Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (182.85 KB, 3 trang )
PHÂN TÍCH HỒI QUI TUYẾN TÍNH VỚI SPSS
Hồi qui là một mô hình thống kê được sử dụng để dự đoán giá trị của biến phụ thuộc
(dependence variable) hay còn gọi là biến kết quả dựa vào những giá trị của ít nhất 1 biến
độc lập (independence variable) hay còn gọi là biến nguyên nhân. Nếu mô hình hồi qui phân
tích sự phụ thuộc của 1 biến phụ thuộc vào 1 biến độc lập gọi là hồi qui đơn, nếu có nhiều
biến độc lập gọi là hồi qui bội.
Hồi qui tuyến tính là mô hình hồi qui trong đó mối quan hệ giữa các biến được biểu diễn bởi
một đường thẳng (đường thẳng là đường phù hợp nhất với dữ liệu).
Bài viết này giới thiệu sơ lược về mô hình hồi qui tuyến tính đơn và cách thực hiện hồi qui
trên phần mềm SPSS v18
Hồi qui tuyến tính đơn
Hồi qui tuyến tính đơn biểu diễn mối quan hệ giữa biến phụ thuộc vào 1 biến độc lập. Mô
hình hồi qui được biểu diễn như sau:
Ví dụ: Có dữ liệu về diện tích của 7 cửa hàng bán trái cây và doanh thu hàng năm như sau:
Yêu cầu: Lập mô hình hồi qui tuyến tính thể hiện mối quan hệ giữa doanh thu và diện tích
của cửa hàng.
Sử dụng SPSS
1. Mở SPSS, tạo một file dữ liệu mới với tên và định dạng của các biến trong tab Variable
view như sau:
- Nhập dữ liệu trong tab : Data view như sau:
2.Thực hiện hồi qui như sau:
Trong menu Analyze, chọn Regression, chọn Linear, xuất hiện hộp thoại, chỉ định biến phụ thuộc trong ô Dependent
và các biến độc lập trong ô Independent(s)
Thiết lập thêm các tham số tùy chọn (nếu cần thiết) để giải thích mô hình
Bấm OK để thực hiện hồi qui. Kết quả như sau:
Các hệ số hồi qui được cho trong bảng Coefficients
Phương trình hồi qui tương ứng
Khi diện tích tăng lên 1 đơn vị, mô hình dự đoán doanh thu hàng năm tăng trung bình
1487$.
Bây giờ sử dụng mô hình hồi qui trên để dự đoán doanh thu hàng năm cho cửa hàng có diện tích 1400m2:
Doanh thu = 1636.415+1.487*1400= 3718.215 ($000)