Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.82 MB, 114 trang )
<span class="text_page_counter">Trang 1</span><div class="page_container" data-page="1">
<b>LUẬN VĂN THẠC SĨ KHOA HỌC GIÁO DỤC </b>
<b>THÁI NGUYÊN 2022 </b>
</div><span class="text_page_counter">Trang 2</span><div class="page_container" data-page="2"><b>LUẬN VĂN THẠC SĨ KHOA HỌC GIÁO DỤC </b>
<b>THÁI NGUYÊN 2022 </b>
</div><span class="text_page_counter">Trang 3</span><div class="page_container" data-page="3"><b>LỜI CAM ĐOAN </b>
Tôi xin cam đoan luận văn này là cơng trình nghiên cứu do tôi thực hiện dưới sự hướng dẫn khoa học của PGS.TS. Nguyễn Anh Tuấn - Trường ĐHSP Hà Nội.
Các số liệu và kết quả nghiên cứu mới trong luận văn là trung thực, chưa từng được công bố trước đây và không trùng lặp với kết quả đã có của một cơng trình nào khác.
Tôi cam đoan đã thực hiện kiểm tra mức độ tương đồng nội dung luận văn qua phần mềm Turnitin một cách trung thực và đạt kết quả mức độ tương đồng 7%. Bản luận văn kiểm tra qua phần mềm là bản cứng đã nộp để bảo vệ trước Hội đồng.
Nếu có gì sai sót tơi xin hồn tồn chịu trách nhiệm.
<i><small>Thái Ngun, ngày 10 tháng 6 năm 2022 </small></i>
<small>Tác giả luận văn </small>
<b><small> Nguyễn Trung Kiên </small></b>
</div><span class="text_page_counter">Trang 4</span><div class="page_container" data-page="4"><b>LỜI CẢM ƠN </b>
<i><small> Tơi xin bày tỏ lịng biết ơn chân thành đến PGS.TS. Nguyễn Anh Tuấn – người thầy đã tận tình hướng dẫn giúp đỡ tơi trong suốt q trình làm luận văn. </small></i>
<i><small> Tôi xin trân trọng cảm ơn các Thầy cơ giáo ở Khoa Tốn Trường ĐHSP Thái Ngun và Phòng Đào tạo Sau đại học đã tạo những điều kiện thuận lợi cho tôi trong suốt thời gian học tập, nghiên cứu và hoàn thành luận văn. </small></i>
<i><small> Dù đã có nhiều cố gắng, tuy nhiên luận văn chắc chắn vẫn không tránh khỏi những thiếu sót cần được góp ý, sửa chữa. Tơi rất mong nhận được những ý kiến đóng góp từ quý thầy cô và đồng nghiệp. </small></i>
<i><small>Thái Nguyên, ngày 20 tháng 5 năm 2022 </small></i>
<small>Tác giả luận văn </small>
<b><small>Nguyễn Trung Kiên </small></b>
</div><span class="text_page_counter">Trang 5</span><div class="page_container" data-page="5"><b>DANH MỤC CÁC KÍ HIỆU, CÁC CHỮ VIẾT TẮT </b>
</div><span class="text_page_counter">Trang 6</span><div class="page_container" data-page="6"><b>MỤC LỤC </b>
<small>MỞ ĐẦU ... 1 </small>
<small>CHƯƠNG 1 - CƠ SỞ LÝ LUẬN VÀ THỰC TIỄN ... 6 </small>
<small>1.1.1. Năng lực giải quyết vấn đề ... 6 </small>
<small>1.1.2. Những kỹ năng giải quyết vấn đề trong mơn Tốn ... 10 </small>
<small>1.2.1. Định hướng DH mơn Tốn theo hướng phát triển NL HS ... 13 </small>
<small>1.2.2. Quan hệ giữa NL GQVĐ và DH phát hiện và GQVĐ ... 14 </small>
<small>1.3.1. Nội dung, yêu cầu dạy học “Phương pháp tọa độ trong mặt phẳng” ở lớp 10 THPT 15 1.3.2. Tình hình dạy học PPTĐ trong mặt phẳng ở lớp 10 THPT ... 19 </small>
<small>1.3.2.1. Thuận lợi, khó khăn trong dạy và học PPTĐ ở lớp 10... 19 </small>
<small>1.3.2.2. Kỹ năng GQVĐ của HS trong học tập “Phương pháp tọa độ trong mặt phẳng” 21 1.3.3. Tình hình và cơ hội rèn luyện KN GQVĐ cho HS trong DH “Phương pháp tọa độ trong mặt phẳng” ... 25 </small>
<small>CHƯƠNG 2 - BIỆN PHÁP DẠY HỌC PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG RÈN LUYỆN KỸ NĂNG GIẢI QUYẾT VẤN ĐỀ CHO HỌC SINH LỚP 10 ... 29 </small>
<small>2.2.1. Biện pháp 1 - GV tổ chức và hướng dẫn HS huy động vốn kinh nghiệm để phát hiện và làm rõ được VĐ, phân tích, phát hiện, lựa chọn được chiến lược GQVĐ ... 29 </small>
<small>2.2.2. Biện pháp 2 - GV tổ chức và hướng dẫn HS thực hiện và trình bày các bước GQVĐ một cách sáng tạo và tối ưu; kiểm tra đánh giá quá trình GQVĐ để tìm ra cách giải quyết hợp lý ... 36 </small>
<i><small>2.2.3. Biện pháp 3 - Xây dựng và sử dụng một số bài tập về phương pháp tọa độ trong mặt phẳng tạo điều kiện tập luyện cho HS những HĐ phát hiện và GQVĐ ... 46 </small></i>
</div><span class="text_page_counter">Trang 7</span><div class="page_container" data-page="7"><b>MỞ ĐẦU </b>
<b><small>1. LÝ DO CHỌN ĐỀ TÀI </small></b>
<i><b>a) NL GQVĐ và sáng tạo có vị trí và vai trị quan trọng, thể hiện ở nhiệm vụ </b></i>
<i>và yêu cầu trong chương trình giáo dục tổng thể ([1]) </i>
<i>Trong chương trình giáo dục phổ thơng tổng thể ([1]), năng lực giải quyết vấn </i>
<i>đề và sáng tạo được coi là một trong ba năng lực cốt lõi cần được hình thành phát triển cho học sinh (với những yêu cầu và biểu hiện cụ thể đã chỉ ra đối với cấp </i>
<i>THPT). Như vậy, tất cả các mơn học - trong đó có mơn Tốn đều cần “hình thành và </i>
<i>phát triển cho học sinh những năng lực cốt lõi”, trong đó có năng lực giải quyết vấn </i>
đề và sáng tạo (được coi là một NL giữ vai trò quan trọng trong ba NL cốt lõi). Đồng
<i>thời, NL tính tốn cũng được xem là một NL đặc thù hàng đầu (đối với mơn Tốn) trong 7 NL đặc thù cần được “hình thành, phát triển chủ yếu thơng qua một số môn </i>
<i>học và hoạt động giáo dục”. </i>
<i><b>b) NL GQVĐ là một thành phần quan trọng hàng đầu trong NL toán học, được </b></i>
<i>xác định trong mục tiêu, u cầu của chương trình mơn Tốn [2] </i>
<i>Trong chương trình mơn Tốn 2018 [2], NL GQVĐ tốn học cũng là một năng lực quan trọng trong năm thành tố cốt lõi của NL tốn học cần hình thành, phát triển </i>
qua mơn Tốn. Trong [2] và [31], đã chỉ ra thành phần cơ bản và cấu trúc, cùng với những u cầu, tiêu chí của NL GQVĐ tốn học. Mặt khác, có thể thấy sự gắn bó với
<i>mật thiết giữa NL GQVĐ toán học trong [2] với NL GQVĐ và sáng tạo trong ([1]). </i>
<i><b>c) Trong DH mơn Tốn, NL GQVĐ và NL sáng tạo có mối quan hệ gắn bó mật </b></i>
<i>thiết, đã dành được nhiều sự quan tâm ở các cơng trình nghiên cứu về dạy học Tốn: </i>
Hai loại NL đó đã được tiếp cận trong mục tiêu phát triển năng lực chung ở chương trình giáo dục phổ thơng tổng thể ([1]) theo hướng: HS phổ thông cần được
<i>bồi dưỡng phát triển NL GQVĐ “một cách sáng tạo”. </i>
Nói riêng trong lĩnh vực dạy học Toán, Nguyễn Bá Kim đã chỉ ra sự cần thiết và định hướng phát triển NL sáng tạo cho HS qua mơn Tốn (Nguyễn Bá Kim [15]).
</div><span class="text_page_counter">Trang 8</span><div class="page_container" data-page="8"><i><b>d) Chủ đề nội dung “Phương pháp tọa độ (PPTĐ) trong mặt phẳng” có vị trí </b></i>
vai trị quan trọng trong mơn Tốn phổ thơng; tạo điều kiện, cơ hội để GV rèn luyện KN GQVĐ cho HS THPT.
Xuất phát từ vai trị, vị trí của NL GQVĐ và sáng tạo thể hiện ở mục tiêu, yêu cầu giáo dục phổ thơng (chương trình chung 0 và mơn Tốn [2]), đối chiếu với thực tiễn dạy và học mơn Tốn hiện nay ở trường phổ thơng, có thể thấy sự cần thiết tiếp
<i>cận DH Tốn THPT theo định hướng phát triển NL GQVĐ nhằm thực hiện mục tiêu kép đối với mơn Tốn và phục vụ yêu cầu chung của giáo dục phổ thông. Rõ ràng là, </i>
muốn phát triển NL GQVĐ trong DH những nội dung cụ thể của mơn Tốn ở trường
<i>phổ thơng, điều cần thiết là cần có giải pháp xác định và tập luyện cho HS những HĐ </i>
<i>và KN GQVĐ cụ thể. </i>
<b>Từ những lý do trên, chúng tôi lựa chọn vấn đề “Rèn luyện một số kỹ năng giải quyết vấn đề cho học sinh trong dạy học chương III – phương pháp toạ độ </b>
<i><b>trong mặt phẳng lớp 10 ở trường THPT” làm đề tài nghiên cứu trong luận văn. </b></i>
<b><small>2. TỔNG QUAN VẤN ĐỀ NGHIÊN CỨU </small></b>
Hiện nay, trên thế giới cũng như ở Việt Nam đã có khá nhiều cơng trình nghiên
<i>cứu về phát triển NL HS - nói riêng là NL GQVĐ cho HS trong DH Tốn. Khảo cứu </i>
trong có thể kể đến một số cơng trình về vấn đề nghiên cứu như sau:
Về cơ bản, trong khá nhiều công trình nghiên cứu, người ta tiếp cận phát hiện và GQVĐ từ góc độ xem như một phương thức, xu hướng, PPDH. Theo hướng này, có thể kể đến những cơng trình của các tác giả V. Ơkơn [22], I.Ia. Lecne ([17]), Phạm Văn Hoàn và các tác giả [11], Nguyễn Bá Kim [15], ...
Tuy nhiên, phát hiện và GQVĐ không chỉ được xem như một cách tiếp cận DH mà còn được coi như một mục tiêu, một NL cần đạt đến trong DH:
G.Polya [26], Krutetxki V.A. (1973, [16]), Janet Stramel [53], ...
Tổ chức PISA quốc tế đã sớm quan tâm đến phát hiện và GQVĐ - xem như một mục tiêu về mặt NL của HS ở lứa tuổi 15 trên toàn cầu cần đạt được: Trong [48], [49], đặt ra yêu cầu phát triển NL GQVĐ cho HS, đưa ra khung đánh giá cho NL này trong mơn Tốn và mơn Khoa học, ...
