PHÂN DẠNG BÀI TẬP DAO ĐỘNG CƠ (1)
1. Dạng 1: Tìm các đại lượng đặc trưng trong dao động điều hòa
a) Các công thức:
- Các phương trình diễn tả sự biến thiên điều hòa của các đại lượng theo thời gian:
+ Li độ (phương trình dao động): x = Acos(t + ). Lưu ý: -A x A và x
max
= A (gọi là biên độ)
+ Vận tốc: v = x’ = - Asin(t + ) = Acos(t + + /2). Lưu ý: -A v A và v
max
= A
+ Gia tốc: a = v’ = -
2
Acos(t + ) = -
2
x; Lưu ý: -
2
A a
2
A và a
max
=
2
A.
+ Liên hệ giữa tần số góc, chu kì và tần số của dao động: = 2/T = 2f.
+ Lực kéo về: F = ma = -m
2
x = - kx. Lưu ý: -m
2
A F m
2
A và F
max
= m
2
A = kA.
- Quan hệ về pha:
+ Vận tốc v sớm pha /2 so với li độ x.
+ Gia tốc a (lực kéo về F) ngược pha với li độ x (sớm pha /2 so với vận tốc v).
- Các hệ thức độc lập: A
2
= x
2
+
2
2
v
=
22
42
av
;
22
22
max max
1
Fv
Fv
+ Ở vị trí cân bằng: x = 0 thì |v| = v
max
= A và a = 0, F = 0.
+ Ở vị trí biên: x = A thì v = 0 và |a| = a
max
=
2
A = v
max
= v
2
max
/A, |F| = F
max
= m
2
A = kA.
- Quỹ đạo chuyển động của vật dao động điều hòa trên trục Ox là một đoạn thẳng có chiều dài L = 2A.
b) Phương pháp giải:
- Để tìm các đại lượng đặc trưng của một dao động điều hòa khi biết phương trình dao động hoặc biết một số đại lượng
khác của dao động, ta sử dụng các công thức liên quan đến những đại lượng đã biết và đại lượng cần tìm
từ đó suy ra và tính
đại lượng cần tìm theo yêu cầu của bài toán.
- Để tìm các đại lượng tại một thời điểm t đã cho, ta thay giá trị của t vào phương trình liên quan để tính đại lượng đó.
Lưu ý:
Hàm sin và hàm cos là hàm tuần hoàn với chu kỳ 2 nên khi thay t vào, nếu được góc của hàm sin hoặc hàm cos là
một số lớn hơn 2 thì ta bỏ đi của góc đó một số chẵn của để dễ bấm máy.
- Để tìm thời điểm mà x, v, a hay F có một giá trị cụ thể nào đó thì ta thay giá trị này vào phương trình liên quan và giải
phương trình lượng giác để tìm t.
Lưu ý:
+ Đừng để sót nghiệm: với hàm sin thì lấy thêm góc bù với góc đã tìm được, còn với hàm cos thì lấy thêm góc đối với
nó và nhớ hàm sin và hàm cos là hàm tuần hoàn với chu kỳ 2 để đừng bỏ sót các họ nghiệm.
+ Cũng đừng để dư nghiệm: Căn cứ vào dấu của các đại lượng liên quan để loại bớt họ nghiệm không phù hợp.
2. Dạng 2: Bài toán liên quan đến đoạn đường và thời gian trong dao động điều hòa:
Phương ph
áp chung: Sử dụng mối liên hệ giữa dao động điều hòa và chuyển động tròn đều. Độ tăng của góc pha trong
thời gian t là: = .t = 2.t/T. Nên nhớ các khoảng thời gian t và độ tăng góc pha ứng với các đoạn đặc biệt:
Đoạn đường
t
Đoạn đường
t
Từ O ra A
/2
T/4 Từ O ra A/2
/6
T/12
Từ O ra A 3 /2
/34
T/6
Từ O ra A/
2
/4
T/8
Câu hỏi và bài tập trắc nghiệm:
Câu 1: Phương trình li độ của một vật dao động điều hòa dọc theo trục Ox là x = 4cos(10t - /2) (cm;s). Chu kì và tần
số dao động của vật lần lượt là:
A. 0,2s và 5 Hz. B. 0,4s và 2,5Hz. C. 0,1s và 10Hz. D. 5s và 0,2Hz.
Câu 2: Phương trình li độ của một vật dao động điều hòa dọc theo trục Ox là x = 5cos(8t + /4) (cm;s). Vận tốc cực
đại và gia tốc cực đại trong quá trình vật dao động
lần lượt là:
A. 40cm/s và 200cm/s
2
. B. 40cm/s và 3,2m/s
2
. C. 3,2m/s và 40cm/s
2
. D. 60cm/s và 3,2m/s
2
.
Câu 3: Vận tốc cực đại và gia tốc cực đại của một vật dao động điều hòa lần lượt là 50cm/s và 2,5m/s
2
. Biên độ của
dao động này là A. 5cm. B. 2cm. C. 10cm. D. 15cm.
Câu 4: Tần số góc của một vật dao động điều hòa bằng 5 rad/s. Số dao động mà vật thực hiện được trong 4s là
A. 40 dao động. B. 5 dao động. C. 20 dao động. D. 10 dao động.
Câu 5: Vật dao động điều hoà và có phương trình li độ x = 12cos(4t-/6) (cm;s). Vận tốc của vật tại t = 0 là
A. 12cm/s . B. 48cm/s. C. -24cm/s. D. 24cm
/s.
Câu 6: Vật dao động điều hoà và có phương trình li độ x = 4sin(5t + /3) cm. Gia tốc của vật tại t = /10 s là
A. -50 cm/s
2
. B. 50 cm/s
2
. C. -80 cm/s
2
. D. 80 cm/s
2
.
Câu 7: Vật dao động điều hoà và có phương trình li độ x = 20sin(5t + /3) (cm;s). Gia tốc của vật tại vị trí x = -3 cm là
A. 15 cm/s
2
. B. -15 cm/s
2
. C. -75 cm/s
2
. D. 75 cm/s
2
.
Câu 8: Vật dao động điều hoà và có biểu thức vận tốc v = 40sin(5t + /3) (cm;s). Gia tốc của vật khi vật cách vị trí
biên 6cm có độ lớn là A. 150 cm/s
2
. B. 240 cm/s
2
. C. 30 cm/s
2
. D. 120 cm/s
2
.
Câu 9: Vật m = 400 gam dao động điều hoà và có phương trình li độ x = 20cos(5t-/6) (cm;s). Hợp lực tác dụng lên
vật có độ lớn cực đại bằng bao nhiêu? A. 2N . B. 20N. C. 4N . D. 200N.
