MINISTRY OFEDUCATION ANDTRAINING
VINHU N I V E R S I T Y
LEKHA NHHUNG
ONT H E E X I S T E N C E O F F I X E D P O I N
T FORS O M E M A P P I N G C L A S S E S
INSPACESWITH UN IFORMSTRUCT
UREANDA P P L I C A T I O N S
Speciality:M a t h e m a t i c a l A
nalysisCode:6 2 4 6 0 1 0 2
ASUMMARYOFMATHEMATICSDOCTORALTHESI
S
NGHEAN-2015
WorkiscompletedatVinhUniversity
Supervisors:
1. Assoc.P r o f . D r . T r a n VanAn
2. Dr.K i e u PhuongChi
Reviewer1:
Reviewer2 :
Reviewer3 :
ThesiswillbepresentedanddefendedatschoollevelthesisevaluatingCouncilatVinhUniversity
at...... h ...... d a t e ...... m o n t h ...... y e a r ......
Thesiscanbefoundat:
1. Nguyen Thuc Hao Library and InformationCenter
2. VietnamNationalLibrary
1
PREFACE
1
Rationale
1.1. The first result on fixed points of mappings was obtained in
1911.At thattime, L. Brouwer proved that:E v e r y
continuous
m a p p i n g f r o m a c o m p a c t c o n v e x set in a finite-dimensional
space into itself has at least one fixed point.In 1922, S.Banach
introduced a class of contractive mappings in metric spaces and proved
thefamous contraction mapping principle: Each contractive mapping
from
a
completemetricspace(X,
d)intoitselfhasauniquefixedpoint.ThebirthoftheBanachcontraction
principle
and
its
application
to
study
the
mapping
existence
of
solutionsofdifferentialequationsmarksanewdevelopmentofthestudyoffixedp
ointtheory.After that, many mathematicians have studied to extend the Banach
contractionmapping
principle
for
classes
of
maps
and
different
spaces.Expanding only contractivemappings, till 1977, was summarized and
compared with 25 typical formats by B.E.Rhoades.
1.2. The Banach contraction mapping principle associates with the
class of con-tractivemappingsT:X→Xin complete metric space (X, d) with
the contractivecondition
(B)d (Tx,Ty)≤kd(x,y),f o r a l l x , y∈ Xw h e r e 0 ≤k< 1.
There have been many mathematicians seeking to extend the Banach
contractionmapping principle for classes of mappings and different spaces. The first
extendingwasobtainedbyE.Rakotchbymitigatingacontractiveconditiono
¡
ftheform
¢
(R)d (Tx,Ty)≤ θ d(x,y)d
(x,y),f o r a l l x , y∈ X,w h e r e θ : → [ 0 ,1)i s a
+
monotoned e c r e a s i n g f u n c t i o n .
In 1969, D. W. Boyd and S. W. Wong introduced an extended form of
the aboveresultbyconsideringacontractiveconditionoftheform
¡
(BW)d(Tx,Ty)≤ϕd(x,y), forall x,y∈ X,whereϕ: +→+isasemiright
¢
uppercontinuousfunctionandsatisfies
0≤ϕ(t)
2
In2001,B.E.Roades,whileimprovingandextendingaresultofY.I.Alber
and
S.Guerre-Delabriere,gaveacontractiveconditionoftheform
¡
(R1)d(Tx,Ty)≤d(x, y)−ϕ d(x, y) , for allx, y∈X,whereϕ:+→+is
¢
acontinuous,monotoneincreasingfunctionsuchthatϕ(t)=0ifandonlyift
=0.
Followingthewayofreducingcontractiveconditions,in2008,P.N.DuttaandB.
S.Choudhuryintroducedacontractiveconditionoftheform
¡
¢
¡
¢
¡
(DC)ψd(Tx,Ty)≤ψ
¢ d(x, y)−ϕ d(x, y) , for allx, y∈X,whereψ, ϕ:+→+is a
continuous, monotone non-decreasing functions such thatψ(t) = 0 =ϕ(t)
ifandonlyift=0.