</div><span class="text_page_counter">Trang 9</span><div class="page_container" data-page="9">Ở Việt Nam, từ khá sớm, các tác giả đã tiếp cận GQVĐ như một mục tiêu, yêu cầu trong giáo dục: Vũ Văn Tảo ([31])và Trần Kiều ([13]), Nguyễn Bá Kim [15], ...
Đặc biệt là trong chương trình phổ thơng tổng thể 2018 ([1]) và chương trình mơn Tốn 2018 ([2]) thì NL GQVĐ và sáng tạo chính thức trở thành một mục tiêu có tính chiến lược ở bậc học phổ thông, được các tác giả SGK mơn Tốn thể hiện trong SGK mới hiện nay.
Ở bình diện vận dụng cụ thể trong DH tốn, đã có một số tác giả xem xét PH và GQVĐ từ các khía cạnh khác nhau:
<i>Nguyễn Lan Phương (2000, [24]) nghiên cứu về các kỹ thuật thực hiện PH và </i>
<i>GQVĐ trong DH tốn (thể hiện qua DH quan hệ vng góc trong khơng gian ở Hình </i>
học lớp 11);
Nguyễn Thị Hương Trang (2002, [40]) tiếp cận PH và GQVĐ theo góc độ một
<i>xu hướng sáng tạo khi rèn luyện NL giải toán cho HS (thể hiện qua DH giải phương </i>
trình, bất phương trình ở THPT);
<i>Nguyễn Anh Tuấn (2003, [43]) đã tập trung xem xét PH và GQVĐ dưới góc </i>
<i>độ một NL cần bồi dưỡng cho HS, theo đó đã đưa ra một quan niệm về NL phát hiện </i>
<i>và GQVĐ của HS trong học toán, làm rõ bản chất và thành phần của NL này ở HS trong học khái niệm toán học, làm cơ sở đề xuất giải pháp DH khái niệm đại số ở </i>
THCS nhằm bồi dưỡng NL phát hiện và GQVĐ cho HS.
<i>Cũng theo hướng này, Từ Đức Thảo (2012, [37]) nghiên cứu giải pháp bồi </i>
<i>dưỡng năng lực phát hiện và GQVĐ cho học sinh THPT trong dạy học hình học. </i>
Gần đây, Hà Xuân Thành (2017, [34]) đã nghiên cứu NL GQVĐ từ cách tiếp cận “thiết kế những tình huống thực tiễn” trong DH mơn Tốn bậc THPT.
Tiếp cận từ phương tiện hỗ trợ dạy học Toán với đối tượng sinh viên sư phạm,
<i>trong bài báo “Ứng dụng công nghệ thông tin giúp sinh viên tự khám phá và giải </i>
<i>quyết vấn đề trong dạy học Toán ở trường phổ thơng. Tạp chí Giáo dục, số 5, 2003”, </i>
<i>tác giả Đào Thái Lai đưa ra giải pháp giúp sinh viên tự khám phá và GQVĐ trong dạy </i>
<i>học Tốn ở trường phổ thơng. </i>
</div><span class="text_page_counter">Trang 10</span><div class="page_container" data-page="10"><i>Tiếp cận dạy học Toán từ cả hai yêu cầu NL GQVĐ và NL sáng tạo, ở Việt </i>
Nam đã có một vài cơng trình nghiên cứu, tuy nhiên do nghiên cứu ở thời điểm trước khi ban hành chương trình giáo dục phổ thông tổng thể (ban hành 2018) nên cách
<i>thức tiếp cận và giải quyết chủ yếu là “đặt song hành 2 loại NL GQVĐ và NL sáng tạo trong một tình huống dạy học” để xem xét, tác động. Chẳng hạn Hoàng Thị Thanh (2019, [34]) đã xem xét bồi dưỡng NL GQVĐ có biểu hiện sáng tạo <small>cho HS THCS miền núi phía Bắc </small></i>trong <i><small>DH các bài tốn hình học có nội dung gắn với thực tiễn. </small></i>
Ở luận văn này, chúng tôi tiếp cận vấn đề rèn luyện kỹ năng GQVĐ cho HS
<i>qua mơn Tốn từ quan niệm: Xem quá trình học Toán của HS là chuỗi những HĐ </i>
<i>GQVĐ - gắn liền với những KN GQVĐ cần được rèn luyện, còn sáng tạo xem như là </i>
một phẩm chất của HS trong quá trình tư duy để phát hiện và GQVĐ.
<b><small>3. MỤC ĐÍCH VÀ NHIỆM VỤ NGHIÊN CỨU </small></b>
<b>3.1. Mục đích nghiên cứu </b>
<i>Xây dựng biện pháp dạy học Chương III - Phương pháp tọa độ trong mặt </i>
<i>phẳng (Hình học 10) theo hướng rèn luyện KN GQVĐ cho học sinh lớp 10 trường </i>
THPT.
<b>3.2. Nhiệm vụ nghiên cứu </b>
Nghiên cứu lý luận về vấn đề phát triển NL và rèn luyện KN GQVĐ cho HS qua môn Tốn; cụ thể hóa NL GQVĐ trong chương trình mơn Tốn 2018 ở những
<i>HĐ và KN GQVĐ của HS trong học tập “Phương pháp tọa độ trong mặt phẳng” </i>
(Chương 3 - Hình học 10).
<i>Điều tra tình hình dạy và học chương 3 “Phương pháp tọa độ trong mặt </i>
<i>phẳng” ở Hình học 10 từ yêu cầu rèn luyện KN GQVĐ cho HS. </i>
<i>Xây dựng một số biện pháp dạy học nội dung “Phương pháp tọa độ trong mặt </i>
<i>phẳng” nhằm rèn luyện KN GQVĐ cho HS lớp 10 THPT. </i>
Thực nghiệm sư phạm nhằm kiểm tra tính khả thi và hiệu quả của biện pháp đã xây dựng.
<b><small>4. ĐỐI TƯỢNG VÀ PHẠM VI NGHIÊN CỨU </small></b>
<i><b>4.1. Đối tượng nghiên cứu </b></i>
</div><span class="text_page_counter">Trang 11</span><div class="page_container" data-page="11"><i> Biện pháp rèn luyện KN GQVĐ cho HS trong DH “Phương pháp tọa độ trong </i>
<i>mặt phẳng”. </i>
<i><b>4.2. Phạm vi và khách thể nghiên cứu </b></i>
<i>Quá trình dạy và học chương III (Hình học 10) “Phương pháp tọa độ trong mặt </i>
<i>phẳng” với định hướng rèn luyện KN GQVĐ cho HS. </i>
<b><small>5. PHƯƠNG PHÁP NGHIÊN CỨU </small></b>
Để nghiên cứu đề tài, chúng tôi phối hợp sử dụng những phương pháp như sau:
<i><b>5.1. Phương pháp nghiên cứu lý luận </b></i>
<i>Đọc các tài liệu, phân tích và tổng hợp những nội dung liên quan đến dạy học </i>
<i>Toán, rèn luyện KN GQVĐ cho HS qua mơn Tốn, về HĐ và KN GQVĐ của HS </i>
<i><b>trong dạy học chủ đề “Phương pháp tọa độ trong mặt phẳng” (Hình học 10). </b></i>
<i><b>5.2. Phương pháp điều tra quan sát, khảo sát thực tiễn </b></i>
<i>Dự giờ, phỏng vấn thăm dò thực trạng dạy học “Phương pháp tọa độ trong mặt </i>
<i>phẳng” theo hướng rèn luyện KN GQVĐ cho HS ở một số trường phổ thông tại địa </i>
phương.
<i><b>5.3. Phương pháp thực nghiệm sư phạm </b></i>
Tiến hành thực nghiệm dạy học theo giải pháp đã đề xuất đối với lớp 10 THPT, phân tích kết quả định lượng và định tính để kiểm tra tính khả thi và hiệu quả của các
<i>biện pháp dạy học “Phương pháp tọa độ trong mặt phẳng” nhằm rèn luyện KN </i>
GQVĐ cho HS.
<i><b>5.4. Phương pháp thống kê toán học </b></i>
Dùng trong việc điều tra, khảo sát và xử lý, đánh giá số liệu trong quá trình nghiên cứu đề tài.
<b><small>6. CẤU TRÚC LUẬN VĂN </small></b>
Chương 1 - Cơ sở lý luận và thực tiễn.
Chương 2 - Biện pháp dạy học chương III - Phương pháp tọa độ trong mặt phẳng theo hướng rèn luyện kỹ năng GQVĐ cho HS THPT.
Chương 3 - Thực nghiệm sư phạm.
</div><span class="text_page_counter">Trang 12</span><div class="page_container" data-page="12"><b>CHƯƠNG 1 - CƠ SỞ LÝ LUẬN VÀ THỰC TIỄN </b>
<b><small>1.1. MỘT SỐ VẤN ĐỀ VỀ NL GQVĐ VÀ RÈN LUYỆN KỸ NĂNG GQVĐ CHO HS QUA MƠN TỐN </small></b>
<i><b>1.1.1. Năng lực giải quyết vấn đề </b></i>
Bản chất của nhận thức là quá trình phát hiện và giải quyết những vấn đề mà con người gặp phải trong cuộc sống. Vì vậy, bất kì ai và ở hoàn cảnh nào đều cần học cách GQVĐ của mình. NL nhận thức bao gồm những kiến thức liên quan đến từng lĩnh vực nghề nghiệp chuyên biệt và những kĩ năng lập luận và GQVĐ.
Theo khảo cứu của Nguyễn Anh Tuấn (2003, [43]), từ góc độ coi PH và GQVĐ như một phương thức DH, đã có khá nhiều cơng trình nghiên cứu ở Việt Nam
<i>như Nguyễn Bá Kim ([15]), Nguyễn Hữu Châu (1995), ... và trên thế giới như V. </i>
<i>Ơkơn (1976, [22]), I.Ia. Lecne (1977, [17]), ... </i>
Tuy nhiên, phát hiện và GQVĐ không chỉ được xem như một cách tiếp cận DH mà còn được coi như một mục tiêu, một NL cần đạt đến trong DH như ở các cơng
<i>trình của Trần Kiều ([13]), Vũ Văn Tảo (1996, [31]), ... </i>
Ở bình diện vận dụng cụ thể trong DH tốn, đã có một số tác giả xem xét PH và GQVĐ từ các khía cạnh khác nhau: Nguyễn Lan Phương (2000) nghiên cứu về
<i>các kỹ thuật thực hiện PH và GQVĐ trong DH quan hệ vng góc ở Hình học lớp 11 ([24]), Nguyễn Thị Hương Trang tiếp cận PH và GQVĐ theo góc độ một xu hướng </i>
<i>sáng tạo khi rèn luyện NL giải toán cho HS (thể hiện qua DH giải PT, BPT ở THPT) </i>
[40], ...
Trong phạm vi học tập của HS ở trường phổ thông, NL học tập của các em thể hiện một cách cụ thể ở NL giải quyết những VĐ trong quá trình học tập.
NL GQVĐ của HS là một trong những NL cụ thể thuộc nhóm NL nhận thức. Cơ chế của sự phát triển nhận thức là tuân theo qui luật lượng đổi thì chất đổi và ngược lại, trong đó “lượng” chính là số lượng những VĐ lĩnh hội theo kiểu GQVĐ, “chất” chính là NL GQVĐ nảy sinh trong quá trình học tập, trong hoạt động thực tiễn. Hiện nay theo nhiều góc độ khác nhau mà có nhiều cách hiểu và quan điểm khác nhau về NL GQVĐ.