Câu 10: Vật dao động điều hòa trên một đoạn thẳng với biên độ A = 10 cm và chu kì T = 0,5 s. Trong khoảng thời gian
giữa ba lần liên tiếp vật cách vị trí cân bằng một đoạn 5 cm, vật có tốc độ trung bình bằng:
A. 60 cm/s. B. 80 cm
/s. C. 90 cm/s. D. 120 cm/s
Câu 11: Vật dao động điều hoà và có phương trình li độ x = 20cos(5t + /3) (cm;s). Tốc độ trung bình của vật trong
một chu kì dao động bằng bao nhiêu? A. 2m/s . B. 1m/s. C. 4m/s. D. 5m/s.
Câu 12: Vật dao động điều hoà và có biểu thức gia tốc a = 200cos(10t - /4) cm/s
2
. Thời gian để vật đi hết đoạn đường
80cm là A. 10s . B. 2 s. C. /2 s. D. s.
Câu 13: Vật dao động điều hoà và có biểu thức vận tốc li độ v = 20sin(4t - /3) cm/s. Trong thời gian 1s, quãng
đường vật đi được bằng A. 20 cm . B. 5cm. C. 20cm. D. 40cm.
Câu 14: Vật dao động điều hoà và có phương trình li độ x = 20cos(5t - /6) (cm;s). Thời điểm đầu tiên
vật đi qua vị
trí cân bằng là A. 1/30 s. B. 1/15 s. C. 1/10 s. D. 2/15 s.
Câu 15: Một vật dao động điều hòa với phương trình x = 4cos(10t + /3) (cm;s). Lấy
2
= 10. Vào thời điểm t = 0,3 s
thì vật có gia tốc và vận tốc là: A. a = - 20 m/s
2
; v = - 20 3 cm/s B. a = - 20 m/s
2
; v = 20 3 cm/s
C. a = 20 m/s
2
; v = - 20 3 cm/s D. a = 20 m/s
2
; v = 20 3 cm/s
Câu 16: Một vật dao động điều hòa dọc theo trục Ox (gốc O trùng vị trí cân bằng). Thời gian ngắn nhất để vật đi từ
biên này đến biên kia (cách nhau 10 cm) là 0,25 s. Gốc thời gian là lúc vật chuyển động chậm dần theo chiều dương
với vận tốc 10 cm/s. Phương trình dao động của vật là:
A. x = 5cos(4t + /3) (cm;s) B. x = 5cos(4t - /3) (cm;s)
C. x = 5cos(4t + /6) (cm;s) D. x = 5cos(4t - /6) (cm;s)
Câu 17: Một vật dao động điều hòa với
chu kì /4 s và vận tốc cực đại 20 cm/s. Gia tốc cực đại của vật là:
A. 200/ cm/s
2
. B. 80/ cm/s
2
. C. 160 cm/s
2
. D. 200 cm/s
2
.
Câu 18: Một vật dao động theo phương trình x = 4cos(4t + /2) (cm;s). Tìm số lần mà vật cách vị trí cân bằng 2 cm
trong thời gian 1,0625 s kể từ thời điểm t = 0 là: A. 5 lần B. 10 lần C. 9 lần D. 8 lần
Câu 19: Vật dao động điều hòa với biên độ A và cứ mỗi phút thực hiện được 50 dao động toàn phần. Khoảng thời gian
ngắn nhất giữa hai lần liên tiếp mà vật cách vị trí cân bằng một đoạn 0,5A là
A. 0,6s.
B. 0,3s. C. 0,2s. D. 0,1s.
Câu 20: Một vật dao động điều hoà với phương trình x = 5sin(16t + /2) (cm;s). Khi vật có tốc độ 64 cm/s và đang
chuyển động chậm dần theo chiều âm của trục toạ độ thì gia tốc của vật bằng:
A. - 0,48 m/s
2
. B. - 7,68 m/s
2
. C. 7,68 m/s
2
. D. 10,24 m/s
2
.
Câu 21: Chất điểm dao động điều hoà trên trục Ox. Khi chất điểm đi qua vị trí cân bằng thì tốc độ của nó là 20 cm/s.
Khi chất điểm có tốc độ là 10 cm/s thì gia tốc của nó có độ lớn là
40 3 cm/s
2
. Biên độ dao động của chất điểm là
A. 4 cm. B. 5 cm. C. 8 cm. D. 10 cm.
Câu 22: Một chất điểm dao động điều hoà theo phương trình x = 4cos(5t) (cm;s). Kể từ t = 0, chất điểm đi qua vị trí
cân bằng lần thứ 2014 tại thời điểm A. 402,7 s. B. 402,8 s. C. 402,4 s. D. 402,5 s.
Câu 23: Một chất điểm dao động điều hoà trên trục Ox với biên độ 10 cm
, chu kì 2 s. Tốc độ trung bình của chất điểm
trong khoảng thời gian ngắn nhất khi chất điểm đi từ vị trí cách vị trí cân bằng 5 cm đến vị trí cách vị trí cân bằng 5
3
cm là A. 26,12 cm/s. B. 21,96 cm/s. C. 7,32 cm/s. D. 14,64 cm/s.
Câu 24: Một vật dao động điều hoà trên trục Ox (gốc O trùng với vị trí cân bằng). Khi có li độ
cm thì vận tốc
1
x2
1
v43 cm/s; khi có li độ
2
22x cm thì có vận tốc
2
v42 cm/s. Biên độ và tần số dao động của vật là:
A. 4 cm và 1Hz. B. 4 cm và 2 Hz. C. 4 2 cm và 2 Hz. D. 4 2 cm và 1 Hz.
Câu 25: Vật dao động điều hòa với A = 10cm và = 20 rad/s. Lấy gốc thời gian t = 0 là lúc vật đi qua vị trí cân bằng.
Quãng đường vật đi được trong t = /24 s đầu tiên là:
A. 5cm B. 7,5cm C. 15cm D. 20cm
Câu 26: Một vật dao động điều hoà có tần số 2 Hz, biên độ 4 cm. Ở một thời điểm nào đó vật chuyển động nhanh dần
qua vị trí có li độ 2cm thì sau thời điểm đó 1/12 s vật chuyển động
A. chậm dần qua vị trí có li độ 23 cm. B. nhanh dần qua vị trí có li độ 23 cm
C. chậm dần qua vị trí có li độ - 2 cm. D. nhanh dần qua vị trí có li độ - 2 cm.
Câu 27: Một vật dao động theo phương trình x = 2cos(5t + /6) + 1 (cm). Trong một giây đầu tiên kể từ lúc bắt đầu
dao động, vật chuyển động nhanh dần đi qua vị trí có li độ x = 2 cm mấy lần?