In 2009, R. K. Bose and M. K. Roychowdhury introduced the notion of
new
gen-
eralizedweakcontractivemappingswiththefollowingcontractiveconditionin
¡
¢
¡
¢
¡
ordertostudycommonfixedpointsofmappings
¢
(BR)ψ d(Tx,Sy
≤ψd (x,y)− ϕd (x,y), forallx,y∈X,whereψ,ϕ: +→
+arecontinuousfunctionssucht h a t ψ (t)> 0 ,ϕ(t)> 0 f o r a l l t > 0 a n d ψ (0)= 0=
ϕ(0),moreover,ϕisamonotonenondecreasingfunctionandψisamonotone
increasingf u n c t i o n .
In 2012, B. Samet, C. Vetro and P. Vetro introduced the notion ofα-ψcontractivetypemappingsincompletemetricspaces,withacontractivecondi
¡
¢
≤
∈ →+
tionoftheform
(SVV)α (x,y)d(Tx,Ty)ψ d (x,y), f o rΣa l l x , yXw h e r e ψ : isamonotoneno
+
+∞ψn
n-decreasingfunctionsatisfying
(t)<+∞forallt>0and
n=1
α:X×X→ +.
1.3. In recent years, many mathematicians have continued the trend of
generalizingcontractive conditions for mappings in partially ordered metric
spaces.Following thistrend, in 2006, T. G. Bhaskar and V. Lakshmikantham
introduced the notion ofcoupled fixed points of mappingsF: X×X→ Xw i t h
the
mixed
monotone
p r o p e r t y andobtainedsomeresultsfortheclassofthosemappingsinpartiallyor
deredmetricspacessatisfyingthecontractivecondition
¡
¢≤k
(BL)T h e r e e x i s t s k ∈ [0,1)s u c h t h a t d F(x,y),F(u,v)
³d(x,u)+d(y,v)´,
fora l l x , y,u,v∈ Xs u c h t h a t x ≥u,y≤ v.
2
In 2009, by continuing extending coupled fixed point theorems, V.
Lakshmikanthamand L. Ciric obtained some results for the class of
mappingsF:X×X→Xwithg-mixed monotone property, whereg:X→Xfrom a
partially
ordered
metric
spaceintoitselfandFs a t i s f i e s thefollowingcontractivecondition
¡
¢+ ¡
¢
³d g(x),g(u) d g(y),g(v) ´
¡
¢
(LC)d F(x,y),F(u,v) ≤ϕ
,
2
forall x ,y,u,v∈Xw i t h g(x)≥g(u),g(y)≤g(v)andF(X×X)⊂g(X).
In 2011, V. Berinde and M. Borcut introduced the notion of triple
fixed points fortheclassofmappingsF:X×X×X→Xand obtained some triple fixed
pointtheorems for mappings with mixed monotone property in partially
ordered metricspacessatisfyingthecontractivecondition
(BB)T h e r e e x i s t s c o n s t a n t s j , k , l ∈[ 0 ,1)s u c h t h a t j + k+ l
¡
<1s a t i s f y dF(x, y, z), F(u, v, w)≤jd(x, u) +kd(y, v) +ld(z, w),forallx, y, z, u, v,
w∈Xwithx≥u,y ≤v,z≥w.
¢
After that, in 2012, H. Aydi and E. Karapinar extended the above
result andobtained some triple fixed point theorems for the class of
mappingF:X×X×X→ Xwith mixed monotone property in partially ordered metric spaces and
satisfying thefollowingweakcontractivecondition
(AK)Thereexistsafunctionsuchthatforallxu,yv,zwwehave
Ă
Â
â
}.
d T F(x,y,z),T F(u,v,w)
max d(T x,T u),d(T y,T v),d(T z,T w)
1.4. The development of fixed point theory is motivated from its
popular ap-plications, especially in theory of differential and integral
equations, where the firstimpression is the application of the Banach
contraction
mapping
principle
to
studytheexistenceofsolutionsofdifferentialequations.
In the modern theory of differential and integral equations, proving the
existence ofsolutions or approximating the solutions are always reduced to
applying
appropriatelycertain
fixed
point
theorems.For
boundary
problems with bounded domain, fixedpoint theorems in metric spaces
are enough to do the above work well. However, forboundary problems with
unbounded
domain,
fixed
point
theorems
in
metric
spaces
arenotenoughtodothatwork.So,inthe70soflastcentury,alongwithseekingtoext
endtomappingclasses,onewaslookingtoextendtoclassesofwiderspaces.One of typicaldirections
of this expansion is seeking to extend results on fixed points of mappings
inmetricspacestotheclassoflocalconvexspaces,morebroadly,uniformspacesw
hichhasattractedtheattentionofmanymathematical, notablyV.G.An
gelov.