</div><span class="text_page_counter">Trang 13</span><div class="page_container" data-page="13">Có thể tìm hiểu quan niệm về NL GQVĐ ở những cơng trình sau:
<i>Vũ Văn Tảo trong [31] đã nêu: NL GQVĐ bao gồm NL phát hiện ra những VĐ </i>
<i>cần giải quyết và NL tìm được cách thức giải quyết chúng. </i>
Trần Kiều trong [13] đã tiếp cận NL GQVĐ từ NL học Toán, coi NL GQVĐ là một trong những NL cốt lõi mà mơn Tốn có nhiều thuận lợi phát triển cho HS thông
<i>qua học khái niệm, chứng minh các mệnh đề, và đặc biệt là qua giải toán. </i>
<i>Quan niệm của Nguyễn Anh Tuấn (2003, [43]): “NL phát hiện và GQVĐ của </i>
<i>HS trong học toán là một tổ hợp NL thể hiện ở các kỹ năng (thao tác tư duy và hành động) trong hoạt động HT nhằm phát hiện và giải quyết những nhiệm vụ của môn toán”. </i>
<i>Quan niệm của Hà Xuân Thành về NL GQVĐ thực tiễn: là NL giải quyết các </i>
vấn đề thực tiễn đặt ra đối với HS THPT và xét từ bình diện này thì có thể xem là thuộc về NL ứng dụng toán học vào thực tiễn (trong phạm vi và điều kiện của HS phổ
<i>thông). Vì vậy, NL GQVĐ TT là NL giải quyết những câu hỏi, vấn đề đặt ra ở những </i>
<i>tình huống thực tiễn trong nội bộ mơn Tốn, trong những mơn học khác ở trường phổ </i>
<i><b>thông và trong thực tiễn cuộc sống. [35] </b></i>
Mới đây, trong chương trình giáo dục phổ thơng tổng thể ([1]) và chương trình giáo dục phổ thơng mơn Tốn (ban hành năm 2018) [2], tuy không trực tiếp nêu quan
<i>niệm về NL GQVĐ, nhưng NL này được xem như một NL cốt lõi (thể hiện ở 4 thành </i>
<i>phần tương ứng với 4 bước GQVĐ) cần phát triển cho HS trong giáo dục phổ thông. </i>
<i>Năm 1984, trong cuốn sách The Ideal Problem Solving, Freeman (New York, </i>
tr.105), J. D. Branford đã đề nghị 5 thành phần của quá trình GQVĐ - có thể coi ứng
</div><span class="text_page_counter">Trang 14</span><div class="page_container" data-page="14">Từ đặc điểm của NL, tổng hợp các mơ hình khác nhau và tập trung vào quá trình GQVĐ M.Wu (2003, [52], tr.35) cho rằng: NL GQVĐ trong toán học bao gồm bốn NL thành phần:
<i>– NL đọc hiểu để lấy dữ liệu từ câu hỏi; – NL suy luận tốn học; </i>
<i>– NL thực hiện tính tốn; </i>
<i>– NL vận dụng kiến thức vào thực tiễn trong GQVĐ. </i>
<i> </i>
<b>Hình 1.1. Mơ hình NL GQVĐ trong toán học (Wu, 2003, [52]) </b>
Tác giả Nguyễn Bá Kim trong [15] tiếp cận quy trình DH GQVĐ và xác định có 4 bước GQVĐ (ứng với những HĐ và NL thành phần GQVĐ của HS) như sau:
<i>Bước 1: Phát hiện hoặc thâm nhập vấn đề Bước 2. Tìm giải pháp GQVĐ </i>
<i>Bước 3. Trình bày giải pháp GQVĐ </i>
<i>Bước 4. Nghiên cứu sâu giải pháp đã GQVĐ </i>
Cụ thể hóa những HĐ và kỹ năng thành phần trong DH khái niệm, tác giả Nguyễn Anh Tuấn trong [43] xác định cấu trúc của NL phát hiện và GQVĐ của HS
<i>trong học khái niệm toán học bao gồm 7 thành phần: </i>
</div><span class="text_page_counter">Trang 15</span><div class="page_container" data-page="15">1 - Phát hiện mâu thuẫn trong tình huống, thấy được nhu cầu xây dựng khái niệm trong tình huống; từ đó huy động, tái hiện những kiến thức (đặc biệt là các khái niệm đã biết), kỹ năng đã học có liên quan để khai thác tình huống, tiếp cận nhận biết khái niệm.
2 - Phát hiện, nhận biết biểu tượng trực quan của khái niệm.
3 - Phát hiện những thuộc tính chung, bản chất tạo nên nội hàm của khái niệm từ các biểu tượng trực quan thơng qua các hoạt động trí tuệ như so sánh, tương tự, khái qt hố, đặc biệt hóa, trừu tượng hố, cụ thể hóa,...
4 - Xác định cấu trúc lôgic của định nghĩa khái niệm thông qua hoạt động lựa chọn dấu hiệu đặc trưng và xác định quan hệ giữa nội hàm và ngoại diên của khái niệm.
5 - Hình thành và diễn đạt định nghĩa khái niệm thông qua hoạt động sử dụng ngơn ngữ, kí hiệu tốn học, các quy tắc định nghĩa khái niệm.
6 - Phát hiện và giải quyết được các tình huống có thể vận dụng khái niệm ở các cấp độ từ dễ đến khó, từ đơn giản đến phức tạp (nhận dạng, thể hiện, vận dụng tổng hợp).
7 - Phân chia, hệ thống hóa, sắp xếp các khái niệm đã học thông qua hoạt động so sánh, xét tương tự, xác định mối quan hệ giữa khái niệm mới với các khái niệm đã học.
<i>Tiếp cận việc đánh giá NL GQVĐ, tác giả Phan Anh Tài (2014, Đánh giá năng </i>
<i>lực giải quyết vấn đề của HS trong dạy học Toán lớp 11 THPT, Luận án Tiến sỹ khoa </i>
học giáo dục, Đại học Vinh) đã lựa chọn 3 thành phần chính:
<i>1. Năng lực hiểu vấn đề </i>
<i>2. Năng lực phát hiện và triển khai giải pháp GQVĐ 3. Năng lực trình bày giải pháp giải quyết vấn đề </i>
<i>4. NL phát hiện giải pháp khác để GQVĐ, năng lực phát hiện VĐ mới </i>
Trong chương trình giáo dục phổ thơng mơn Tốn (ban hành năm 2018), NL GQVĐ tốn học được coi là gồm có 4 thành phần sau: [2]
<i>1. Nhận biết, phát hiện được vấn đề cần giải quyết bằng toán học; </i>
</div><span class="text_page_counter">Trang 16</span><div class="page_container" data-page="16"><i>2. Lựa chọn, đề xuất được cách thức, giải pháp GQVĐ; </i>
<i>3. Sử dụng được các kiến thức, kĩ năng tốn học tương thích (bao gồm các cơng cụ và thuật tốn) để GQVĐ đặt ra. </i>
<i>4. Đánh giá được giải pháp đề ra và khái quát hoá được cho vấn đề tương tự. </i>
Trên cơ sở tham khảo những kết quả nghiên cứu ở trong và ngoài nước về NL GQVĐ, tiếp cận từ góc độ nghiên cứu tìm kiếm giải pháp rèn luyện KN GQVĐ cho HS trong dạy học toán THPT theo hướng tiếp cận NL ở chương trình giáo dục phổ thơng mới, trong luận văn này, chúng tơi hiểu:
<i>NL GQVĐ tốn học của HS trong học toán là tổ hợp những NL thành phần được bộc lộ qua các hoạt động trong quá trình các em tiến hành giải quyết những vấn đề gặp phải trong mơn Tốn. </i>
<i><b>1.1.2. Những kỹ năng giải quyết vấn đề trong mơn Tốn </b></i>
<i>Theo NCTM (National Council of Teachers of Mathematics, Principles and </i>
<i>Standards for School Mathematics. Reston: VA, 2010), thuật ngữ “giải quyết vấn đề” </i>
đề cập đến các nhiệm vụ toán học có khả năng cung cấp các thách thức trí tuệ để nâng cao hiểu biết và phát triển NL tốn học của HS. Ví dụ, GV có thể u cầu học
<i>sinh tìm diện tích hình chữ nhật, cho biết chiều dài và chiều rộng, khi đó vấn đề này </i>
chỉ là một bài tập thuần túy về tính tốn và HS có thể hồn thành một cách “máy móc” theo cơng thức mà không cần hiểu khái niệm về diện tích, ... Tuy nhiên VĐ
<i>“đáng giá” trong học Tốn lại là những bài tốn thực sự có VĐ - gây ra ở HS những </i>
khó khăn vừa sức, kích thích được sự tị mị, cần huy động nhiều kiến thức, kỹ năng
<i>và khả năng tư duy một cách sáng tạo của các em. </i>
Theo [51], <i><small>Rohid, N và các tác giả đã tiếp cận KN GQVĐ tốn học từ mơi trường giao tiếp tốn học; trong [47], tác giả Lester Jr, F. K. (1987) đã phân tích làm rõ căn cứ để </small></i>
<small>xác định những HĐ GQVĐ - coi đó là một “VĐ” quan trọng trong tổ chức HS phát hiện và </small>
<i><small>GQVĐ; trong [50], tác giả Pugalee, D.K. (2004) đã phân tích q trình thực hành GQVĐ từ </small></i>
<small>yêu cầu xác định HĐ và KN GQVĐ của HS. Đặc biệt là, trong [48],[49], tổ chức OECD thế giới đã đưa ra khung đánh giá các KN GQVĐ của HS đối với một số môn học - trong đó có Tốn học. </small>
</div><span class="text_page_counter">Trang 17</span><div class="page_container" data-page="17"><i>Trong bài viết “rèn luyện KN GQVĐ cho HS THCS miền núi phía Bắc thơng </i>
<i>qua các bài tốn hình học có nội dung gắn với thực tiễn” (Tạp chí Giáo dục, Số 448, </i>
<i>Kì 2 - 2/2019, tr 36-41), tác giả Hoàng Thị Thanh [34] đã nêu quan niệm: NL GQVĐ </i>
<i>và sáng tạo là khả năng huy động, tổng hợp kiến thức, kĩ năng và các thuộc tính cá nhân nhằm giải quyết một nhiệm vụ học tập mơn Tốn, trong đó có biểu hiện của sự sáng tạo. </i>
Trong phạm vi ở luận văn này, tiếp cận NL GQVĐ trong DH Tốn theo
<i>hướng: Xem đó là NL giải quyết những VĐ trong học Toán bao gồm (thể hiện ở) </i>
<i>những HĐ và KN GQVĐ của HS. Theo đó, NL GQVĐ được cụ thể hóa ở những KN </i>
<i>được rèn luyện thơng qua những HĐ phát hiện và GQVĐ khi học Toán. </i>
Trong chương trình giáo dục phổ thơng tổng thể (ban hành 2018) có đưa ra 6
<i>thành phần của NL GQVĐ và sáng tạo với 3 mức độ yêu cầu ứng với 3 cấp học (Tiểu </i>
<i>học, THCS, THPT) như sau: [1] 1. Nhận ra ý tưởng mới </i>
<i>2. Phát hiện và làm rõ vấn đề </i>
<i>3. Hình thành và triển khai ý tưởng mới 4. Đề xuất, lựa chọn giải pháp </i>
<i>5. Thiết kế và tổ chức hoạt động 6. Tư duy độc lập </i>
Trong chương trình giáo dục phổ thơng mơn Tốn (ban hành năm 2018) [2] đã xác định vai trị của mơn Tốn trong việc hình thành và phát triển năng lực giải quyết
<i>vấn đề, cụ thể hóa - biểu hiện ở 4 nhóm HĐ - ứng với 4 NL thành phần: </i>
<i>1. Nhận biết, phát hiện được vấn đề cần giải quyết bằng toán học; 2. Lựa chọn, đề xuất được cách thức, giải pháp GQVĐ; </i>
<i>3. Sử dụng được các kiến thức, kĩ năng toán học tương thích (bao gồm các cơng cụ và thuật toán) để GQVĐ đặt ra. </i>
<i>4. Đánh giá được giải pháp đề ra và khái quát hoá được cho vấn đề tương tự. </i>
Trong đó, yêu cầu sáng tạo được lồng ghép, ẩn giấu vào trong quá trình phát hiện và GQVĐ toán học.