A. 4 lần B. 3 lần C. 2 lần D. 5 lần
Câu 28: Một chất điểm dao động điều hòa dọc theo trục tọa độ Ox với phương trình x = Acos(t). Thời gian ngắn nhất
để chất điểm đi từ biên này đến biên kia là 0,6 s. Sau khoảng thời gian 0,8 s kể từ thời điểm t = 0, chất điểm cách vị trí
ban đầu của nó một đoạn
A. 0,5 A B. A C. 1,5 A D. 1,13 A
Câu 29: Một vật dao động điều hòa theo phương ngang. Tốc độ của vật lúc qua vị trí cân bằng là 20cm/s, gia tốc cực
đại của vật là 2 m/s
2
. Cho
2
= 10. Thời gian ngắn nhất để vật đi hết đoạn đường 10 cm kể từ vị trí biên là:
A. 1/2 s. B. 1/6 s. C. 1/3 s. D. 2/3 s.
Câu 30: Vật dao động dọc theo trục Ox với phương trình x = 4 cos(5t - /6) (cm;s). Trong thời gian 1/4 chu kì kể từ
thời điểm t = 0, tốc độ trung bình của vật trong thời gian vật chuyển động theo hướng của gia tốc bằng
A. 40 cm/s B. 20 cm/s C. 60 cm/s D. 30 cm/s
PHÂN DẠNG BÀI TẬP DAO ĐỘNG CƠ (2)
3. Dạng 3: Tính chu kì và viết phương trình dao động của vật dao động, của con lắc lò xo và con lắc đơn:
a) Các công thức:
* Đối với con lắc lò xo:
Phương trình dao động: x = Acos(t + ).
- Trong đó: =
k/m (Với CLLX thẳng đứng, có thể tính: =
0
g/
). Biên độ: A =
22
x(v/) =
22
2
1
a(v)
.
- Pha ban đầu thỏa mãn: cos = x
0
/A, với x
0
và v
0
là li độ và vận tốc tại thời điểm t = 0.
(Lưu ý: lấy nghiệm < 0 khi v
0
> 0; lấy nghiệm > 0 khi v
0
< 0)
* Đối với con lắc đơn:
+ Phương trình theo li độ dài: s = S
0
cos(t + )
+ Phương trình theo li độ góc: =
0
cos(t + ); với s = l; S
0
=
0
l (
và
0
tính ra rad).
Trong đó: =
g/ ; S
0
=
22
s(v/)=
2
2
1
a(v)
2
; cos = s/S
0
( < 0 khi v
0
> 0 và > 0 khi v
0
< 0).
b) Phương pháp giải: Dựa vào các điều kiện bài toán cho và các công thức liên quan để tìm ra các giá trị cụ thể của tần số góc, biên
độ và pha ban đầu rồi thay vào phương trình dao động. Lưu ý đến việc chọn giá trị của pha ban đầu .
4. Dạng 4: Năng lượng của con lắc lò xo và của con lắc đơn:
a) Các công thức:
* Với co
n lắc lò xo:
- Thế năng: W
t
= ½ kx
2
= ½ kA
2
cos
2
(t + ). Động năng: W
đ
= ½ mv
2
= ½ m
2
A
2
sin
2
(t +) = ½ kA
2
sin
2
( + ).
- Cơ năng: W = W
t
+ W
đ
= ½ kx
2
+ ½ mv
2
=
1
2
kA
2
= ½ m
2
A
2
.
* Với co
n lắc đơn:
- Thế năng: W
t
= mgl(1 - cos). Động năng: W
đ
= ½ mv
2
= mgl(cos
- cos
0
). Cơ năng: W = W
t
+ W
đ
= mgl(1 - cos
0
).
- Nếu
0
10
0
thì: W
t
= ½ mgl
2
; W
đ
= ½ mgl(
2
0
-
2
); W = ½ mgl
2
0
;
và
0
tính ra rad.
b) Lưu ý: - Thế năng và động năng biến thiên tuần hoàn với tần số góc ’ = 2, với tần số f’ = 2f và với chu kì T’ = T/2.
- Trong một chu kì có: + 2 lần động năng bằng cơ năng, 2 lần thế năng bằng cơ năng (thời gian giữa hai lần là T/2).
+ 4 lần động năng bằng thế năng (khoảng thời gian giữa hai lần là T/4).
+ 4 lần động năng bằng n lần thế năn
g và ngược lại.
- Cẩn thận đơn vị đo!
Câu hỏi và bài tập trắc nghiệm
1
. Một con lắc lò xo gồm vật nhỏ khối lượng 400 g, lò xo có khối lượng không đáng kể, độ cứng 100 N/m. Con lắc dao
động điều hòa theo phương ngang. Lấy
2
= 10. Dao động của con lắc có chu kỳ là
A. 0,6 s. B. 0,2 s. C. 0,8 s. D. 0,4 s.
2. Một con lắc đơn gồm quả cầu nhỏ khối lượng m được treo vào một đầu sợi dây nhẹ, không dãn, dài 36 cm. Con lắc
dao động điều hòa tại nơi có gia tốc trọng trường g =
2
(m/s
2
). Chu kỳ dao động của con lắc là
A. 0,5 s. B. 1,6 s. C. 1 s. D. 1,2 s.
3. Tại nơi có gia tốc trọng trường 9,8 m/s
2
, một con lắc đơn và một con lắc lò xo nằm ngang dao động điều hòa cùng
tần số. Biết con lắc đơn có chiều dài 49 cm và lò xo có độ cứng 10 N/m. Khối lượng vật nhỏ của con lắc lò xo là
A. 0,125 kg. B. 0,750 kg. C. 0,500 kg. D. 0,250 kg.
4. Một con lắc lò xo thẳng đứng dao động với chu kì 0,4 s. Khi vật ở vị trí cân bằng, lò xo dài 46 cm. Lấy g =
2
(m/s
2
).
Chiều dài tự nhiên của lò xo là
A. 44 cm. B. 40 cm. C. 42 cm. D. 38 cm.
5. Con lắc lò xo gồm vật nhỏ có khối lượng 200 g và lò xo nhẹ có độ cứng 80 N/m. Con lắc dao động điều hòa theo
phương ngang với biên độ 4 cm. Độ lớn vận tốc của vật ở vị trí cân bằng là
A. 100 cm/s. B. 40 cm/s. C. 80 cm/s. D. 60 cm/s.
6. Một con lắc lò xo dao động điều hòa. Biết lò xo có độ cứng 25 N/m và vật nhỏ có khối lượng 100 g. Lấy
2
= 10.