In 1987, V. G. Angelov considered the family of real functions Φ
={φα:α∈I}such that for eachα∈I,φα:+→+is a monotone increasing,
continuous,φα(0) = 0 and 0< φα(t)< tfor allt >0.Then he introduced the
notion
ofΦ¡
contractivemappings,whicharemappingsT:
M→ Xs a t i s f y i n g
(A)d α(Tx,Ty)≤φαd j(α)(x,y)forallx,y∈Ma n d forallα∈I,whereM⊂ X
¢
andobtainedsomeresultsonfixedpointsoftheclassofthosemappings.B y in
tro-
ducingthenotionofspaceswithjboundedproperty,V.G.Angelovobtainedsomeresultsontheuniqueexiste
nceofafixedpointoftheabovemappingclass.
Following the direction of extending results on fixed points to the
class of localconvex spaces, in 2005, B. C. Dhage obtained some fixed
point theorems in Banachalgebras by studying solutions of operator
equationsx=AxBxwhereA:X→X,B:S→Xare
two
operators
satisfying
thatAisD-Lipschitz,Bis completelycontinuous andx=AxByimpliesx∈Sfor
ally∈S, whereSis a closed, convexand bounded subset of the Banach
algebraX,such that it satisfies the contractivecondition
¡
(Dh)||T
x−Ty||≤φ||x−y||for
allx,
y∈X,whereφ:+→+is
¢
decreasingcontinuousfunction,
φ(0)=0.
a
non-
1.5. Recently, together with the appearance of classes of new contractive
mappings,and new types of fixed points in metric spaces, the study trend on
the fixed pointtheory has advanced steps of strong development.With
above reasons, in order toextend results in the fixed point theory for
classes of spaces with uniform structure,we chose the topic‘‘On the
existence
of
fixed
points
for
some
mapping
classesinspaces
withuniform structureandapplications”forourdoctoralthesis.
2
Objectiveo f t h e r e s e a r c h
The purpose of this thesis is to extend results on the existence of
fixed pointsin metric spaces to some classes of mappings in spaces with
uniform structure andapply to prove the existence of solutions of some
classes of integral equations withunboundeddeviation.
3
Subjecto f t h e r e s e a r c h
Study objects of this thesis are uniform spaces, generalized
contractive map-pings in uniform spaces, fixed points, coupled fixed points,
triple
fixed
points
of
somemappingc l a s s e s i n s p a c e s w i t h u n i f o r m s t r u c t u r e , s o m e c l a s s e s o
fintegralequations.
4
Scopeoftheresearch
The thesis is concerned with study fixed point theorems in uniform
spaces andapply to the problem of the solution existence of integral equations with
unboundeddeviationalfunction.
5
Methodologyo f t h e r e s e a r c h
We use the theoretical study method of functional analysis, the
method of thedifferential and integral equation theory and the fixed point
theory in process of study-ingthetopic.
6
Contributiono f t h e t h e s i s
The thesis is devoted to extend some results on the existence of
fixed points inmetric spaces to spaces with uniform structure. We also
considered the existence ofsolutions of some classes of integral
equations
with
unbounded
deviation,
which
wecannotapplyfixedpointtheoremsinmetricspaces.
The thesis can be a reference for under graduated students, master
students andPh.D students in analysis major in general,a n d t h e fi x e d
p o i n t t h e o r y a n d a p p l i c a t i o n s inparticular.
7
OverviewandOrganization ofther ese arch
Thecontentofthisthesisispresentedin3chapters.Inaddition,thethesisalso
consists Protestation, Acknowledgements, Table of Contents, Preface, Conclusionsand
Recommendations, List of scientific publications of the Ph.D. student
related tothethesis,andReferences.
In chapter 1, at first we recall some notions and known results about
uniformspaces which are needed for later contents.Then we introduce the
notion of (Ψ,Π)-)-contractive mapping, which is an extension of the notion of
(ψ,
of
ϕ)-contraction
P.