</div><span class="text_page_counter">Trang 18</span><div class="page_container" data-page="18">Từ những căn cứ nói trên, tác giả luận văn nghiên cứu giải pháp rèn luyện KN GQVĐ dựa trên cách hiểu:
<i>NL GQVĐ và sáng tạo là tổ hợp các NL thể hiện ở các kĩ năng GQVĐ (thao </i>
tác tư duy và hành động) trong hoạt động học tập của HS nhằm giải quyết một cách có hiệu quả và sáng tạo những nhiệm vụ trong q trình học Tốn.
<i>Trong học Toán, NL GQVĐ là một thành phần cốt lõi của NL toán học của HS thể hiện ở khả năng thực hiện một cách sáng tạo những HĐ học Toán: khả năng huy </i>
<i>động vốn kinh nghiệm để phát hiện vấn đề trong tình huống học Tốn; tìm ra đường lối GQVĐ một cách linh hoạt và hiệu quả; trình bày cách thức giải quyết một cách ngắn gọn, dễ hiểu; có thói quen và khả năng kiểm tra đánh giá quá trình phát hiện và GQVĐ để tìm ra con đường tối ưu. </i>
Như vậy, để phát triển NL GQVĐ cho HS qua mơn Tốn, chúng tơi tiếp cận VĐ này bằng cách tập trung vào xác định những KN GQVĐ cần thiết và có thể rèn luyện được cho HS trong DH Toán như sau:
<b>- Nhóm KN 1 - Bao gồm những KN thực hiện các HĐ thâm nhập và phát hiện VĐ </b>
<i><b>KN 1.1. Huy động vốn kiến thức, kinh nghiệm có liên quan đến tình huống; KN 1.2. Phát hiện và làm rõ được VĐ toán học (câu hỏi, bài tập tốn) cần giải </b></i>
<i>quyết ở tình huống học Tốn. </i>
<b>- Nhóm KN 2 - Bao gồm những KN thực hiện các HĐ phát hiện và lựa chọn đường </b>
lối GQVĐ
<i><b>KN 2.1. Thực hiện các thao tác trí tuệ để phân tích VĐ </b></i>
<i><b>KN 2.2. Xác định, lựa chọn đường lối, cách thức GQVĐ phù hợp với u cầu </b></i>
ở VĐ tốn học.
<b>- Nhóm KN 3 - Bao gồm những KN trình bày lời giải và đánh giá quá trình GQVĐ </b>
<i><b>KN 3.1. Lựa chọn và sử dụng được cách trình bày cách thức giải quyết ngắn </b></i>
<i>gọn, chặt chẽ, dễ hiểu. </i>
<i><b>KN 3.2. Có thói quen và khả năng kiểm tra đánh giá quá trình phát hiện và </b></i>
GQVĐ để tìm ra con đường tối ưu.
</div><span class="text_page_counter">Trang 19</span><div class="page_container" data-page="19"><b><small>1.2. DẠY HỌC TOÁN THEO HƯỚNG PHÁT TRIỂN NĂNG LỰC CHO HS </small></b>
<i><b>1.2.1. Định hướng DH mơn Tốn theo hướng phát triển NL HS </b></i>
Tham khảo các cơng trình có liên quan, đặc biệt là định hướng trong chương trình giáo dục phổ thông tổng thể (ban hành 2018) và Đỗ Đức Thái ([32]), ..., ở luận văn này, chúng tôi thực hiện phát triển NL HS qua môn Toán THPT theo định hướng như sau:
1 - Điều chỉnh mục tiêu, nội dung bài học, phối hợp các PPDH - hình thức tổ chức - kỹ thuật DH nhằm tạo điều kiện cho HS học tập trong và bằng HĐ thực hành
<i>trải nghiệm như đo đạc, tính tốn, dự đốn, phát hiện, tranh luận, bác bỏ hay khẳng </i>
<i>định các dự đoán ... (ở mức độ phù hợp) hướng đến RME (giáo dục tốn học thực). </i>
<i>Điều đó ảnh hưởng trực tiếp đến việc phát triển NL tư duy và lập luận toán học và NL </i>
<i>GQVĐ cho HS. </i>
2 - Vận dụng DH hợp tác nhóm một cách phù hợp, thiết kế, tổ chức những HĐ cho HS tham gia vào những HĐ hợp tác với nhau trong quá trình học Tốn, từ đó góp
<i>phần phát triển NL giao tiếp và hợp tác; NL ngơn ngữ tốn học. </i>
3 - Chủ động dạy tự học để HS hình thành thói quen, tập luyện khả năng tự học
<i>trên lớp cũng như ở nhà. Điều đó tác động đến NL tự chủ - tự học cho các em. </i>
<i>4 - Khai thác mọi cơ hội có thể để liên hệ toán học với thực tiễn đời sống (gợi </i>
<i>động cơ mở đầu, tạo tiền đề xuất phát, vận dụng tốn học vào thực tiễn). Điều đó tác </i>
<i>động đến NL mơ hình hóa tốn học và GQVĐ Tốn học. </i>
5 - Dự đoán, khai thác những tình huống chứa những khó khăn, sai lầm của HS để tập luyện cho các em vượt qua khó khăn, phát hiện và sửa chữa sai lầm trong
<i>học Tốn. Điều đó tác động tồn diện đến NL tốn học của HS, đảm bảo tính vững chắc cho việc học và vận dụng toán học vào thực tiễn. </i>
Trong đó, nhìn nhận từ mục đích phát triển NL GQVĐ và rèn luyện KN
<i>GQVĐ, chúng tôi thấy: Để tiến hành phát hiện và GQVĐ toán học, HS cần đến </i>
<i>những HĐ (trực tiếp hoặc gián tiếp) liên quan đến 5 thành phần của NL toán học (tư duy và lập luận tốn học; mơ hình hố tốn học; giải quyết vấn đề toán học; giao </i>
</div><span class="text_page_counter">Trang 20</span><div class="page_container" data-page="20"><i>tiếp tốn học; sử dụng cơng cụ, phương tiện học tốn). Vì vậy, có thể nói: Nhiệm vụ </i>
mục đích rèn luyện KN GQVĐ gắn liền với định hướng DH Toán phát triển NL HS.
<i><b>1.2.2. Quan hệ giữa NL GQVĐ và DH phát hiện và GQVĐ </b></i>
Theo Nguyễn Bá Kim ([15], tr.132), trong dạy học Toán, một bài toán được gọi
<i>là vấn đề nếu chủ thể chưa biết một thuật giải nào có thể áp dụng để tìm ra phần tử </i>
chưa biết của bài tốn. Khi đó, GQVĐ là thiết lập những giải pháp thích ứng khắc phục những khó khăn, trở ngại để trả lời được những câu hỏi đặt ra ở VĐ. Đối với
<i>mơn Tốn, HS GQVĐ học tốn thơng qua thực hiện thao tác tư duy, hành động trí </i>
<i>tuệ thích hợp và các hoạt động toán học để thực hiện những yêu cầu do VĐ đặt ra. </i>
Trong PPDH toán, GV có thể định hướng để HS GQVĐ bằng cách khai thác theo các khía cạnh sau:
<i>– Nếu VĐ là xây dựng khái niệm, thì GQVĐ có thể đi theo con đường qui nạp, con đường suy diễn và con đường kiến thiết. Nói chung, người ta thường sử dụng hai con đường đầu tiên để hình thành khái niệm cho HS. </i>
<i>– Nếu VĐ là phát hiện và chứng minh định lí, hình thành qui tắc hay cơng thức… thì có thể đi theo con đường suy diễn, hoặc con đường có khâu suy đốn, hoặc kết hợp lại. </i>
<i>– Nếu VĐ là cách giải bài tập tốn, thì sử dụng các thao tác tư duy cơ bản, đặc biệt là các thao tác tương tự hóa, đặc biệt hóa, khái qt hóa, phân tích, tổng hợp … tìm </i>
tịi đường lối giải quyết (suy luận xi và ngược để phát hiện mối liên hệ giữa giả thiết và kết luận) và đánh giá quá trình giải, mở rộng VĐ.
<i>Cũng theo [15], DH GQVĐ thực hiện theo quy trình 4 bước GQVĐ (ứng với </i>
<i>những HĐ và NL thành phần GQVĐ của HS) như sau: Bước 1: Phát hiện hoặc thâm nhập vấn đề </i>
<i>Bước 2. Tìm giải pháp GQVĐ Bước 3. Trình bày giải pháp GQVĐ </i>
<i>Bước 4. Nghiên cứu sâu giải pháp đã GQVĐ. </i>
Trong quá trình HS thực hiện các HĐ phát hiện và GQVĐ, tất yếu sẽ hình thành, tập luyện những kỹ năng GQVĐ, từ đó phát triển NL GQVĐ. Mặt khác, toán
</div><span class="text_page_counter">Trang 21</span><div class="page_container" data-page="21">học với đặc trưng trừu tượng hóa, tính khái qt và tính lơgic cao, nên phù hợp và là môi trường thuận lợi tạo điều kiện để kích thích HS tư duy một cách sáng tạo trong quá trình phát hiện và GQVĐ tốn học, từ đó phát triển NL sáng tạo cho các em.