Động năng của con lắc biến thiên tuần hoàn theo thời gian với chu kì
A. 0,4 s B. 0,2 s C. 0,8 s D. 0,25 s
7. CLLX có vật m = 50 g dao động điều hòa theo trục cố định nằm ngang với phương trình x = Acost. Cứ sau những
khoảng thời gian 0,1 s thì động năng và thế năng của vật lại bằng nhau. Lấy
2
=10. Lò xo của con lắc có độ cứng là
A. 50 N/m. B. 100 N/m. C. 25 N/m. D. 12,5 N/m.
8. Một con lắc lò xo gồm lò xo nhẹ và vật nhỏ dao động điều hòa theo phương ngang với tần số góc 5 rad/s. Biết rằng
khi động năng và thế năng (mốc ở vị trí cân bằng của vật) bằng nhau thì vận tốc của vật có độ lớn bằng 30 cm/s. Biên
độ dao động của con lắc là
A. 6 cm. B. 3 cm. C. 6 cm. D. 12cm. 2 2
9. Một vật dao động đều hòa với tần số 2f
1
. Thế năng của vật biến thiên tuần hoàn theo thời gian với tần số f
2
bằng
A. 2f
1
. B. f
1
/2. C. f
1
. D. 4f
1
.
10. Một vật dao động điều hòa dọc theo trục Ox với chu kì T, vị trí cân bằng và mốc thế năng ở gốc tọa độ. Tính từ lúc
vật có li độ dương lớn nhất, thời điểm đầu tiên mà vật có động năng bằng ba lần thế năng là
A. T/4 B. T/8 C. T/12 D. T/6
11. Một con lắc lò xo m = 1 kg, k = 400 N/m treo thẳng đứng. Cung cấp năng lượng để con lắc dao động điều hòa theo
phương thẳng đứng quanh vị trí cân bằng O, lấy g = 10 m/s
2
. Lực đàn hồi cực đại của lò xo tác dụng vào con lắc trong
quá trình dao động có độ lớn 24 N. Biên độ dao động của con lắc là:
A. 2,5 cm B. 5 cm C. 3,5 cm D. 6 cm
12. Tại nơi có gia tốc trọng trường là 9,8 m/s
2
, một con lắc đơn dao động điều hòa với biên độ góc 6
0
. Biết khối lượng
vật nhỏ của con lắc là 90 g và chiều dài dây treo là 1 m. Chọn mốc thế năng tại vị trí cân bằng, cơ năng của con lắc xấp
xỉ bằng
A. 6,8.10
-3
J. B. 3,8.10
-3
J. C. 5,8.10
-3
J. D. 4,8.10
-3
J.
13. Vật nhỏ của con lắc lò xo dao động điều hòa theo phương ngang, mốc thế năng tại vị trí cân bằng. Khi gia tốc của
vật có độ lớn bằng một nửa độ lớn gia tốc cực đại thì tỉ số giữa động năng và thế năng của vật là
A. 1/2. B. 3. C. 2. D. 1/3.
14. Một con lắc lò xo gồm viên bi nhỏ và lò xo nhẹ có độ cứng 100 N/m, dao động điều hòa với biên độ 0,1 m. Mốc thế
năng ở vị trí cân bằng. Khi viên bi cách vị trí cân bằng 6 cm thì động năng của con lắc bằng
A. 0,64 J. B. 3,2 mJ. C. 6,4 mJ. D. 0,32 J.
15. Một vật dao động điều hòa với biên độ 12 cm. Mốc thế năng ở vị trí cân bằng. Khi vật có động năng bằng 3/4 lần
cơ năng thì vật cách vị trí cân bằng một đoạn:
A. 12 cm. B. 9 cm. C. 8 cm. D. 6 cm.
16. Con lắc lò xo gồm vật nhỏ khối lượng 100g gắn với một lò xo nhẹ. Con lắc dao động điều hòa theo phương ngang
với phương trình x = 10cos10t (cm). Mốc thế năng ở vị trí cân bằng. Lấy
2
= 10. Cơ năng của con lắc bằng
A. 0,10 J. B. 0,05 J. C. 1,00 J. D. 0,50 J.
17. Một con lắc lò xo gồm quả cầu nhỏ khối lượng 500g và lò xo có độ cứng 50N/m. Cho con lắc dao động điều hòa
trên phương nằm ngang. Tại thời điểm vận tốc của quả cầu là 0,1 m/s thì gia tốc của nó là -
3 m/s
2
. Cơ năng của con
lắc là:
A. 0,04 J. B. 0,02 J. C. 0,01 J. D. 0,05 J.
18. Một con lắc lò xo treo thẳng đứng khi cân bằng lò xo giãn 3 cm. Bỏ qua mọi lực cản. Kích thích cho vật dao động
điều hoà theo phương thẳng đứng thì thấy thời gian lò xo bị nén trong một chu kì là T/3 (T là chu kì dao động của vật).
Biên độ dao động của vật bằng:
A. 9 cm B. 3cm C. 3
2
cm D. 6 cm
19. Con lắc lò xo thẳng đứng: lò xo có độ cứng 10 N/m, vật có khối lượng 250 g. Lực đàn hồi của lò xo khi vật ở vị trí
cao nhất có độ lớn 1,5 N. Biết lò xo luôn giãn và lấy g = 10 m/s
2
. Khi vật ở vị trí thấp nhất, lực đàn hồi của lò xo có độ
lớn là:
A. F = 5,0 N B. F = 3,0 N C. F = 3,5 N D. F = 4,0 N
20. Một lò xo có khối lượng không đáng kể có độ cứng k = 100N/m. Một đầu treo vào một điểm cố định, đầu còn lại
treo một vật nặng khối lượng 500g. Từ vị trí cân bằng kéo vật xuống dưới theo phương thẳng đứng một đoạn 10cm rồi
buông cho vật dao động điều hòa.
Lấy g = 10m/s
2
, khoảng thời gian mà lò xo bị nén một chu kỳ là
A. /(3 ) s B. /(5 ) s C. /(15
2 2 2
) s D. /(6 ) s
2
21. Con lắc lò xo thẳng đứng dao động điều hòa với chu kì T. Biết lực đàn hồi lớn nhất là 9 N và lực đàn hồi nhỏ nhất
là 3 N. Con lắc đi từ vị trí lực đàn hồi lớn nhất đến vị trí lực đàn hồi nhỏ nhất trong thời gian ngắn nhất bằng
A. T/6 B. T/4 C. T/3 D. T/2
22. Một con lắc lò xo được treo thẳng đứng, đầu trên cố định, đầu dưới gắn vật nhỏ. Khi vật ở trạng thái cân bằng, lò
xo giãn đoạn 2,5 cm. Cho con lắc lò xo dao động điều hoà theo phương thẳng đứng. Trong quá trình con lắc dao động,
chiều dài của lò xo thay đổi trong khoảng từ 25 cm đến 30 cm. Lấy g = 10m/s
2
. Vận tốc cực đại của vật trong quá trình
dao động là :
A. 100 cm/s B. 50 cm/s C. 5 cm/s D. 10 cm/s
23. Một con lắc lò xo thẳng đứng có độ cứng của lò xo là k = 80 N/m và khối lượng vật nặng m = 200g, dao động điều
hòa với biên độ A = 5 cm. Lấy g = 10 m/s
2
. Trong một chu kì dao động, thời gian lò xo giãn là:
A. /24 s B. /15 s C. /30 s D. /12 s.
24. Một con lắc lò xo thẳng đứng có k = 100N/m, m = 100g, lấy g =
2
= 10m/s
2
. Từ vị trí cân bằng kéo vật xuống một
đoạn 1cm rồi truyền vận tốc đầu 10
3 cm/s hướng thẳng đứng. Tỉ số thời gian lò xo nén và giãn trong một chu kỳ là:
A. 5 B. 2 C. 0,5 D. 0,2.
25. Một con lắc lò xo dao động theo phương thẳng đứng mang vật nặng có khối lượng m= 100(g) thực hiện dao động
điều hoà với chu kì T = /5(s). Cơ năng của con lắc là 2.10
-3
(J). Lực phục hồi cực đại tác dụng lên con lắc có giá trị
A. 0,4 N B. 4 N C. 2 N D. 0,2 N
26. Một con lắc lò xo với lò xo có độ cứng 100 N/m dao động điều hòa theo phương ngang. Cứ sau 0,05 s thì thế năng
và động năng của con lắc lại bằng nhau. Lấy
2
= 10. Khối lượng vật nặng của con lắc bằng
A. 250 g. B. 100 g. C. 25 g. D. 50 g.
27. Một con lắc lò xo thẳng đứng dao động với phương trình li độ x = 8cos(10t + ) (cm;s) (gốc tọa độ O trùng với vị
trí cân băng, trục Ox thẳng đứng hướng lên). Lấy g = 10 m/s
2
và
2
= 10. Thời gian ngắn nhất để độ lớn của lực đàn hồi
của lò xo tăng từ cực tiểu đến cực đại là:
A. /10 s B. /15 s C. /30 s D. 3/10 s.
28. Một con lắc lò xo có k = 20 N/m dao động điều hòa theo phương ngang với chu kì T = 0,5 s. Trong quá trình dao
động lò xo giãn nhiều nhất là 4 cm. Lấy t = 0 là lúc lò xo không biến dạng và vật đi theo chiều dương thì lúc t = 7/24 s
lực phục hồi tác dụng lên vật có độ lớn là:
A. 0. B. 0,2 N. C. 0,5N. D. 0,4N.
29. Một CLLX thẳng đứng. Khi ở vị trí cân bằng thì lò xo giãn một đoạn 6 cm. Tỉ số giữa lực đàn hồi cực đại và lực
đàn hồi cực tiểu trong quá trình vật dao động là: F
đhmax
/F
đhmin
= 3. Biên độ dao động của vật là:
A. A = 12 cm B. A = 4 cm C. A = 3 cm D. A = 2 cm
30. Một con lắc lò xo thẳng đứng (m,k). Khi vật cân bằng, lò xo giãn một đoạn 2,5cm. Từ vị trí cân bằng nâng vật lên
trên cho đến khi lò xo bị nén 7,5cm rồi buông nhẹ cho vật dao động điều hòa.
Chọn chiều dương hướng lên, gốc thời
gian là lúc vật qua vị trí có li độ x = 5 cm lần thứ nhất. Lấy
2
= 10, g = 10m/s
2
. Phương trình dao động của vật là:
A. x = 5cos (20t + /3) (cm;s) B. x = 5cos (20t-/3) (cm;s)
C. x = 10cos (20t+/3) (cm;s) D. x = 10cos (20t-/3) (cm;s).
PHÂN DẠNG BÀI TẬP DAO ĐỘNG CƠ (3)
5. Dạng 5: Con lắc lò xo treo thẳng đứng và con lắc lò xo đặt trên mặt phẳng nghiêng:
- Con lắc lò xo treo thẳng đứng: l
0
= mg/k, =
k/m
=
0
g/
- Con lắc lò xo đặt trên mặt phẳng nghiêng:
l
0
= (mg.sin)/k, = k/m =
0
g.sin /
- Chiều dài cực đại của lò xo:
l
max
= l
0
+ l
0
+ A. Chiều dài cực tiểu của lò xo: l
min
= l
0
+ l
0
– A.
- Lực đàn hồi cực đại, cực tiểu: F
max
= k(A + l
0
), F
min
= 0 nếu A l
0
; F
min
= k(l
0
– A) nếu A < l
0
.
- Độ lớn của lực đàn hồi tại vị trí có li độ x: + F
đh
= k|l
0
+ x| nếu chiều dương hướng xuống
+ F
đh
= k|l
0
- x| nếu chiều dương hướng lên.
6. Dạng 6: Sự thay đổi chu kì của con lắc lò xo và con lắc đơn do đặc tính của hệ thay đổi:
- Chu kì của CLLX tỉ lệ với m và tỉ lệ nghịch với k .
- Chu kì của CLĐ tỉ lệ với
và tỉ lệ nghịch với
g . Các tính toán hay dùng: lập tỉ số giữa chu kì lúc sau và chu kì lúc đầu:
+ Tỉ số chu kì của 2 con lắc đơn có chiều dài
l
1
và l
2
: T
1
/T
2
=
12
/.
+ Tỉ số chu kì của 2 con lắc đơn ở độ cao h và ở mặt đất: T
h
/T
0
= (R+h)/R.
+ Tỉ số chu kì của con lắc đơn chịu gia tốc trọng trường g và con lắc đơn chịu gia tốc trọng trường g’: T/T’ =
g'/g .
Trong đó, g’ liên hệ với g theo hệ thức: g’ =
()
g
a
(khi điểm treo chuyển động với gia tốc ) a
g’ =
/
g
Fm
(khi vật chịu thêm ngoại lực
F
)
7. Dạng 7: Dao động tắt dần, dao động cưỡng bức, sự cộng hưởng trong dao động cơ học
- Hệ dao động cưỡng bức sẽ có cộng hưởng khi tần số f của lực cưỡng bức bằng tần số riêng f
0
hệ dao động.
- Trong dao động tắt dần, phần cơ năng giảm đi bằng độ lớn công của lực ma sát. Do đó, nếu xét con lắc lò xo (k,m) dao động
tắt dần với biên độ ban đầu A, hệ số ma sát
thì ta có:
+ Quãng đường vật đi được từ lúc bắt đầu dao động đến lúc dừng lại: s = kA
2
/(2mg) =
2
A
2
/(2g).
+ Độ giảm biên độ sau mỗi chu kì: |
A| = 4mg/k = 4g/
2
. Số dao động mà hệ thực hiện được: N = A/|A|.
+ Vận tốc cực đại mà vật đạt được khi thả nhẹ từ vị trí biên ban đầu A: v
max
=
222
kA / m m g / k 2 gA .