N.DuttaandB.S.Choudhuryinuniformspaces,andobtainedaresultontheexist
enceoffixedpoints of the (Ψ,Π)-)-contractive mapping inu n i f o r m s p a c e s . B y
i n t r o d u c i n g the notion of uniform spaces withj-monotone decreasing
property, we get a resulton the existence and uniqueness of a fixed point
of (Ψ,Π)-)-contractive mapping.Con-tinuously, by extending the notion ofα-ψcontractive mapping in metric spaces touniform spaces, we introduce the
notion of (β,Ψ1)-contractive mappings in uniformspaces and obtain some
fixed
point
theorems
for
the
class
of
those
mappings.
Theo-
rems,whichareobtainedinuniformspaces,areconsideredasextension
softheoremsincompletemetricspaces.Finally,applyingourtheoremsaboutfixedpointsoftheclass of
(β,Ψ1)-contractive mapping in uniform spaces, we prove the existence of solutions of a class of nonlinear integral equations with unbounded
deviations.Notethat, when we consider a class of integral equations with
unbounded
deviations,
wecannotapplyknownfixedpointtheoremsinmetricspaces.Mai n resultsof
Chapter
1 isTheorem1.2.6,Theorem1.2.9,Theorem1.3.11andTheorem1.4.3.
In Chapter 2, we consider extension problems in partially ordered
uniform spaces.Firstly,i n s e c t i o n 2 . 1 , w e o b t a i n r e s u l t s o n
couple
fi x e d
points
for
a
mapping
c l a s s in partially
ordered uniform spaces when we extend (LC)-contractive condition of
V.LakshmikanthamandL.Ciricformappingsinuniformspaces.In section 2.2, byextending
the contractive condition (AK) of H. Aydi and E.Karapinar for
mappingsin uniform spaces, we get results on triple fixed points of a
class
in
partially
ordereduniformspaces.Insection2.3,byintroducingnotionsofupper(lower)c
ouple,upper(lower) triple solution, and applying results in section 2.1, 2.2, we prove the
uniqueexistence of solution of some classes of non-linear integral equations
with unboundeddeviations.Main results of Chapter 2 are Theorem 2.1.5,
Corollary
2.1.6,
Theorem2.2.5,Corollary2.2.6,Theorem2.3.3andTheorem2.3.6.
In Chapter 3, at first we present systematically some basic notions
about locallyconvex algebras needed for later sections. After that, in
section
3.2,
by
extending
thenotionofD-
Lipschitzmapsformappingsinlocallyconvexalgebrasandbybasingonknownres
ultsinBanachalgebras,anduniformspaces,weproveafixed pointtheoremi
nlocallyconvexalgebraswhichisanextensionofanobtainedresultbyB.C.Dhage
.Finally,insection3.3,applyingobtainedtheorems,weprovetheexistenceofsol
utionofaclassofintegralequationsinlocallyconvexalgebraswithunboundeddevi
ations.MainresultsofChapter3areTheorem3.2.5,Theorem3.3.2.
In this thesis, we also introduce many examples in order to illustrate
our resultsandthemeaningofgivenextensiontheorems.
CHAPTER1
UNIFORMSPACES
ANDF I X E D P O I N T T H E O R E M S
In this chapter, firstly we present some basic knowledge about
uniform spacesand useful results for later parts.T h e n , w e g i v e s o m e fi x e d
p o i n t t h e o r e m s f o r t h e c l a s s of (Ψ,Π)-)-contractive mappings in
uniform
spaces.In
the
last
part
of
this
chapter,
weextendfixed pointtheoremsfortheclassof α-ψcontractivemappingsinmetricspacesto uniform spaces. After that, we apply these new
results
to
show
a
class
of
integralequationswithunboundeddeviationshavingauniquesolution.
1.1 Uniformspaces
In this section, we recall some knowledge about uniform spaces
needed for laterpresentations.
LetXb e a n onemptys e t, U, V⊂X×X.W e de n ote by 1)U −1={(x,y
)∈X×X: (y,x)∈U}.
2) U◦V={(x,z):∃y∈X,(x,y)∈U,(y,z)∈V}andU ◦Ui s re pla c e d b y U 2.
3) ∆(X)={(x,x):x∈X}iss a i d t o b e a di a g on a l ofX.