Như vậy, DH phát hiện và GQVĐ là một kiểu DH có nhiều ưu điểm, thuận lợi
<i>và phù hợp với mục tiêu rèn luyện KN GQVĐ cho HS qua mơn Tốn; trực tiếp tác động đến những thành phần của NL này thông qua những HĐ phát hiện và GQVĐ </i>
<i><b>của HS khi học Toán. </b></i>
<b><small>1.3. TÌNH HÌNH DẠY HỌC “PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG” VÀ VIỆC RÈN LUYỆN KỸ NĂNG GQVĐ CHO HS </small></b>
<b>1.3.1. Nội dung, yêu cầu dạy học “Phương pháp tọa độ trong mặt phẳng” ở lớp 10 THPT </b>
<i><b>1.3.1.1. Nội dung “phương pháp tọa độ trong mặt phẳng” </b></i>
Theo phân phối chương trình mơn Tốn lớp 10 THPT, nội dung “Phương pháp tọa độ trong mặt phẳng” được đưa vào Hình học 10 như sau:
Sách cơ bản
§1. PT tổng quát của đường thẳng (6 tiết)
Sách nâng cao
§1. PT tổng quát của đường thẳng (2 tiết) §2. PT tham số của đường thẳng (1 tiết)
</div><span class="text_page_counter">Trang 22</span><div class="page_container" data-page="22">§6. Đường Hypebol (1 tiết)
<i><b>1.3.1.2. Phân tích, nhận xét nội dung </b></i>
<b>a) Vai trị, vị trí của PPTĐ ở lớp 10 THPT </b>
<i>Nội dung PPTĐ trong mặt phẳng ở lớp 10 ứng với chương III - Hình học 10, HS được học song song với nội dung Đại số 10 là Chương IV. Bất đẳng thức. Bất </i>
<i>phương trình. </i>
Như vậy: HS được học về PPTĐ trong mặt phẳng sau khi đã học về Véc tơ
<i>(khái niệm, phép tốn và tính chất) ở Chương I. Vectơ và Chương II. Tích vơ hướng </i>
<i>của hai vectơ và ứng dụng (Hình học 10). Mặt khác, các em tiếp cận với PPTĐ sau khi học tương đối đầy đủ về PT (Chương 1 Đại số 10), đồng thời với BPT (Chương 2 </i>
Đại số 10). Điều đó tạo thuận lợi cho việc dùng xây dựng PPTĐ dựa trên véc tơ &
<i>tọa độ (đã học từ THCS) để làm công cụ tiếp cận cả về đối tượng và quan hệ hình học (điểm, đường, hình, ... trong hình học phẳng) lẫn đối tượng đại số (xem xét quan hệ về </i>
<i>lượng “bằng nhau, lớn hơn, nhỏ hơn” đối với những bài tốn hình học, vật lý, ... giải </i>
bằng công cụ véc tơ và PPTĐ).
<b>b) Mạch kiến thức về PPTĐ ở trường phổ thông </b>
Nghiên cứu phân phối chương trình mơn Tốn phổ thơng, chúng tơi thấy mạch kiến thức về PPTĐ trong mặt phẳng được chuẩn bị, đưa vào chương trình SGK mơn Toán THPT ở các lớp với những nội dung và mục tiêu cụ thể như sau:
Khác với phương pháp tổng hợp khi giải quyết các bài tốn hình học ở cấp học THCS, sau khi tiếp cận với công cụ vectơ, HS lớp 10 sẽ được làm quen với một phương pháp học tập, nghiên cứu hình học đó là PPTĐ. PPTĐ được đánh giá là một phương pháp tư duy mới, có hiệu quả và mang tầm khái quát cao. Bằng việc đưa vào mặt phẳng một hệ trục tọa độ, mỗi điểm, mỗi vectơ trên mặt phẳng đều được xác
</div><span class="text_page_counter">Trang 23</span><div class="page_container" data-page="23">định bởi tọa độ của nó. Ta hiểu khái niệm “ điểm”, “véctơ” hình học thơng qua một cặp số cố định. Người ta gọi chúng là tọa độ của điểm hay tọa độ vectơ. Từ những khái niệm đơn giản ban đầu, hoc sinh sẽ có cơ sở để nghiên cứu các khái niệm khác như đường thẳng, đường trịn, ba đường cơnic (Elip, Hyperbol, parapol). Thơng qua PT của chúng, đặc điểm và những tính chất đặc trưng của các đường này, vận dụng vào việc nghiên cứu, giải các bài tập liên quan.
Ở lớp 7 cấp THCS, HS đã được học về trục số thực, và biết rằng trên trục số này, mỗi điểm đươc đặc trưng tương ứng 1-1 với một số thực. Sau đó cũng ở lớp này, các em cũng được học về hệ trục toạ độ Đề-các vng góc. Mỗi điểm trên mặt phẳng toạ độ được xác định bởi một cặp số thực duy nhất được ký hiệu là M (x;y). Đến lớp 9 các em được học về đồ thị của hàm số bậc nhất, bậc hai. Các kiến thức này được
<i>giới thiệu trong phần đại số với mục đích nghiên cứu một số đối tượng đơn giản (về </i>
<i>mặt hình học thì đó là các đường thẳng, parabol). Các em được học đồ thị của hàm số </i>
<i>bậc nhất là một đường thẳng có PT y = ax + b (a, b là các số thực), đồ thị của hàm số </i>
bậc hai y = ax<small>2</small> là đường parabol ... Có thể thấy: Đây là những sự chuẩn bị cho HS học đầy đủ về PPTĐ về sau.
Đến lớp 10, công cụ véc tơ và PPTĐ (khái niệm, phép tốn, tính chất, ...) chính
<i>thức được đưa vào mơn Tốn, trước hết để nhìn nhận - học Hình học phẳng. </i>
<i>Ở lớp 11, cơng cụ véc tơ (khái niệm, phép tốn, tính chất, ...) tiếp tục được đưa vào hình học khơng gian (Chương III. Hình học 11) - xem như mở rộng cơng cụ véc </i>
tơ sang không gian, trực tiếp để giới thiệu quan hệ vng góc trong khơng gian, đồng
<i>thời chuẩn bị cho việc mở rộng PPTĐ trong không gian (ở lớp 12). </i>
Cuối bậc THPT, ở lớp 12, PPTĐ trong khơng gian được đưa vào Hình học 12
<i>ở Chương III. Phương pháp tọa độ trong khơng gian. </i>
Như vậy: Có thể thấy trong tốn học thì PPTĐ là một cơng cụ có hiệu quả cao
<i>trong việc nghiên cứu hình học và tốn học, mở rộng ra đây cũng là một cơng cụ mạnh của tốn học để giải quyết những bài toán thực tiễn (trong Vật lý, Hóa học, Địa </i>
<i>lý, ... khoa học kỹ thuật và đời sống). </i>
</div><span class="text_page_counter">Trang 24</span><div class="page_container" data-page="24">Việc đưa PPTĐ vào mơn Tốn phổ thơng đã tạo nên một sự thay đổi lớn trong việc học tốn nói chung và hình học nói riêng. Với PPTĐ, GV có thể trang bị cho HS
<i>các thuật giải (Algorit) giải nhiều dạng tốn hình học. </i>
Thơng qua PPTĐ, HS tập suy luận và tư duy một cách chính xác, tránh được những sai lầm đáng tiếc do trực giác gây ra, tạo điều kiện tiếp cận và làm quen với những phương pháp suy luận tổng quát hơn, nắm được những kiến thức cao hơn và sâu hơn chuẩn bị tốt cho việc tiếp thu những kiến thức cho bậc đại học sau này.
Việc cho HS tiếp cận “PPTĐ” ngay từ lớp 10 đã giúp cho các em một phương pháp tư duy mới, tiếp cận hình học từ góc nhìn đại số. Tìm hiểu các đối tượng, hình
<i>hình học thơng qua biểu thức tọa độ, PT của chúng là một việc làm cần thiết - khơng </i>
những tạo điều kiện có thêm một cơng cụ mạnh để học hình học, mà cịn phù hợp với xu thế “số hóa” nhiều lĩnh vực khoa học và đời sống xã hội hiện nay.
Bằng PPTĐ, HS có thể chuyển nhiều bài tập hình học sang bài tập đại số và ngược lại, từ kết quả đại số suy ra được một số tính chất và mối quan hệ giữa các hình hình học. Tạo điều kiện cho các em suy luận tốn học một cách có cơ sở khoa học mà không phụ thuộc vào trực giác.
Dạy và học PPTĐ cho HS THCS còn tạo cơ hội và điều kiện thuận lợi cho việc
<i>vận dụng DH tích hợp, liên mơn; gắn mơn tốn với ứng dụng thực tiễn của toán học. </i>
<i><b>1.3.1.3. Yêu cầu dạy học </b></i>
<b>a) Về kiến thức: </b>
<i>Các khái niệm và tính chất về hệ trục toạ độ trong mặt phẳng, toạ độ của véc tơ và của điểm trong một hệ trục toạ độ cho trước; mối liên hệ giữa toạ độ của vectơ và toạ độ của hai điểm mút, các biểu thức toạ độ của các phép tốn vectơ, các cơng thức và cách tính các đại lượng hình học bằng toạ độ, các PT của đường thẳng, đường tròn, ba đường Cô nic trong một hệ toạ độ cho trước, ... Đặc biệt là tri thức PP </i>
“Phương pháp tọa độ trong mặt phẳng” - được coi là sự vận dụng tổng hợp kiến thức về véc tơ & tọa độ để giải quyết những VĐ khi học hình học phẳng.
<b>b) Về kỹ năng: </b>
Để HS vận dụng tốt các kiến thức, GV cần rèn luyện cho HS các kĩ năng sau:
</div><span class="text_page_counter">Trang 25</span><div class="page_container" data-page="25"><i>- Kĩ năng xác định toạ độ của véc tơ và của điểm trong một hệ trục toạ độ cho trước. Ghi nhớ và vận dụng các biểu thức toạ độ của các phép tốn vectơ, các cơng thức và cách tính các đại lượng hình học bằng toạ độ. Biết biểu thị chính xác bằng toạ các quan hệ hình học như: sự thẳng hàng của ba điểm, sự cùng phương của hai vectơ, quan hệ song song, quan hệ vng góc … </i>
<i>- Nhận dạng và thể hiện được các PT của đường thẳng, đường tròn, ba đường Cô nic trong một hệ toạ độ cho trước. </i>
<i>- Vận dụng PP tọa độ trong mặt phẳng để giải các bài toán liên quan như: bài toán tìm điểm, bài tốn tìm tập hợp điểm, bài tốn tìm giá trị lớn nhất nhỏ nhất, bất đẳng thức… </i>
<i>Một số dạng tốn chính trong chương “PP tọa độ trong mặt phẳng” </i>
<i>- Viết PT đường thẳng, đường tròn, các đường Cô nic thỏa mãn yêu cầu cho trước của bài tốn. </i>
<i>- Xác định, tìm tọa độ của điểm thỏa mãn u cầu của bài tốn. </i>
<i>- Tìm tập hợp điểm, tìm giá trị lớn nhất, giá trị nhỏ nhất của một biểu thức hình học - Vận dụng PP tọa độ vào giải một số bài toán chứng minh bất đẳng thức. </i>
<b>1.3.2. Tình hình dạy học PPTĐ trong mặt phẳng ở lớp 10 THPT </b>
<i><b>1.3.2.1. Thuận lợi, khó khăn trong dạy và học PPTĐ ở lớp 10 </b></i>
<b>a) Thuận lợi, khó khăn đối với giáo viên </b>
<i><b>Thuận lợi </b></i>
Chủ đề “phương pháp tọa độ” tạo ra một cách tiếp cận mới để nghiên cứu, trình bày kiến thức Hình học (cả hình học phẳng và hình học khơng gian). Trên cơ sở
<i>đó, PPTĐ trở thành một cơng cụ mạnh để học và vận dụng Hình học - nói riêng là </i>
<i>giải quyết những vấn đề trong học Hình học ở trường phổ thơng. Mặt khác, “tọa độ </i>
hóa” một số đối tượng hình học đã được chuẩn bị và cho HS làm quen ngay từ môn Toán THCS khi học về mặt phẳng tọa độ, ...
- Giải bài tập hình học bằng PPTĐ cũng là một nội dung quan trọng trong quá trình học Toán ở THPT, và đặc biệt là trong các đề thi Toán ... nên giáo viên thường chú trọng thường xun tìm hiểu, giảng dạy và ơn luyện cho HS.