Câu hỏi và bài tập trắc nghiệm
1.
Gắn vật m
1
với một lò xo thì con lắc này có chu kì dao động 1,5 s. Nếu gắn vật m
2
thì ta được con lắc dao động với
chu kì 2,0 s. Hỏi nếu gắn đồng thời hai vật trên vào lò xo đó thì ta được con lắc có tần số dao động bằng bao nhiêu?
A. 2,5 Hz B. 0,4 Hz C. 2 Hz D. 0,5 Hz
2. Hai con lắc đơn có chiều dài l
1
và l
2
hơn kém nhau 30cm, được treo tại cùng một nơi. Trong cùng một khoảng thời
gian như nhau chúng thực hiện được số dao động lần lượt là 12 và 8. Chiều dài l
1
và l
2
tương ứng là:
A. 60 cm và 90 cm. B. 24 cm và 54 cm. C. 90 cm và 60 cm. D. 54 cm và 24 cm.
3. Một lò xo treo thẳng đứng có đầu trên cố định. Treo vật m
1
vào đầu dưới lò xo thì lò xo dài 32 cm khi vật cân bằng.
Treo thêm vật m
2
thì lò xo dài 33,6 cm. Lấy g = 10 m/s
2
. Tần số góc trong dao động điều hòa của hệ con lắc lò xo khi
chỉ treo vật m
2
là A. 25 rad/s. B. 20 rad/s. C. 33,6 rad/s. D. 12,5 rad/s.
4. Một con lắc đơn có dây treo dài 1m, dao động điều hòa với biên độ góc 0,1rad và có chu kỳ 2s. Nếu khi vật qua vị trí cân
bằng, dây treo vướng phải cây đinh tại một điểm cách điểm treo 36cm thì vật sẽ dao động với chu kỳ bao nhiêu?
A. 1,6 s B. 1,8 s C. 2 s D. Không tính được vì vật không dao động điều hòa.
5. Tại một nơi trên mặt đất, một con lắc đơn dao động điều hòa. Trong khoảng thời gian t, con lắc thực hiện 60 dao
động toàn phần; thay đổi chiều dài con lắc một đoạn 44 cm thì cũng trong khoảng thời gian t ấy, nó thực hiện 50 dao
động toàn phần. Chiều dài ban đầu của con lắc là:
A. 144 cm. B. 60 cm. C. 80 cm. D. 100 cm.
6. Một con lắc lò xo có khối lượng 200 g dao động điều hòa với chu kì 0,8 s. Để chu kì của con lắc là 1 s thì cần
A. gắn thêm một quả nặng 112,5 g. B. gắn thêm một quả nặng có khối lượng 50 g.
C. Thay bằng một quả nặng có khối lượng 160 g. D. Thay bằng một quả nặng có khối lượng 128 g.
7. Con lắc đơn dài l treo trong thang máy, khi thang máy đang đi lên nhanh dần đều với độ lớn gia tốc là a. Biết gia tốc
rơi tự do là g. Chu kì dao động T (biên độ nhỏ) của con lắc trong thời gian thang máy có gia tốc đó cho bởi biểu thức
A. T = 2
g
B. T = 2
ga
C. T = 2
ga
D. T = 2
22
ga
8. Một con lắc lò xo có độ cứng k và vật có khối lượng m, dao động điều hòa với chu kì T = 1 s. Muốn tần số dao động
của con lắc là f’ = 0,5 Hz, thì khối lượng m’ của vật phải là
A. m’ = 2m. B. m’ = 3m. C. m’ = 4m. D. m’ = 5m.
9. Tại cùng một nơi trên Trái Đất, con lắc đơn có chiều dài
dao động điều hòa với chu kì 2 s, con lắc đơn có chiều
dài 2
dao động điều hòa với chu kì là: A. 2 s. B. 22s. C. 2 s. D. 4 s.
10. Tại một nơi trên mặt đất, con lắc đơn có chiều dài l đang dao động điều hòa với chu kì 2 s. Khi tăng chiều dài của
con lắc thêm 21 cm thì chu kì dao động điều hòa của nó là 2,2 s. Chiều dài
l bằng
A. 2 m. B. 1 m. C. 2,5 m. D. 1,5 m.
12. Một con lắc đơn có chiều dài dây treo 50 cm và vật nhỏ có khối lượng 0,01 kg mang điện tích q
= +
5.10
-6
C, được coi
là điện tích điểm. Con lắc dao động điều hòa trong điện trường đều mà vectơ cường độ điện trường có độ lớn E = 10
4
V/m
và hướng thẳng đứng xuống dưới. Lấy g = 10 m/s
2
, π = 3,14. Chu kì dao động của con lắc là
A. 0,58 s. B. 1,99 s. C. 1,40 s. D. 1,15 s.
13. Treo con lắc đơn vào trần một ôtô tại nơi có gia tốc trọng trường g = 9,8 m/s
2
. Khi ôtô đứng yên thì chu kì dao động
điều hòa của con lắc là 2 s. Nếu ôtô chuyển động thẳng nhanh dần đều trên đường nằm ngang với gia tốc 2 m/s
2
thì chu
kì dao động điều hòa của con lắc xấp xỉ bằng:
A. 2,02 s. B. 1,82 s. C. 1,98 s. D. 2,00 s.
14. Hai con lắc đơn dao động điều hòa tại cùng một vị trí trên Trái Đất. Chiều dài và chu kì dao động của con lắc đơn
lần lượt là , và T
1
, T
2
. Biết T
1
/T
2
= 2. Hệ thức đúng là:
1
2
A. = 2 B. = 4 C. 2 = D. 4 =
1
2
1
2
1
2
1
2
15. Một con lắc đơn được treo vào trần một thang máy. Khi thang máy chuyển động thẳng đứng đi lên nhanh dần đều
với gia tốc có độ lớn a thì chu kì dao động điều hòa của con lắc là 2,52 s. Khi thang máy chuyển động thẳng đứng đi
lên chậm dần đều với gia tốc cũng có độ lớn a thì chu kì dao động điều hòa của con lắc là 3,05 s. Khi thang máy đứng
yên thì chu kì dao động điều hòa của con lắc là:
A. 2,96 s. B. 2,84 s. C. 2,75 s. D. 2,78 s.
16. Một con lắc lò xo gồm vật có khối lượng m và lò xo có độ cứng k không đổi, dao động điều hoà. Nếu khối lượng m
= 50 g thì chu kì dao động của con lắc là 1 s. Để chu kì con lắc là 2 s thì phải treo thêm vật có khối lượng m’ bằng
A. 200 g. B. 100 g. C. 150 g. D. 800 g.
17. Một con lắc lò xo treo thẳng đứng dao động điều hòa với chu kì 0,4 s. Khi vật ở vị trí cân bằng, lò xo dài 42 cm.
Lấy g =
2
(m/s
2
). Chiều dài tự nhiên của lò xo là : A. 36cm. B. 38cm. C. 42cm. D. 42cm.
