ĐỀ TOÁN TỔNG HỢP THPT
Chuyên đề 1
z − z
=2?
Câu 1. Tìm tập hợp các điểm M biểu diễn số phức z sao cho
z − 2i
A. Một Parabol.
B. Một đường tròn.
C. Một Elip.
D. Một đường thẳng.
Câu 2. (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M ′ . Số phức ω = (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N ′ . Biết rằng M, M ′ , N, N ′ là bốn đỉnh của hình chữ nhật. Tìm
1
9
9 9
giá trị nhỏ nhất của ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5|.
2
2 2
2
1
2
4
1
C. √ .
A. √ .
B. √ .
D. .
2
13
5
2
Câu 3. Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của
√ z1 , z2 và số phức w√ = x + iy trên mặt phẳng phức.
√ Để tam giác MNP
√ đều là số phức k là
A. w = − 27
−
i
hoặcw
=
−
27
+
i.
B.
w
=
27
−
i
hoặcw
=
27 √
+ i.
√
√
√
D. w = 1 + 27 hoặcw = 1 − 27.
C. w = 1 + 27i hoặcw = 1 − 27i.
z+i+1
Câu 4. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
là số thuần ảo?
z + z + 2i
A. Một Parabol.
B. Một đường thẳng.
C. Một Elip.
D. Một đường tròn.
Câu 5. Gọi z1 và z2 là các nghiệm của phương trình z2 − 4z + 9 = 0. Gọi M, N là các điểm biểu diễn của
z1 , z2 trên mặt√phẳng phức. Khi đó độ dài của MN là
√
A. MN = 2 5.
B. MN = 4.
C. MN = 5.
D. MN = 5.
1+i
Câu 6. GọiM là điểm biểu diễn số phức z = 3 − 4i và M ′ là điểm biểu diễn của số phức z′ =
z trong
2
mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM ′ .
15
25
15
25
B. S = .
C. S = .
D. S = .
A. S = .
4
4
2
2
2
Câu 7. Cho các số phức z thoả mãn (1 + z) là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Hai đường thẳng.
B. Một đường thẳng.
C. Đường tròn.
D. Parabol.
−2 − 3i
z + 1
= 1.
Câu 8. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện
3 − 2i
√
A. max |z| = 3.
B. max |z| = 2.
C. max |z| = 1.
D. max |z| = 2.
Câu 9. Cho tập hợp A có 15 phần tử. Số tập con gồm hai phần tử của A bằng
A. 210.
B. 105 .
C. 225.
D. 30 .