Tải bản đầy đủ (.pptx) (61 trang)

giới thiệu đôi chút về dòng xe huyndai tucson

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.21 MB, 61 trang )

<span class="text_page_counter">Trang 1</span><div class="page_container" data-page="1">

Phan Trung Dũng

</div><span class="text_page_counter">Trang 2</span><div class="page_container" data-page="2">

<i>I.Giới thiệu đôi chút về dịng xe </i>

•Tucson là mẫu xe SUV hạng C có tính đa dụng, tiện nghi và sang trọng nhất ở thị trường Việt Nam, kết hợp sự năng động, mạnh mẽ đặc trưng của dịng xe SUV cùng khơng gian sang trọng, tiện nghi, ứng dụng nhiều công nghệ hiện đại tạo nên chuẩn mực mới trong phân khúc SUV.

</div><span class="text_page_counter">Trang 3</span><div class="page_container" data-page="3">

II. Bố trí tuyến hình

</div><span class="text_page_counter">Trang 5</span><div class="page_container" data-page="5">

III. - Basic dimensions of the car:

</div><span class="text_page_counter">Trang 6</span><div class="page_container" data-page="6">

<b>3.1 )Thông số theo thiết kế phác thảo</b>

III.Thông số đầu vào

-Engine type: 2.0L I4 Smartstream naturally aspirated gasoline engine

-Displacement: V

<sub>c</sub>

= 1999 (cc)

-Maximum power: P

<sub>max</sub>

= 156 (horsepower)-n

<sub>N</sub>

: 6200 (rpm) (revolutions per minute)-Maximum torque: M

<sub>max</sub>

= 192 (Nm)

-Maximum speed: V

<sub>max</sub>

= 230(km/h) = 63,9 (m/s)-Power transmission system:

Front – mounted engine, front – wheel drive 6 – speed automatic transmission

</div><span class="text_page_counter">Trang 7</span><div class="page_container" data-page="7">

III.Thông số đầu vào-Self weight: 1576kg

-Passenger weight: 60kg/ person-Luggage weight: 20kg/ person-Power transmission efficiency: 0,95-Air resistance coefficient: K = 0,18

-Rolling resistance coefficient when V < 22 m/s is f

<sub>0 </sub>

= 0,01 

<b>3.2 Thông số chọn</b>

</div><span class="text_page_counter">Trang 8</span><div class="page_container" data-page="8">

III.Thông số đầu vào

</div><span class="text_page_counter">Trang 9</span><div class="page_container" data-page="9">

-Dynamic and kinematic radius of the wheel: r

<sub>b</sub>

= r

<sub>k</sub>

= λ r

<sub>0 </sub>

</div><span class="text_page_counter">Trang 10</span><div class="page_container" data-page="10">

III.Thông số đầu vào

<small>- </small> <i><small>Vehicle: Hyundai Tucson 2.0 special version with 5 seats: </small></i>

<small>- </small> <i><small>Curb weight (Vehicle own’s weight): G0 = 1576 (kg) </small></i>

<small>- </small> <i><small>Payload (Cargo, luggage,..): Gh = 20 (kg) </small></i>

<small>- </small> <i><small>Weight: </small></i>

G – Curb weight

n – number of people (n=5) A – Weight of each person G<small>h</small> – Weight of luggage

<small>- </small> <i><small>G = 1576 + 5.(60 + 20) = 1976 (kg) </small></i>

<small> </small> <i><small>So the total weight of the vehicle: G = 1976 (kg) = 19760 (N) </small></i>

<small> </small> <i><small>Weight distribution: the load weight of the car acting on the front axle (G1) accounts for (55% ÷ 65%).G </small></i>

</div><span class="text_page_counter">Trang 11</span><div class="page_container" data-page="11">

IV.Xây dựng đường đặc tính ngoài của động cơ

<small>- </small> <i><small>The external speed characteristics curve of the engine represents relationship between power, torque and fuel consumption of the engine according to the engine’s rotational speed. These characteristic curves include: </small></i>