18. Tại một vị trí trên Trái Đất, con lắc đơn có chiều dài dao động điều hòa với chu kì T
1
; con lắc đơn có chiều dài
(biết rằng < ) dao động điều hòa với chu kì T
2
. Cũng tại vị trí đó, con lắc đơn có chiều dài - dao động
điều hòa với chu kì: A.
1
2
2
1
1
2
12
12
TT
TT
. B.
22
12
TT . C.
12
12
TT
TT
D.
22
12
TT .
19. Tại một nơi hai con lắc đơn đang dao động điều hòa. Trong cùng thời gian, con lắc thứ nhất thực hiện được 4 dao
động, con lắc thứ hai thực hiện được 5 dao động. Tổng chiều dài của hai con lắc là 164 cm. Chiều dài của mỗi con lắc
lần lượt là
A. l
1
= 100 m, l
2
= 6,4 m. B. l
1
= 64 cm, l
2
= 100 cm.
C. l
1
= 1,00 m, l
2
= 64 cm. D. l
1
= 6,4 cm, l
2
= 100 cm.
20. Một chiếc xe chạy trên con đường lát gạch, cứ sau 15m trên đường lại có một rãnh nhỏ. Biết chu kì dao động riêng
của khung xe trên các lò xo giảm xóc là 1,5s. Vận tốc xe bằng bao nhiêu thì xe bị xóc mạnh nhất?
A. 10 km/h B. 27 km/h C. 34 km/h D. 36 km/h
21. Một con lắc lò xo gồm vật m và lò xo k = 10 N/m. Con lắc dao động cưỡng bức dưới tác dụng của ngoại lực tuần
hoàn có tần số góc
F
. Biết biên độ của ngoại lực tuần hoàn không thay đổi. Khi thay đổi
F
thì biên độ dao động của
viên bi thay đổi và khi
F
= 10 rad/s thì biên độ dao động của viên bi đạt giá trị cực đại. Khối lượng m của vật bằng
A. 40 gam. B. 10 gam. C. 120 gam. D. 100 gam
22. Một vật dao động tắt dần có các đại lượng nào sau đây giảm liên tục theo thời gian?
A. Biên độ và tốc độ B. Li độ và tốc độ C. Biên độ và gia tốc D. Biên độ và cơ năng
23. Một vật dao động cưỡng bức dưới tác dụng của ngoại lực F = F
0
cosft (với F
0
và f không đổi, t tính bằng s). Tần
số dao động cưỡng bức của vật là:
A. f. B. f. C. 2f. D. 0,5f.
24. Một con lắc lò xo dao động tắt dần chậm và cứ sau một chu kì dao động thì biên độ của nó giảm 2% so với biên độ
dao động của con lắc trong chu kì trước đó. Nếu cơ năng ban đầu của hệ là W thì sau 5 chu kì dao động, cơ năng của hệ
còn lại xấp xỉ bằng bao nhiêu % của W?
A. 90,0%. B. 90,4%. C. 81,7%. D. 81,0%.
25. Một con lắc lò xo ngang gồm vật nhỏ khối lượng 0,02 kg và lò xo có độ cứng 1 N/m. Hệ số ma sát trượt giữa giá đỡ
và vật nhỏ là 0,1. Ban đầu giữ vật ở vị trí lò xo bị nén 10 cm rồi buông nhẹ để con lắc dao động tắt dần. Lấy g = 10
m/s
2
. Quãng đường vật đị được kể từ lúc thả đến lúc dừng lại lần đầu là:
A. 20,0 cm. B. 16,4 cm. C. 16,0 cm. D. 14,0 cm.
26. Một con lắc lò xo ngang gồm vật nhỏ khối lượng 0,02 kg và lò xo có độ cứng 1 N/m. Hệ số ma sát trượt giữa giá đỡ
và vật nhỏ là 0,1. Ban đầu giữ vật ở vị trí lò xo bị nén 10 cm rồi buông nhẹ để con lắc dao động tắt dần. Lấy g = 10
m/s
2
. Tốc độ lớn nhất vật nhỏ đạt được trong quá trình dao động là
A. 10 30 cm/s. B. 20 6 cm/s. C.
40 2
cm/s. D. 40 3 cm/s.
27. Một con lắc lò xo ngang gồm lò xo có độ cứng k = 100N/m và vật m = 100g, dao động trên mặt phẳng ngang, hệ số
ma sát giữa vật và mặt ngang là = 0,02. Kéo vật lệch khỏi VTCB một đoạn 10cm rồi thả nhẹ cho vật dao động.
Quãng đường vật đi được từ khi bắt đầu dao động đến khi dừng hẳn là
A. s = 50m. B. s = 25m. C. s = 50cm. D. s = 25cm.
28. Một con lắc đơn gồm vật nặng m, dây treo dài 1m dao động điều hòa dưới tác dụng của ngoại lực F = F
0
cos(2ft).
Lấy g = π
2
m/s
2
. Nếu chỉ thay đổi tần số ngoại lực từ 1 Hz đến 3 Hz thì biên độ dao động của con lắc thay đổi thế nào?
A. không thay đổi. B. giảm dần. C. tăng rồi giảm. D. tăng dần.
PHÂN DẠNG BÀI TẬP DAO ĐỘNG CƠ (4)
8. Dạng 8: Tổng hợp các dao động điều hoà cùng phương cùng tần số
- Nếu: x
1
= A
1
cos(t +
1
) và x
2
= A
2
cos(t +
2
) thì x = x
1
+ x
2
= Acos(t + )
Trong đó A và
được xác định bởi: A
2
= A
1
2
+ A
2
2
+ 2 A
1
A
2
cos (
2
-
1
); tan =
112 2
112
Asin A sin
Acos Acos
2
- Trường hợp vật tham gia nhiều dao động điều hòa cùng phương cùng tần số thì ta có:
A
x
= Acos = A
1
cos
1
+ A
2
cos
2
+ A
3
cos
3
+ …; A
y
= Asin = A
1
sin
1
+ A
2
sin
2
+ A
3
sin
3
+ …
Khi đó biên độ và pha ban đầu của dao động hợp là: A =
2
x
AA
2
y
và tan = A
y
/A
x
.
* Lưu ý: Nếu có một phương trình dao động thành phần dạng sin thì phải đổi phương trình này sang dạng cosin.