4) U[A]={y∈ X:∃x∈Asuchthat(x,y)∈U},w h e r e A ⊂XandU [{x}]i s repl
acedbyU[x].
Definition1.1.1.A n uniformityoruniformstructureonXisanon-emptyfamily
Uc o n s i s t i n g o f s u b s e t s o f X × Xwhichs a t i s f y t h e f o l l o w i n g c o n d i t i o n s
1) ∆(X)⊂Uf o r a l l U ∈ U.
2) IfU ∈ Ut h e n U −1∈U.
3) IfU∈ Ut h e n t h e r e e xi s t s V ∈Us u c h t h a t V 2⊂U.
4) IfU , V∈ Ut h e n U ∩ V∈ U.
5) IfU∈
U a n d U ⊂ V⊂ X×Xt h e n V ∈ U.Theo r d e r e d p
a i r ( X,U)i s c a l l e d a un i fo r m space.
Inthissection,wealsopresenttheconceptoftopologygeneratedbyunif
ormstructure,uniformspacewithuniformstructuregeneratedbyafamilyofpseudom
etrics,
Cauchys e q u e n c e , s e q u e n t i a l l y c o m p l e t e u n i f o r m s p a c e a n d t h e r e l
a t i o n s h i p b e t w e e n them.
Remark1 . 1 . 8 .
1)L e t X b e a u n i f o r m s p a c e . T h e n , u n i f o r m t o p o l o g y o n X i s genera
tedbythefamilyofuniformcontinuouspseudometricsonX
2) IfEi s locallyconvexspacewithasaturatedfamilyofseminorms {
pα}α∈I,
thenwecand e fi n e a f a m i l y o f a s s o c i a t e p s e u d o m e t r i c s ρα(x,
y)
=pα(x−y)f o r e v e r y x,
y∈E.Theuniformtopologygeneratedthefamilyofassociatepseudometricscoinci
deswiththeoriginaltopologyofthespaceE.T h e r e f o r e , asacorollaryo
four
results,weobtainfixedpointtheoremsinthelocallyconvexspace.
3) Letj:I→ Ib e anarbitrarymappingoftheindex Ii n t o itself.T h e itera
tionsofjcanbedefinedinductively
¡
¢
j 0 (α)=α,j k (α)=j j k−1 (α) ,k=1,2,...
1.2 Fixedp oi nt s of w ea k cont r ac ti vem ap pi n gs
In the next presentations, (X,P)orXwe mean a Hausdorff uniform space
whoseuniformity
is
generated
by
a
saturated
family
of
pseudometricsP={dα(x,
y)
:α∈I},whereI i s a n i n d e x s e t . N o t e t h a t ,
( X,P)isH a u s d o r ff i f o n l y i f d α(x, y) = 0f o r a l l α∈Ii m p l i e s x=y.
Definition1 . 2 . 2 . Au n i f o r m s p a c e ( X,P)i s s a i d t o b e j boundedi f f o r e v e r y
α∈ Ia n d x , y∈ Xt h e r e e x i s t s q = q (x,y,α)s u c h t h a t d jn(α)(x,y)≤ q(x,y,α)<
∞,foralln∈.
LetΨ={ψα:α∈I}beafamilyoffunctionsψ α:+→+whichismonotonenondecreasingandcontinuous,ψ α(t)=0ifonlyift=0,forallα∈I.
DenoteΠ)-={ϕα:α∈I}beafamilyoffunctionsϕ α:+→+,α∈Isuchthat
ϕαiscontinuous,ϕα(t)=0ifonlyift=0.
Definition 1.2.4.LetXbe a uniform space.
a(Ψ,Π)-)-contractiveonXi f
A mapT:X→Xis called
¡
¢
¡
¢
¡
¢
ψα dα(Tx,Ty) ≤ψ α dj(α)(x, y) −ϕα dj(α)(x,y) ,
forallx,y∈Xa n d forallψ α∈Ψ,ϕα∈Π,α∈I.
Definition1.2.5.A uniformspace(X,P)iscalledtohavethejmonotonedecreasing
propertyi ff d α(x,y)≥dj(α)(x,y)f o r a l l x , y∈ Xa n d a l l α ∈I.
Theorem1 . 2 . 6 .
LetXi s aHausdorffsequentially completeuniformspaceand
T: X→X.Supposethat
1) Tisa(ΨΨ,Π)-)-contractivemaponX.