<small>w</small><sub>e N</sub><i><small> . For an unrestricted – speed gasoline engine </small></i>

<small>- </small> <i><small>Choose λ = 1 (for gasoline engine) </small></i>

(N<small>e</small>)<small>max</small> = <sup>𝑁</sup><small>𝑒𝑣</small>

<small>𝑎 .൬</small><sup>𝑤 𝑒𝑣</sup>

<small>𝑤 𝑒𝑁</small><sup>൰</sup><sup>+𝑏 .൬</sup><small>𝑤 𝑒𝑣𝑤 𝑒𝑁</small><sup>൰</sup>

</div><span class="text_page_counter">Trang 12</span><div class="page_container" data-page="12">

IV. Xây dựng đường đặc tính ngồi của động cơ

<i>- V</i>

<i><small>max</small></i>

<i> = 230 (km/h) = 63,9 (m/s) > 22 (m/s). So the rolling resistance coefficient f is caculated as: </i>

𝑓 = 𝑓

<sub>0</sub>

∗ቀ1 +

<sup>𝑉</sup><small>𝑚𝑎𝑥</small> <sup>2</sup>

<small>1500</small>

<i>ቁ ⇒ f = 0,01 . ቀ1 +</i>

<sup>63,9</sup><sup>2</sup>

<small>1500</small>

ቁ = 0,0372 Where:

<i>- K – Air resistance coefficient (K = 0,18) - F – Frontal area </i>

<i>- η</i>

<i><sub>tl</sub></i>

<i> – Power transmission efficiency (η</i>

<i><sub>tl</sub></i>

<i> = 0,95) </i>

- 

<i><small>max</small></i>

<i> – Total coefficient of road resistance (</i>

<i><small>max</small></i>

<i> = 0,4) - N</i>

<i><small>ev</small></i>

<i> = </i>

<sup>1</sup>

<small>0,95</small>

<i> .ሾ19760 .0,0372 .63,9 + 0,18 .1,8 .ሺ63,9ሻ</i>

<small>3</small>

<i>ሿ= 138458,2 (W) - So the engine power under the motion resistance condition is: </i>

N

ev

= 138,458 (kW)

</div><span class="text_page_counter">Trang 13</span><div class="page_container" data-page="13">

IV. Xây dựng đường đặc tính ngồi của động cơ

- <i>Maximum engine power: </i>

(2.2) ⇒ N

<small>emax</small>

= 138,458 (kW)

- <i>Developing external speed characteristic curve: </i>

- <i>Determining the engine power at diffirent rotational speeds (using the Laydecman formula) </i>

(2.1) ⇒ N

<small>e</small>

= (N

<small>e</small>

)

<small>max</small>

.ሾ𝑎.λ + 𝑏 .λ

<small>2</small>

− 𝑐.λ

<sup>3</sup>

ሿ (kW) Where:

- <i>N<small>emax</small> and w<small>emax </small>represents the maximum power of the engine and the corresponding speed </i>

- <i>N<small>e</small> and w<small>e </small>represents the power and speed at a specific point on the characteristic curve </i>

- <i>Calculating the torque of the engine crankshaft at different speeds (RPMs) </i>

<i>o The parameters w<small>e</small>, N<small>e</small>, M<small>e</small> have their calculation formulas </i>

<i>o The calculated results are recorded in the table </i>

</div><span class="text_page_counter">Trang 14</span><div class="page_container" data-page="14">

IV.Xây dựng đường đặc tính ngoài của động cơ

Table 1: the table shows the engine torque and power

241,76103,80 108,

39

</div><span class="text_page_counter">Trang 15</span><div class="page_container" data-page="15">

<b>Development of the engine’s external speed characteristics</b>

After performing calculations and data processing, we have developed the external speed characteristic curve with engine power N

<small>e</small>

(kW) and torque M

<small>e </small>

(Nm):