Câu hỏi và bài tập trắc nghiệm
1
. Cho hai dao động cùng phương x
1
= 4cos(t - /6) (cm) và x
2
= 4cos(t + /2) (cm). Dao động tổng hợp của hai dao động này có
biên độ là:
A. 8 cm. B. 4 cm. C. 4 3 cm. D. 4 2 cm.
2. Chuyển động của một vật là tổng hợp của hai dao động điều hòa cùng phương. Hai dao động này có phương trình lần lượt là x
1
=
4cos(10t -
/4) (cm;s) và x
2
= 3cos(10t + 3/4) (cm;s). Độ lớn vận tốc của vật khi qua vị trí cân bằng là
A. 100 cm/s. B. 10 cm/s. C. 70 cm/s. D. 50 cm/s.
3. Dao động tổng hợp của hai dao động cùng phương, cùng tần số có phương trình li độ là x =
3cos(πt +
/6)(cm).
Biết dao động thứ
nhất có phương trình li độ là x
1
=
5cos(πt
+ /6) (cm). Dao động thứ hai có phương trình li độ là
A. x
2
=
8cos(πt
+ /6) (cm). B. x
2
=
2cos(πt
+ /6) (cm). C. x
2
=
2cos(πt
-
5
/6
) (cm). D. x
2
=
8cos(πt
-
5
/6
) (cm).
4. Chuyển động của một vật là tổng hợp của hai dao động điều hòa cùng phương. Hai dao động này có phương trình lần lượt là x
1
= 3cos10t(cm;s) và x
2
= 4cos(10t - /2) (cm;s). Gia tốc của vật có độ lớn cực đại bằng
A. 7 m/s
2
. B. 1 m/s
2
. C. 0,7 m/s
2
. D. 5 m/s
2
.
5. Dao động của một chất điểm có m = 100 gam là tổng hợp của hai dao động điều hòa cùng phương, có phương trình: x
1
=
4cos(10t-
/2) (cm;s) và x
2
= 10cos(10t+/2) (cm;s). Mốc thế năng ở vị trí cân bằng. Cơ năng của chất điểm bằng
A. 0,018 J. B. 0,098 J. C. 0,058 J. D. 0,036 J.
6. Vật m = 500g thực hiện dao động tổng hợp của hai dao động điều hoà cùng phương, cùng tần số, với các phương trình là x
1
=
5cos(10t +
) (cm;s) và x
2
= 3cos(10t - ) (cm;s). Giá trị cực đại của lực tổng hợp tác dụng lên vật là
A. 2,5 N. B. 1,5 N. C. 4,0 N. D. 1,0 N.
7. Hai dao động cùng phương có phương trình dao động: x
1
= 5cos(10t + ) (cm;s) và x
2
= 5cos(10t + /3) (cm;s). Giá trị vận tốc
cực đại và gia tốc cực đại của dao động tổng hợp lần lượt là:
A. 50 cm/s và 5 m/s
2
. B. 100 cm/s và 10 m/s
2
. C. 50 2 cm/s và 5 2 m/s
2
. D. 0 và 0.
8. Vật thực hiện đồng thời hai dao động thành phần cùng phương: x
1
= A
1
cos(5t + /6) (cm;s) và x
2
= 6cos(5t + 5/6) (cm;s). Biết
gia tốc cực đại của vật bằng 2,5 m/s
2
. Biên độ A
1
có giá trị là A. 10 cm. B. 8 cm. C. 4 cm. D. 6 cm.
9. Một vật thực hiện đồng thời hai dao động điều hoà cùng phương, cùng tần số có biên độ lần lượt là 9 cm và 4 cm. Biên độ dao động
tổng hợp không thể có giá trị là:
A. A = 5 cm. B. A = 4 cm. C. A = 13 cm. D. A = 11 cm.
10. Hai dao động điều hòa cùng phương, cùng tần số cùng biên độ A
1
= A
2
= 4 cm lệch pha về thời gian là 1/6 chu kì thì biên độ
của dao động tổng hợp là:
A. 8 cm. B. 4 3 cm. C. 4 cm. D. 4 2 cm.
11. Một vật thực hiện đồng thời hai dao động cùng phương: x
1
= 4sin(t + ) cm và x
2
= 4 3 cos(t) cm. Biên độ dao động tổng
hợp đạt giá trị nhỏ nhất khi:
A. = 0. B. = . C. = /2 D. = -/2 .
12. Hai dao động cùng phương x
1
= A
1
cos(5t + /6) (cm) và x
2
= A
2
cos(5t + ) (cm). Dao động tổng hợp của hai dao động này
có phương trình x = 3cos(5
t + ) (cm). Thay đổi A
1
cho đến khi biên độ A
2
đạt giá trị cực đại thì
A. = /6 rad B. = 5/6 rad C. = 2/3 rad D. = /2 rad
13. Hai dao động cùng phương x
1
= A
1
cos(5t - /6) (cm) và x
2
= 6cos(5t + /2) (cm). Dao động tổng hợp của hai dao động này
có phương trình x = Acos(5
t + ) (cm). Thay đổi A
1
cho đến khi biên độ A đạt giá trị cực tiểu thì
A. = /3 rad B. = -/3 rad C. = /6 rad D. = -/6 rad
14. Hai vật dao động điều hòa dọc theo các trục song song với nhau. Phương trình dao động của các vật lần lượt là x
1
= A
1
cost
(cm) và x
2
= A
2
sint (cm). Biết 64
2
1
x
+ 36
2
2
x
= 48
2
(cm
2
). Tại thời điểm t, vật thứ nhất đi qua vị trí có li độ x
1
= 3 3 cm với vận
tốc v
1
= -18 cm/s. Khi đó vật thứ hai có tốc độ bằng A. 24 3 cm/s. B. 24 cm/s. C. 8 cm/s. D. 8 3 cm/s.
15. Hai chất điểm dao động trên trục Ox với phương trình x
1
= 12cos(5t - /6) (cm) và x
2
= 6cos(5t + /6) (cm). Khoảng cách
lớn nhất giữa hai chất điểm bằng:
A. 18 cm B. 12 cm C. 6 3 cm D. 6 6 cm
16. Hai dao động cùng phương lần lượt có phương trình x
1
= A
1
cos(t + /6) (cm) và x
2
= 6cos(t - /2)(cm). Dao động tổng hợp
của hai dao động này có phương trình x = Acos(
t + ) (cm). Thay đổi A
1
cho đến khi biên độ A đạt giá trị cực tiểu thì pha ban đầu
của dao động tổng hợp có giá trị bằng bao nhiêu.
A.
/2. B. /3. C. /4. D. /6.
17.
Hai vật dao động điều hòa dọc theo các trục song song với nhau. Phương trình dao động của các vật lần lượt là x
1
= A
1
cost
(cm) và x
2
= A
2
sint (cm). Biết 64
2
1
x
+ 36
2
2
x
= 48
2
(cm
2
). Khoảng cách lớn nhất giữa hai chất điểm bằng:
A. 14 cm B. 2 cm C. 10 cm D. 7 cm