2) Amapj:I→Iissurjectiveandthereexistsx0∈Xsuchthatthesequence
{xn}w i t h x n= T x n−1,n= 1 ,2,...s a t i s f y i n g d α(xm,xm+n)≥ d j(α)(xm,xm+n)f o r a l l
m,n≥0,a l l α∈I.
Then,Th a s atleastonefixedpoint.X.
Moreover,ifXh a s jmonotonedecreasingproperty,thenTh a s auniquefixed point.
©
}
=
Example1 . 2 . 7 . L e t X = ∞ x = { xn}: x n∈ ,n= 1 ,2,.... F o r e v e r y n=
1 ,2, . . .w e d e n o t e b y P n: X → a m a p i s d e fi n e d b y P n(x)= x nf o r a l l
x={xn}
∈X.DenoteI=∗×+.For
every
(n,
pseudometricsd(n,r):X×X→,whichisgivenby
r)∈Iwe
define
a
. n(x)−Pn(y), fore v e r y ( x,y)∈X.
d(n,r)(x,y)=rP
.
Then,thec o l l e c t i o n o f p s e u d o m e t r i c s { d(n,r):
( n,r)∈ I}g e n e r a t e d a u n i f o r m i t y o n
X.
Nowf o r e v e r y ( n,r)∈ Iw e c o n s i d e r t h e f u n c t i o n s , w h i c h i s g i v e n
b y ψ (n,r)(t)=
2(n−1)
t,f o r a l l t ≥ 0,a n d p u t Ψ = Φ = { ψ
2n−1
³
´
(n,r)
:(n,r)∈I}.Denoteb y j : I→ I
,f o r a l l ( n,r)∈ Ia n d d e fi n e a m a p p i n
g
am a p i s d e fi n e d b y j (n,r)= ¡ 1 ¢2
n,r
1−
n
T: X→ Xw h i c h is de fin ed by
¡
¢
¡ 2¢
2
¡
2¢
),...,,
),1−
1−
(1−x
),...,1−
1−
(1−x
Tx=,1− 1− (1−x 1
2
n
3
3.
3
2
n
foreveryx={xn}∈X.
ApplyingT h e o r e m 1 . 2 . 6 , T h a s a u n i q u e fi x e d p o i n t , t h a t i s x ={1,1,...}.
Theorem1 . 2 . 9 .
LetXbeaHausdorffsequentiallycompleteuniformspaceand
T,S: X → Xbem a p p i n g s s a t i s f y i n g
¡
¢
¡
¢
¡
¢
ψα dα(Tx,Sy) ≤ ψ α dj(α)(x,y) −ϕ α dj(α)(x,y) ,
forallx, y∈ X,wher eψ α∈Ψ,ϕα∈Πf o r all α∈I.
Supposej:I→Ibe a
surjective
map andforsometix0∈Xsuch
that
thesequence{xn}withx2k+1=Tx 2k ,x 2k+2=Sx2k+1,
k≥0satisfiesdα(xm+n,
xm)≥dj(α)
(xm+n,xm)forallm,n≥0,α∈I.
Then,thereexistsu∈Xs u c h thatu=Tu=Su.
Moreover, ifXhas thej-monotone decreasing property, then there exists a
uniquepointu∈Xs u c h thatu=Tu=Su.
1.3 Fixedpoints of (β,Ψ1)-contractivetypemappings
DenoteΨ 1={ψα:α∈I}beafamilyoffunctions withtheproperties
(i) ψα:+→+ismonotonenon-decreasingandψ α(0)=0.
(ii) foreachα∈I,thereexistsψ α∈ 1suchthat
+
}
sup â
j n () (t):n=0,1,...
(t)a n d
n
(t)<+forallt>0.
n=1
Denotebya familyoffunctions={:XìX +,I}.
Definition1 . 3 . 7 . L e t ( X,P)bea u n i f o r m s p a c e ©
w i t h P =dα(x, }
y) :α∈IandT:X→Xbe a given mapping.We say thatTis an (β,Ψ1)-contractiveif for
everyfunctionβ α∈βa n d ψ α∈Ψ1wehave
¡
¢
βα(x,y).dα(Tx,Ty)≤ ψ α dj(α)(x,y) ,
fora l l x , y∈ X.
