Tải bản đầy đủ (.pdf) (6 trang)

Tiết 09 VỊ TRÍ TƯƠNG ĐỐI CỦA HAI ĐƯỜNG THẲNG. CHÙM ĐT ppt

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (163.29 KB, 6 trang )

Tiết 09 VỊ TRÍ TƯƠNG ĐỐI CỦA HAI ĐƯỜNG THẲNG. CHÙM ĐT.
A. CHUẨN BỊ:
I. Yêu cầu bài:
1. Yêu cầu kiến thức, kỹ năng, tư duy:
Học sinh nắm vững cách xét vị trí tương đối của hai đường thẳng, cách viết
phương trình đường thẳng đi qua giao điểm của hai đường thẳng, củng cố kỹ năng viết
PTTQ của đường thẳng và biết vận dụng lý thuyết vào bài tập.
Rèn luyện kỹ năng nhớ, tính toán, tính nhẩm, phát triển tư duy cho học sinh.
Rèn luyện tính cẩn thận, chính xác, khoa học cho học sinh.
2. Yêu cầu giáo dục tư tưởng, tình cảm:
Qua bài giảng, học sinh say mê bộ môn hơn và có hứng thú tìm tòi, giải quyết
các vấn đề khoa học.
II. Chuẩn bị:
Thầy: giáo án, sgk, thước.
Trò: vở, nháp, sgk và đọc trước bài.
B. Thể hiện trên lớp:
*Ổn định tổ chức: (1’)
I. Kiểm tra bài cũ: (4’)
CH:
Viết PTTQ, PTTS của đường thẳng  đi qua điểm M
0
(x
0
;y
0
) có VTPT

( ; )
n A B
r
?


áp dụng M
0
( 1 ; -2)
n(2;3)
r

ĐA:
PTTQ: Ax + By + C = 0
PTTS:
0
0
x x Bt
y y At
 


 


PTTQ: 2(x – 1 ) + 3 ( y +2 ) = 0
2x + 3x -11 = 0
PTTS:
1 3
2 2
  


  

x t

y t

2
2
2
2
2
II. Dạy bài mới: Đặt vấn đề: Ta biết rằng, vị trí tương đối của 2 đường thẳng trong
mặt phẳng là: //, trùng nhau, cắt nhau. Vậy khi 2 đường thẳng được cho dưới dạng
phương trình thì ta xét vị trí tương đối của chúng như thế nào?
PHƯƠNG PHÁP tg NỘI DUNG



Khi cho hai đường thẳng thì
có những khả năng nào xảy
ra?
Số giao điểm của đường
thẳng là phụ  vào VTPT hay
16







1. Vị trí tương đối của hai đường thẳng:
Trong mặt phẳng, với hệ Oxy, cho hai đường
thẳng:


1
: A
1
x + B
1
y + C
1
= 0 (1)

2
: A
2
x + B
2
y + C
2
= 0 (2)
Khi đó:
a, 
1
cắt 
2
tại một điểm 
1 1
2
0
A B
D
A B

 

vào số nghiệm của hệ tương
ứng?













Để xét vị trí tương đối của hai
đường thẳng, ta phải xác định
được ytố nào?
























5


hay
1 1
2 2
A B
A B
 và toạ độ của giao điểm là nghiệm
của hệ
1 1 1
2 2 2
0
0
A x B y C
A x B y C
  



  

.
b, 
1
// 
2
 D = 0,
1 1
1
2 2
1 1
2
2 2
0
0
B C
D
B C
C A
D
C A

 





 



hay hpt
1 1 1
2 2 2
0
0
A x B y C
A x B y C
  


  

vô nghiệm.
c, 
1
 
2

1 2
1 1 1
2 2 2
0
D D D
A B C
A B C
  




 



hay hpt
1 1 1
2 2 2
0
0
A x B y C
A x B y C
  


  

vô định.
2. Chùm đường thẳng:
a, Định nghĩa:
Cho 
1
 
2
= I thì  đường thẳng đi qua I gọi là
chùm đường thẳng. Điểm I gọi là tâm của chùm.
b, Định lý:
Trong mặt phẳng, với hệ Oxy, cho hai đường

thẳng:

1
: A
1
x + B
1
y + C
1
= 0 (1)

2
: A
2
x + B
2
y + C
2
= 0 (2)
 đường thẳgn  chùm  pt của nó có dạng:

Hs đọc






Có mấy cách lập một phương
trình đường thẳng?







Để xét vị trí tương đối của hai
đường thẳng ta phải xác định
được ytố nào? Hs áp dụng?













18


( A
1
x + B
1
y + C

1
) +

( A
2
x + B
2
y + C
2
) = 0
2 2
( 0)
 
 

3. áp dụng:
a, Xét vị trí tương đối của hai đường thẳng sau:

1

5
3 2
x t
y t
 


  




2
4 2
7 3
x t
y t
 


  


Giải:
Ta có: 
1
có VTCP
1 1
(1;2) (2; 1)
u VTPTn
 
ur ur


2
có VTCP
2 2
(2;3) (3; 2)
u n
 
uur uur



1 1
0
3 2




Vậy hai đường thẳng cắt nhau.
b, Cho  ABC có pt của 3 đường thẳng là:

1
: x - y - 2 = 0

2
: 3x - y - 5 = 0

3
: x - 4y - 1 = 0
Viết pt đường thẳng:
qua giao điểm của 
1
, 
2
và  
3
.
Giải:
Gọi  là đường thẳng cần tìm thì nó có dạng:


(x - y - 2) +

(3x - y - 5) = 0





Hãy xác định vị trí của đường
thẳng cần tìm  kiến thức
cần sử dụng là gì?






Hãy nêu mối quan hệ của hai
vectơ vuông góc với nhau?




Trong trường hợp nào, ta nên
viết phương trình đường
 (

+ 3


)x + (-

-

)y - 2

- 5

= 0
Có VTPT
n
r
(

+ 3

;-

-

)

3
có VTPT
3
n
uur
(1;-4)
Mà   
3


n
r
3
n
uur
= 0


+ 3

+ 4

+ 4

= 0

7
5
 


Chọn

= -5 

= 7
Vậy  : 8x + 2y - 11 = 0
thẳng dạng chùm?



III. Hướng dẫn học sinh học và làm bài tập ở nhà:(1’)


×