</div><span class="text_page_counter">Trang 26</span><div class="page_container" data-page="26">- Các kiến thức, phương pháp về tọa độ trong mặt phẳng được trình bày trong sách giáo khoa rất cơ bản và tường minh nên việc tiếp cận và tìm hiểu, DH nội dung này cũng khá thuận lợi với đa số GV THPT.
- Trong chương trình SGK cũng có đề cập đến các bài tốn thực tiễn, liên môn,
<i>... mà việc sử dụng PPTĐ trở nên rất hữu hiệu, thể hiện được tính cơng cụ mạnh của </i>
<i>toán học. </i>
- Chủ đề “phương pháp tọa độ trong mặt phẳng” được đưa vào cùng với kiến thức về vectơ nên tạo điều kiện thuận lợi cho HS tiếp thu, sử dụng không quá trừu tượng, khó khăn.
<i><b>Khó khăn </b></i>
- Việc hiểu biết về cơ sở toán học và ý đồ xây dựng “Phương pháp tọa độ trong mặt phẳng” của khơng ít GV cũng cịn hạn chế, nên khi triển khai có những GV chưa nắm vững, gặp khó khăn trong DH, nhất là với đối tượng HS “hổng” kiến thức, khả năng tư duy còn có những hạn chế.
- Đa số GV Toán THPT khi DH thường tập trung nhiều vào việc hướng dẫn
<i>làm bài tập mà ít chú trọng đến dạy kỹ lí thuyết (khái niệm, tính chất, quy tắc, công </i>
<i>thức) nên HS nắm kiến thức không vững chắc, GV gặp khó khăn trong việc phân tích </i>
<i>sai lầm của học sinh khi vận dụng PPTĐ. </i>
- Công cụ vectơ là một công cụ khá mới mẻ để tiếp cận hình học, lại được trình bày khơng nhiều trong SGK Tốn THPT, trong khi GV chưa thật sự nắm vững mối
<i>liên hệ gắn bó giữa công cụ véc tơ, tọa độ, PP véc tơ và PPTĐ ... nên cịn có những </i>
trở ngại nhất định trong DH, từ đó HS cũng bộc lộ những sai lầm khi học và sử dụng. - Một số bài tốn có tính thực tiễn, liên mơn (được đưa vào ít trong SGK) cần đến kỹ năng mơ hình hóa tốn học, chuyển sang ngơn ngữ toán học và cuối cùng phải đưa được về dạng bài toán thuận lợi cho việc sử dụng PPTĐ, làm cho cả GV và HS khá lúng túng, khó khăn.
<b>b) Thuận lợi, khó khăn đối với học sinh </b>
<i><b>Thuận lợi </b></i>
</div><span class="text_page_counter">Trang 27</span><div class="page_container" data-page="27">- HS đã học và làm quen với hình học phẳng từ rất sớm - ngay từ chương trình mơn Tốn ở tiểu học, đến THCS và tiếp tục được hồn thiện ở mơn Tốn THPT theo mạch lôgic
<i>chặt chẽ, nâng cao dần, tạo điều kiện thuận lợi cho việc “tọa độ hóa” khi học Phương pháp </i>
<i>tọa độ trong mặt phẳng. Sau đó tiếp tục được củng cố khi học PPTĐ trong không gian. </i>
<i><b>Khó khăn </b></i>
- Nội dung “Phương pháp tọa độ trong mặt phẳng” được đưa vào SGK Toán THPT dưới
<i>dạng “thu gọn” cả về thời lượng và nội dung kiến thức (chỉ có 12 tiết ở chương III - Hình </i>
học 10); trong khi phạm vi ứng dụng và dạng bài tập áp dụng lại khá rộng. HS không chỉ cần nắm vững những kiến thức hình học phẳng cũ và mới, chẳng hạn như:
<i>Toàn bộ nội dung hình học phẳng đã học từ tiểu học cho đến lớp 10, bao gồm nhiều </i>
<i>đối tượng, quan hệ hình học: điểm, đường thẳng, mặt phẳng, các hình hình học như tam giác, tứ giác, đường tròn, sự liên hệ, so sánh và vị trí tương đối giữa chúng, ... </i>
Khó khăn khơng chỉ ở “số lượng kiến thức hình học”, mà cịn ở chỗ trí tưởng tượng
<i>khơng gian trong hình học của HS rất cần thiết để nhìn nhận VĐ bằng “con mắt PPTĐ”; mặt khác lại còn những kiến thức khá mới mẻ và khó như 3 đường Cô nic, ... </i>
Mặt khác, PPTĐ trong mặt phẳng còn cần đến hiểu biết và kỹ năng ở những chủ đề
<i>nội dung khác của mơn Tốn (phương pháp véc tơ; hàm số và đồ thị, PT, BPT, ...), trong đó điểm mới và khó chính là cách thức tiếp cận nhìn nhận hình học từ công cụ véc tơ nên HS </i>
gặp khá nhiều khó khăn, lúng túng khi học và giải bài tốn bằng PPTĐ.
- Ví dụ và phân tích, gợi ý trong sách giáo khoa thường trình bày khá ngắn gọn; GV cũng không đủ thời gian giải thích kỹ ... nên HS gặp khó khăn khi tự học và giải bài tập.
- Về PPDH của GV còn nghiêng về truyền thụ lý thuyết một cách hàn lâm, trình bày việc áp dụng cơng thức một cách máy móc ... thiếu sự liên kết với kiến thức và PP hình học thơng thường, ... nên HS không hiểu bản chất, dẫn đến vận dụng PPTĐ sai sót.
<i><b>1.3.2.2. Kỹ năng GQVĐ của HS trong học tập “Phương pháp tọa độ trong mặt phẳng” </b></i>
Ở luận văn này, chúng tôi lựa chọn, xác định một số KN GQVĐ cần thiết và có thể rèn luyện cho HS trong DH “PPTĐ trong mặt phẳng” dựa trên những căn cứ sau:
</div><span class="text_page_counter">Trang 28</span><div class="page_container" data-page="28">1 - Tham khảo các thành tố của NL GQVĐ và sáng tạo (Bộ Giáo dục và Đào tạo [1]), các thành tố của NL GQVĐ toán học (Bộ Giáo dục và Đào tạo [2]), thành phần và biểu hiện cụ thể của NL GQVĐ toán học đối với HS THPT trình bày trong [32];
2 - Kết quả nghiên cứu và quan niệm về DH Toán theo định hướng phát triển
<i>NL HS (mục 1.2); </i>
<i>3 - Đề xuất cấu trúc 3 nhóm gồm 6 KN GQVĐ trong học Toán (mục 1.1.2.) 4 - Nội dung, yêu cầu và thực trạng DH “PPTĐ trong mặt phẳng” đối chiếu </i>
với tình hình và kết quả rèn luyện KN GQVĐ cho HS;
Từ đó chúng tơi lựa chọn, xác định và cụ thể hóa sáu KN GQVĐ cần rèn luyện cho HS trong dạy học “Phương pháp tọa độ trong mặt phẳng” như sau:
Nhóm KN 1 - Bao gồm những KN thực hiện các HĐ thâm nhập và phát hiện
<i>VĐ khi học và vận dụng PPTĐ trong mặt phẳng. </i>
<i>+ KN 1.1. Huy động vốn kiến thức, kinh nghiệm có liên quan đến PPTĐ trong </i>
mặt phẳng, tạo điều kiện để thâm nhập VĐ trong tình huống gặp phải.
<i>+ KN 1.2. Phát hiện và làm rõ được VĐ (câu hỏi, bài tập tốn) cần giải quyết; </i>
nhận ra sự có mặt và cơ hội vận dụng PPTĐ trong mặt phẳng ở tình huống.
Nhóm KN 2 - Bao gồm những KN thực hiện các HĐ phát hiện và lựa chọn
<i>đường lối GQVĐ có sử dụng PPTĐ trong mặt phẳng. </i>
<i>+ KN 2.1. Thực hiện các thao tác trí tuệ để phân tích VĐ; tìm cách kết nối </i>
giữa giả thiết và kết luận bằng kiến thức phương pháp tốn học (đặc biệt là cơng cụ
<i>PPTĐ trong mặt phẳng). </i>
<i>+ KN 2.2. Xác định, lựa chọn đường lối, cách thức GQVĐ phù hợp với yêu cầu </i>
ở VĐ toán học; khai thác được lợi thế của PPTĐ trong mặt phẳng.
Nhóm KN 3 - Bao gồm những KN trình bày lời giải và đánh giá quá trình GQVĐ
<i>+ KN 3.1. Lựa chọn và sử dụng được cách trình bày cách thức GQVĐ bằng công cụ PPTĐ trong mặt phẳng một cách ngắn gọn, chặt chẽ, dễ hiểu. </i>
</div><span class="text_page_counter">Trang 29</span><div class="page_container" data-page="29"><i>+ KN 3.2. Có thói quen, biết cách và thực hiện được HĐ kiểm tra đánh giá quá </i>
trình đã phát hiện và GQVĐ bằng PPTĐ trong mặt phẳng; so sánh giữa các PP giải
<i>quyết để tìm ra con đường tối ưu: Xem xét VĐ (câu hỏi, bài tập) từ nhiều góc độ khác </i>
<i>nhau, tìm được nhiều hơn một cách giải quyết - trình bày để lựa chọn giải pháp tốt. </i>
Tạo ra những câu hỏi, bài tập tương tự, khái quát và đường lối giải quyết chung. Ví dụ 1.1:
<i>Trong mặt phẳng toạ độ Oxy cho A(1;0), B(3; 2) và C(5; -2). Viết PT đường tròn đi qua 3 điểm A, B và C. </i>
<i><b>Cách 1. ( Sử dụng dạng tổng quát của PT đường trịn) </b></i>
<i>Cách 2. (Tìm tâm I đường trịn là giao điểm hai đường trung trực) </i>
Ta có <small>AB(2;2)</small>; <small>AC (4; 2) </small> . Gọi I, J lần lượt là trung điểm AB và AC suy ra I(2;1); J(3; -1), vậy đường trung trực d<small>1</small> của AB có PT: <i><small>x</small></i><small></small><i><small>y</small></i><small>30</small>.