Definition1 . 3 . 8 . LetT : X→ X.W e s ay t h a t T i s a β -admissibleiff o r a ll x, y∈ X
andα ∈ I,β α(x,y)≥ 1i m p l i e s β α(Tx,Ty)≥ 1.
©
}
Theorem1.3.11.LetXbe a set andP=dα(x, y):α ∈ Ib e
a
family
o f pseudometrics onXsuch that(X,P)is a Hausdorff sequentially complete
uniformspace.LetT:X→Xbe
an(β,Ψ1)-contractive
mapping
satisfying
the
followingconditions
i) Ti s β-admissible.
ii) Theree x i s t s x 0∈ Xsucht h a t f o r e a c h α ∈ Iw e h a v e β α(x0,Tx 0 )≥ 1a n d
djn(α)(x0,Tx 0 )
Also,assumeeither
a) Ti s continuous;or
b) fora l l α ∈ I,i f { xn}i s a s e q u e n c e i n X sucht h a t β α(xn,xn+1)≥ 1 f o r a l l n
andx n→x∈Xa s n→+∞,thenβ α(xn,x)≥1f o r alln∈∗.
Then,Th a s afixedpoint.
Moreover,i f X isj - b o u n d e d a n d f o r e v e r y x , y∈ X,t h e r e e x i s t s z ∈ Xs u c h t h a t
βα(x,z)≥1a n d β α(y,z)≥1f o r allα∈I,thenThasauniquefixedpoint.
Wealsogivesomeexamplestoillustrateforourresults.
1.4 Applicationstononlinearintegralequations
In this section, we wish to investigate the existence of a unique solution to
nonlinearintegralequations,asanapplicationtothefixedpointtheoremsprovedinth
eSection1.3.
Letu s c o n s i d e r t h e f o l l o w i n g i n t e g r a l e q u a t i o n s
(t)
Ă
Â
x(t)=
G(t,s)f s,x(s) ds,
(1.27)
0
where the functionsf:+ìandG:+ì++continuous.Thedeviation
:++is a continuous function, in general case, unbounded.Notethat, since
deviation ∆ :+→+is unbounded, we can not apply the known
fixedpointtheoremsinmetricspacefortheaboveintegralequations.
Assumption 1.4.1.A1) There exists a functionu:2→such that for
eachcompact subsetK⊂+, there exist a positive numberλandψK∈Ψ1such
that forallt∈+,foralla,b∈withu(a,b)≥0,wehave
∫
.f(t,a)−f(t,b).
∆(t)
¡
¢
G(t,s)ds≤1.
and λsup
≤λψK |a−b|
t∈K
0
A2)Thereexistsx 0∈C(+,)suchthatfor allt∈+,wehave
∫∆(t)
³
¡
¢ ´
u x0 (t)
G(t,s)f s,x0(s) d ≥0.
0
,
s
¡
¢
A3)F o r a l l t ∈+,x,y∈ C(+,),i f u x(t),y(t) ≥0,t h e n
¡
¢
¡
¢
∫ ∆(t)
³∫∆ ( t)
G(t,s)f s,x(s) ds
G(t,s)f s,y(s) ds´ ≥0.
u
0
0
,
A4)If{xn}isasequenceinC(+,)suchthatx n→ x∈ C(+,)andu(xn,xn+1)≥
0f o r a l l n ∈∗,t h e n u (xn,x)≥0f o r a l l n ∈∗.
A5)ForeachcompactsubsetK⊂+,thereexistsacompacts ˜ ⊂+such
etKthatforalln∈∗ ,wehave∆n (K)⊂K˜ .
Theorem1.4.3.S u p p o s e that Assumption1.4are fulfilled.T h e n , equation
Ă
(1.27)hasatleastonesolutioninC +,.
Â
Corollary1.4.4.Supposethat
1) f:+ì+iscontinuousandnon-decreasingaccordingtothesecondvariable.
2) ForeachcompactsubsetK +thereexistthepositivenumberand K Ψ1
sucht hat f o ra ll t ∈+,fo r a ll a ,b∈w i t h a ≤b,weh av e
∫
∆(t)
.f(t,a)−f(t,b).
¡
¢
G(t,s)ds≤1.
andλ sup
≤λψK |a−b|
t∈K
0