Đường trung trực d<small>2</small> của AC có PT: <small>2</small><i><small>x</small></i><small></small><i><small>y</small></i><small>70</small> Tọa độ tâm I của đường tròn là nghiệm của hệ PT:
</div><span class="text_page_counter">Trang 30</span><div class="page_container" data-page="30"><i>Ở đây, HS nhận biết được, phát hiện và làm rõ được VĐ “cần viết được PT </i>
<i>đường tròn thỏa mãn điều kiện đi qua 3 điểm đã cho” (KN 1.1 và 1.2) </i>
<i>Các em tiến hành phân tích, lựa chọn và xác định được cách thức - PP GQVĐ </i>
<i>phù hợp với yêu cầu ở câu hỏi, bài tập: Ở đây, HS phát hiện được yêu cầu của bài </i>
<i>tốn hồn tồn ăn khớp với lợi thế của PPTĐ: Linh hoạt, sáng tạo tiếp cận bằng một trong hai dạng “PT tổng qt của đường trịn”, hoặc “PT chính tắc của đường trịn”. Điều đó giúp cho HS nghĩ đến việc sử dụng PPTĐ (KN 2.1 và 2.2). </i>
<i>Để thực hiện được ý tưởng trên, HS tiến hành huy động được những kiến thức, </i>
<i>kỹ năng đã biết, ở đây là quy trình các bước viết PT (tổng qt hoặc chính tắc) của </i>
<i>đường trịn đi qua 3 điểm (KN 1.1 và 3.1). </i>
Cuối cùng, sau khi giải bài tập, HS biết nhìn nhận, đánh giá lại q trình giải
<i>bài tốn: ở đây, các em đã xuất phát từ hai góc độ khác nhau (PT tổng quát và PT chính tắc của đường trịn), từ đó tìm được ít nhất hai hướng và lời giải bài tốn (KN </i>
<i>3.2). Cụ thể là: </i>
<i>HS có thể tạo ra một số bài tập tương tự: Chỉ cần thay đổi tọa độ của 3 điểm A, </i>
<i>B và C. </i>
<i>Sau đó phát biểu bài tốn tổng quát: Trong mặt phẳng toạ độ Oxy cho Ặ..;...), </i>
<i>B(...; ...) và C(...; ...). Viết PT đường tròn đi qua 3 điểm A, B và C. </i>
Từ đó, HS rút ra PP giải chung đối với dạng bài tập này:
Với 3 điểm không thẳng hàng A, B, C trong mặt phẳng tọa độ, ta có thể viết được PT đường tròn đi qua chúng bằng một trong hai cách:
<i>Cách 1: (Tiếp cận theo hướng viết PT tổng quát) </i>
<i>Cách 2: (Tiếp cận theo hướng viết PT chính tắc) </i>
Tìm tọa độ của 2 véc tơ tương ứng với 2 cạnh nào đó của <small></small>ABC;
</div><span class="text_page_counter">Trang 31</span><div class="page_container" data-page="31"> Tìm tọa độ của các trung điểm của 2 cạnh đó của <small></small><sub>ABC; </sub>
Viết PT các đường trung trực của 2 cạnh đó trong <small></small>ABC;
Tìm tọa độ tâm I của đường trịn: I là giao điểm 2 đường trung trực vừa tìm được;
Thay thế tọa độ của tâm I vào dạng PT chính tắc của đường trịn (C) để tìm bán kính.
Thay thế bán kính và tọa độ tâm vào dạng chính tắc để viết PT đường trịn.
<b>1.3.3. Tình hình và cơ hội rèn luyện KN GQVĐ cho HS trong DH “Phương pháp tọa độ trong mặt phẳng” </b>
Quan sát tìm hiểu thực tế DH “phương pháp tọa độ trong mặt phẳng” hiện nay ở trường THPT có thể thấy việc dạy và học như sau:
<i>- Phần lý thuyết: GV dạy theo từng chủ đề theo các bước, đặt vấn đề, giảng giải kết </i>
hợp với vấn đáp, gợi mở để dẫn HS tới kiến thức, củng cố kiến thức bằng bài tập, hướng dẫn công việc học tập ở nhà.
<i>- Phần bài tập: GV để HS chuẩn bị ở nhà hoặc chuẩn bị ít phút tại lớp, sau đó GV gọi </i>
một vài HS lên bảng chữa, những HS khác được gọi lên nhận xét lời giải của bạn, GV chữa bài hoặc đưa ra lời giải mẫu và qua đó củng cố hiểu biết cho HS. Một số bài toán được phát triển theo hướng khái quát hóa, đặc biệt hóa, tương tự hóa đối với HS khá giỏi.
Chủ yếu GV sử dụng các PPDH thuyết trình, giảng giải, vấn đáp có kết hợp với khai thác phương tiện hỗ trợ ... Do nhiều nguyên nhân khác nhau (đặc biệt là đối tượng HS yếu và không đều; nội dung trong SGK nhiều và trình bày dưới dạng cịn khá “hàn lâm”; kể cả NL dạy học Toán của GV) mà những kiểu DH khơng truyền thống thường ít được GV vận dụng.
Đối với PPDH phát hiện và GQVĐ: Mặc dù đây là một xu hướng DH không
<i>truyền thống có nhiều ưu điểm, rất phù hợp với mục đích rèn luyện KN GQVĐ cho </i>
<i>HS. Tuy nhiên, không phải nội dung nào cũng thuận lợi để sử dụng PP này. Nhiều </i>
GV còn tỏ ra lúng túng khi xây dựng những tình huống gợi vấn đề, tạo được tình
<i>huống rồi thì gặp phải khó khăn khi dạy trên lớp do thời lượng hạn chế của tiết học </i>
<i>so với nội dung kiến thức, do trình độ HS hạn chế. Khi vận dụng DH GQVĐ thì GV </i>
</div><span class="text_page_counter">Trang 32</span><div class="page_container" data-page="32">thường chỉ dừng lại ở việc vận dụng ở mức độ và hình thức thuyết trình hoặc kết hợp với đàm thoại, ...
Nhận xét: Nghiên cứu nội dung chương trình PPTĐ trong mặt phẳng ở THPT, chúng tơi thấy những khó khăn, thuận lợi và cơ hội khi rèn luyện KN GQVĐ cho HS như sau:
- Cơ hội:
Chủ đề này được đưa vào chương trình với nội dung và thời lượng không nhiều, nhưng ứng dụng lại trải rộng cả các lớp ở THPT; gắn kết nhiều chủ đề nội dung (Đại số và Hình học phẳng và hình học khơng gian: Hàm số và đồ thị, PT, BPT, PPTĐ trong không gian, ...).
<i>Trước khi học PPTĐ, HS đã được học tương đối nhiều về Hình học phẳng, về mặt phẳng tọa độ ... đủ để có hiểu biết và kỹ năng làm việc với PPTĐ trong mặt </i>
phẳng.
Sau khi học PPTĐ, HS có thêm công cụ hữu hiệu để giải bài tập hình học phẳng nhờ thế mạnh của phương pháp này cũng như vai trò “cầu nối” của PPTĐ thể hiện mối liên quan chặt chẽ giữa hàm số - đồ thị và hình học.
- Khó khăn:
<i>Kiến thức và kỹ năng về chủ đề này được phân bổ dàn trải trong chương trình </i>
<i>mơn Tốn THPT nên ít nhiều làm cho HS khó nhìn ra mạch lôgic và sự đồng bộ song hành của chúng với “hàm số - đồ thị” và “hình học”, đặc biệt là với tiến trình “mở </i>
rộng phát triển” từ hình học phẳng sang hình học khơng gian, từ góc độ tiếp cận hình học bằng “hệ tiên đề Ơclit” sang góc nhìn đại số bằng cách “tọa độ hóa”.
Những khó khăn thuộc về khái niệm, tính chất và PP “vectơ, tọa độ” ít nhiều ảnh hưởng đến việc vận dụng vào giải tốn, nói riêng là học, vận dụng PPTĐ trong mặt phẳng.
Chủ đề hình học (hình học phẳng và hình học khơng gian) trong chương trình mơn Tốn phổ thơng xuyên suốt cả 3 cấp học (Tiểu học, THCS, THPT) xuất phát từ cách thức tiếp cận hình học bằng hệ tiên đề.
</div><span class="text_page_counter">Trang 33</span><div class="page_container" data-page="33">Trong đó, HS bắt đầu tiếp cận với việc “tọa độ hóa” đối tượng hình học khi
<i>học hệ tọa độ Đề Các vng góc (Tốn 7), đến PPTĐ trong mặt phẳng (Hình học 10), </i>
đến PPTĐ trong khơng gian (Hình học 12). Như vậy, PPTĐ được đưa vào nghiên cứu hình học sau khi HS đã học tương đối đủ những kiến thức về Hình học và Đại số làm nền tảng. Trong đó, nội dung nội dung và phương pháp vectơ trực tiếp phục vụ cho phương pháp tọa độ. Cụ thể là:
Công cụ “PPVT” ở lớp 10 được đưa vào SGK như sau: HS được học về vectơ và các phép toán trên các vectơ (Phép cộng, phép trừ, phép nhân vectơ với một số thực, tích có hướng của hai vectơ), sau đó là trục, hệ trục tọa độ, tọa độ của điểm, tọa độ của vectơ và một vài ứng dụng đơn giản của phương pháp tọa độ. Tuy nhiên, ở hình học lớp 10, phương pháp vectơ vẫn là chủ yếu như: Các hệ thức lượng trong tam giác và trong đường tròn được xây dựng nhờ các phép toán vectơ và đặc biệt là tích vơ hướng của hai vectơ và ứng dụng. Phương pháp tọa độ trong mặt phẳng được xây dựng dựa trên những kiến thức về tọa độ vectơ và tọa độ của điểm.
Hệ tọa độ và PPTĐ là công cụ tốn học có nhiều ứng dụng trong Vật lí, kĩ thuật, do đó học và vận dụng PPTĐ tạo điều kiện thực hiện DH liên môn ở trường phổ thơng
Có thể coi vận dụng PPTĐ sẽ giúp cho HS tiếp cận, trình bày những kiến thức
<i>tốn học phổ thơng theo một cách nhìn khá mới mẻ, sáng tạo - một thứ ngơn ngữ ký </i>
hiệu tốn học khá rõ ràng, ngắn gọn, giảm bớt sự trừu tượng trong việc tưởng tượng hình học. Nhờ vậy, PPTĐ được xem là là một phương pháp dùng để giải tốn hình học có hiệu quả một cách nhanh chóng tổng qt đơi khi khơng cần hình vẽ, nó có tác dụng tích cực phát triển tư duy trừu tượng, năng lực phân tích tổng hợp, … Chẳng hạn: Nhờ học PPTĐ, HS dùng làm phương tiện trung gian để chuyển những khái niệm, quan hệ hình học sang góc nhìn đại số và ngược lại.
PPTĐ sẽ giúp HS có một cơng cụ hữu ích để giải một số dạng bài tốn khác nhau ... trong mơn Tốn khá hiệu quả.
</div><span class="text_page_counter">Trang 34</span><div class="page_container" data-page="34"><i>Như vậy, có thể thấy DH nội dung PPTĐ trong mặt phẳng giúp HS có thêm </i>
một cơng cụ hữu hiệu để giải quyết những vấn đề toán học trong học Toán - nói riêng là học Hình học 10; tạo ra cơ hội, môi trường để rèn luyện KN GQVĐ cho các em.
<b><small>1.4. KẾT LUẬN CHƯƠNG 1 </small></b>
<i>Ở chương 1, luận văn đã nghiên cứu và trình bày cơ sở lý luận về NL và KN </i>
<i>GQVĐ; về DH Toán theo hướng phát triển NL cho HS. Tìm hiểu tình hình dạy và học </i>
nội dung “Phương pháp tọa độ trong mặt phẳng” ở lớp 10 THPT, làm cơ sở để lựa
<i>chọn, xác định 3 nhóm KN GQVĐ (với 6 KN thành phần) cần thiết và có thể rèn </i>
luyện cho HS. Các kết quả thu được cho thấy: Trong DH “PPTĐ trong mặt phẳng” ở
<i>lớp 10 THPT, cần thiết rèn luyện các KN GQVĐ cho HS và có điều kiện, cơ hội để </i>
xây dựng giải pháp DH chủ đề này nhằm mục tiêu đã chọn.
</div><span class="text_page_counter">Trang 35</span><div class="page_container" data-page="35"><b><small>CHƯƠNG 2 - BIỆN PHÁP DẠY HỌC PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG RÈN LUYỆN KỸ NĂNG GIẢI QUYẾT VẤN ĐỀ CHO HỌC SINH LỚP 10</small></b>
<b><small>2.1. ĐỊNH HƯỚNG XÂY DỰNG BIỆN PHÁP </small></b>
<i><b>Định hướng 1: </b></i>
Tơn trọng chương trình SGK hiện hành và hướng đến thực hiện chương trình giáo dục phổ thơng mơn Tốn (ban hành năm 2018).
<i><b>Định hướng 2: </b></i>
<i>Rèn luyện KN GQVĐ tập trung vào 3 nhóm KN GQVĐ đã xác định (mục </i>
<i>1.3.2.2), đặt trong mối liên hệ gắn bó với mục tiêu kiến thức, kỹ năng, phẩm chất, năng lực tốn học của mơn Tốn; tiếp cận đến NL vận dụng toán học vào thực tiễn và NL GQVĐ thực tiễn của HS. </i>
<i><b>Định hướng 3: </b></i>
Các BP nhằm vào tổ chức các HĐ phát hiện và GQVĐ trong các tình huống
<i>DH khái niệm; tính chất, định lý; quy tắc, phương pháp; giải bài toán ở nội dung </i>
“PPTĐ trong mặt phẳng”.
<i><b>Định hướng 4: </b></i>
Phù hợp với tình hình thực trạng hiện nay ở trường THPT về GV và HS, về điều kiện phương tiện dạy học Toán.
<i><b>Định hướng 5: </b></i>
Phối hợp vận dụng các PPDH trong đó khai thác lợi thế của DH GQVĐ, lấy
<i>làm nòng cốt nhằm vào việc thiết kế, tổ chức cho HS những HĐ phát hiện và GQVĐ </i>
<i>một cách sáng tạo. </i>
<b><small>2.2. XÂY DỰNG VÀ SỬ DỤNG BIỆN PHÁP DẠY HỌC CHƯƠNG III - HÌNH HỌC 10 THEO HƯỚNG RÈN LUYỆN KỸ NĂNG GQVĐ CHO HS </small></b>
<b>2.2.1. Biện pháp 1 - GV tổ chức và hướng dẫn HS huy động vốn kinh nghiệm để phát hiện và làm rõ được VĐ, phân tích, phát hiện, lựa chọn được chiến lược GQVĐ </b>
<i><b>2.2.1.1. Cơ sở và ý nghĩa của biện pháp </b></i>
</div><span class="text_page_counter">Trang 36</span><div class="page_container" data-page="36"><i>Các KN 1.1; KN 1.2; KN 2.1; KN 2.1 (đã nêu ở mục 1.3.2.2) ứng với 2 bước </i>
đầu rất quan trọng trong quá trình phát hiện và GQVĐ, cần đến những tình huống tổ
<i>chức các HĐ phân tích VĐ, dự đốn, lập luận và lựa chọn được đường lối, chiến </i>
lược giải quyết phù hợp.
<i>Muốn vậy, trước hết HS cần có khả năng huy động nhanh chóng - đúng và đủ </i>
<i>vốn kinh nghiệm để phát hiện và làm rõ được VĐ toán học (câu hỏi, yêu cầu) cần giải quyết ở tình huống học PPTĐ trong mặt phẳng. </i>
Từ đó tiếp tục vận dụng tổng hợp các thao tác tư duy một cách sáng tạo, linh
<i><b>hoạt nhằm tìm ra chiến lược đường lối để GQVĐ đặt ra. </b></i>
<i>Vì vậy, đây là BP trực tiếp tác động đến các KN 1.1; KN 1.2; KN 2.1; KN 2.1, </i>
được GV sử dụng ở hai bước đầu tiên trong quá trình DH phát hiện và GQVĐ; giúp cho HS tập luyện HĐ phát hiện và GQVĐ khi học lý thuyết và giải bài tập về PPTĐ
<i>trong mặt phẳng. Đồng thời ở bước 2 (ứng với các KN 2.1 và 2.2) của quá trình phát hiện và GQVĐ thể hiện rõ sự cần thiết và cơ hội phát triển TDST cho HS khi tìm tịi chiến lược GQVĐ - một khâu then chốt, quan trọng hàng đầu để GQVĐ toán học. </i>
<i><b>2.2.1.2. Nội dung và ví dụ minh họa biện pháp </b></i>
Căn cứ vào nội dung bài dạy, GV thiết kế tình huống gợi ra VĐ HS cần giải quyết.
Đưa ra tình huống và tổ chức hướng dẫn HS huy động những kiến thức, kỹ
<i>năng cần thiết đủ để các em xâm nhập vào tình huống và nhận ra VĐ cần trả lời. Gợi ý hướng dẫn HS sử dụng kiến thức, kỹ năng và nhất là tiến hành các thao tác tư duy (chú trọng những thao tác trí tuệ có tính khám phá, sáng tạo) để phân tích, </i>
<i>tìm cách liên kết các kiến thức giữa giả thiết và kết luận của VĐ theo các con đường: </i>
xuôi (từ giả thiết kết luận), ngược (kết luận giả thiết), kết hợp cả hai con
<i>đường. Trong đó cần chú ý đến quy trình sử dụng PPTĐ để giải bài toán: </i>
<i>1. Chọn hệ toạ độ thích hợp. </i>
<i>2. “Phiên dịch” bài tốn sang ngơn ngữ toạ độ. 3. Dùng các kiến thức và PP toạ độ để giải bài toán. </i>
<i>4. Phiên dịch kết quả từ ngôn ngữ toạ độ sang ngôn ngữ hình học. </i>
</div><span class="text_page_counter">Trang 37</span><div class="page_container" data-page="37">Trong trường hợp bài toán ban đầu ở dạng nội dung thực tiễn thì cần thêm một bước 0. Mơ hình hóa tốn học để đưa về mơ hình tốn học và bài tốn hình học có thể tọa độ hóa.
Tập luyện các hoạt động chuyển đổi từ ngơn ngữ hình học thơng thường sang ngơn ngữ véc tơ, ngôn ngữ tọa độ.
Giúp HS lập luận hợp lơgic để lựa chọn, tìm ra con đường nối được từ giả thiết
<i>đến kết luận và lập kế hoạch GQVĐ. </i>
<b>Ví dụ 2.1: Vận dụng PPTĐ để giải bài tốn “Tìm tập hợp điểm” </b>
<small>Trong mặt phẳng với hệ trục tọa độ vng góc Oxy, cho A 4;3 ,B 2;7 ,C3; 8. a) Tìm tập hợp các điểm D sao cho ABCD là hình bình hành. </small>
<small>b) Tìm giao điểm I của hai đường thẳng OA và BC. c) Tìm tọa độ trọng tâm, trực tâm ΔABC. </small>
<small>d) Tìm tâm đường trịn ngoại tiếp ΔABC. </small>
<small>* GV hướng dẫn cho HS quy trình giải dạng bài tốn “Tìm tập hợp điểm” bằng PPTĐ: Bước 1. Gọi M x ; y</small><sub>o</sub> <sub>o</sub> <small> là điểm cần tìm quỹ tích và dựa vào giả thiết và rằng buộc điều kiện để tìm quan hệ </small> <sup>o</sup> <sup>1</sup>
<small>xf m</small>
<small>yf m</small> <sup> với </sup> <sup>m</sup> <sup>D</sup><sup>: tập chứa điều kiện </sup> <sup>m</sup><sup>. </sup>
<small>Bước 2. Khử m ở hệ phương trình (I) ta được F x ; y</small><sub>o</sub> <sub>o</sub> <small>0 1. Giới hạn khoảng biến thiên của x0 hoặc y0 ở hệ (I) và điều kiện m </small><b>D (2) </b>
<small>Bước 3. Kết luận: từ (1), (2) ta có quỹ tích của điểm M là tập hợp điểm: + Cả đường cong : F x;y0</small><b><small> nếu (2) là tập R. </small></b>
<small>+ Một phần đường cong : F x;y0</small><b><small> trên D nếu trong (2) mà D </small></b><small></small><b><small> R. </small></b>
<small>* GV tổ chức và hướng dẫn HS tiến hành các HĐ vận dụng: </small>
<i><small>Ở a), HS dễ dàng phát hiện được VĐ là “Tìm tập hợp các điểm D thỏa mãn điều kiện đã cho ...”; đối chiếu với quy trình 3 bước ở trên để phát hiện “con đường áp dụng theo từng </small></i>
<small>bước giải quyết” đó; thực hiện GQVĐ và trình bày ngắn gọn nhất. a) Gọi </small><i><small>D x y</small></i><small>( ; ). Khi đó, ABCD là hình bình hành khi và chỉ khi </small>
</div><span class="text_page_counter">Trang 38</span><div class="page_container" data-page="38"><i><small>Ở b), c), d), HS dễ dàng phát hiện được VĐ là “Tìm tọa độ của điểm ... thỏa mãn điều kiện đã cho ...”; đối chiếu với quy trình 3 bước ở trên để phát hiện “con đường áp dụng theo </small></i>
<small>từng bước giải quyết” đó; thực hiện GQVĐ và trình bày ngắn gọn nhất. </small>
<small>b) I là giao điểm của hai đường thẳng OA và BC ba điểm O, A,I và ba điểm B, I, </small>
<small>Từ đó tìm được tọa độ điểm H là:H 13;0. </small>
<small>d) Gọi J(x;y) là tâm đường tròn ngoại tiếp ΔABC. Khi đó ta có: </small> <sup>AJ=BJ</sup>
<i><small>Phân tích: Nếu giải thơng thường bằng phương pháp đại số (Tìm cực trị, giá trị nhỏ nhất của hàm số bằng PP đạo hàm, hoặc bất đẳng thức, BPT) thì gặp khá nhiều khó khăn. </small></i>
<small>Vậy có thể dùng cơng cụ PPTĐ vào việc giải bài tốn hay khơng? PP này có thể giúp chúng ta được gì? </small>
<i><small>Nhận xét: Muốn dùng PPTĐ, ta cần tìm cách chuyển dữ kiện (ở đây biểu thức y là </small></i>
<small>tổng của 2 biểu thức chứa căn bậc hai ...) về dạng biểu thức tính khoảng cách trong hình </small>
<i><small>học. Chú ý là: Điều thuận lợi ở chỗ trong cả 2 căn bậc hai đã có sẵn dạng bậc hai đối với x! </small></i>
<small>Phù hợp với cơng thức tính khoảng cách giữa 2 điểm trong mặt phẳng d = </small>
<small>(xx )(</small><i><small>y</small></i> <small></small><i><small>y</small></i><small>)</small> <i><small>. </small></i>
</div><span class="text_page_counter">Trang 39</span><div class="page_container" data-page="39"><small>Vì vậy, ta tìm cách viết lại biểu thức hàm số y dưới dạng: </small>
<small>* Khi giải bài tốn có dạng trên, sự sáng tạo (linh hoạt, mềm dẻo và độc đáo) ở chỗ GV gợi </small>
<i><small>ý hướng dẫn HS cách chọn 3 điểm để lợi dụng bất đẳng thức về 3 cạnh của tam giác một </small></i>
<small>cách nhanh nhất, hợp lý nhất. </small>
<b>Ví dụ 2.3: </b>
<i>Để rèn luyện KN 1.1, KN 1.2 và KN 3.2, GV đưa ra tình huống tập luyện cho </i>
<i>HS khả năng phát hiện và GQVĐ “chuyển đổi giữa ngơn ngữ” giữa: hình học tổng </i>
hợp (theo hệ tiên đề); ngôn ngữ véc tơ; ngôn ngữ tọa độ đối với một số kiến thức hình
<i>học khi các em huy động kiến thức cũ, tìm nhiều cách giải bài tốn. </i>
<b>Bảng 2.1 - Chuyển đổi ngơn ngữ hình học - véc tơ - tọa độ </b>
</div>