Firgue 1: External speed characteristic curve graph of the engine

External speed characteristic curve

</div><span class="text_page_counter">Trang 16</span><div class="page_container" data-page="16">

<b>Development of the engine’s external speed characteristics</b>

<small>- </small> <i><small>Comments: </small></i>

<small>- </small> <i><small>The maximum Me value is determined according to the Laydecman formula as follows: </small></i>

Starting from the formula

𝑤<sub>𝑒𝑁</sub> <sup>൤ 𝑏 ∗</sup>1

𝑤<sub>𝑒𝑁</sub> <sup>− 2𝑐 ∗</sup>𝑤<sub>𝑒</sub>

𝑤<sub>𝑒𝑁</sub><small>2</small>൨⇒ <sup>𝑤</sup><sup>𝑒</sup>𝑤<sub>𝑒𝑁</sub> <sup>=</sup>

2𝑐 <sup>= 0,5</sup>⇒ M<small>emax</small>= <sup>𝑁</sup><small>𝑒𝑚𝑎𝑥</small>

<small>𝑤</small><sub>𝑒𝑁</sub> ቀ𝑎 +<sup>𝑏</sup><sup>2</sup>

<small>4 𝑐</small>ቁ = <sup>13845 8 ,2</sup>

<small>6 28</small> ቀ1 +<sup>1</sup><sup>2</sup>

<small>4</small>ቁ = 275,59 (Nm)

overcome motion resistance. To select an engine for an automobile, additional power is needed to overcome additional resistances such as fans, air compressors,...Therefore, the maximum power must be chosen

N<small>emax</small> = 1,1∗N<small>emax</small> = 1,1*262,81 = 289,09 (Nm)

</div><span class="text_page_counter">Trang 17</span><div class="page_container" data-page="17">

IV.Tính tốn các thơng số động lực học ơ tơ

-<sub>Transmission ratio of the power transmission system:</sub>

i

<sub>tl </sub>

= i

<sub>0</sub>

. i

<sub>h</sub>

. i

<sub>c</sub>

. i

<sub>p</sub>

(2.6)Where:

i

<sub>tl</sub>

– transmission ratio of the power transmission systemi

<sub>0</sub>

– transmission ratio of the main power transmissioni

<sub>h</sub>

– transmission ratio of the gearbox

i

<sub>c</sub>

– transmission ratio of the final power transmissioni

<sub>p</sub>

– transmission ratio of the auxiliary gearbox

Typically i

<sub>c</sub>

= 1; i

<sub>p</sub>

= 1

</div><span class="text_page_counter">Trang 18</span><div class="page_container" data-page="18">

IV.Tính tốn các thơng số động lực học ơ tô

This is determined to ensure the car operates at its highest speed in the top gear of the gearbox-<sub>We have the equation:</sub>

 

</div><span class="text_page_counter">Trang 19</span><div class="page_container" data-page="19">

IV.Tính tốn các thơng số động lực học ô tô

-Transmission ratio of gear 1:

The transmission of gear 1 is determined to ensure the car can overcome maximum road resistance without wheel slip under all driving conditions

Under driving conditions, we have:P

<sub>k max</sub>

P

<sub>ψ max </sub>

+ P

<sub>w</sub>

</div><span class="text_page_counter">Trang 20</span><div class="page_container" data-page="20">

IV.Tính tốn các thơng số động lực học ô tô

- When the vehicle is operating in first gear, the speed is low. This allow us to disregard the air resistance force P

<sub>w</sub>

</div><span class="text_page_counter">Trang 21</span><div class="page_container" data-page="21">

IV.Tính tốn các thông số động lực học ô tô

- Where:

G

<sub>φ </sub>

– Load acting on the driving axle

φ – Coefficent of the road adhesion (φ = 0,7)r

<sub>bx</sub>

– Average working radius of the wheels = 3,22

i

<sub>h1</sub>

= 3,0718

 

</div><span class="text_page_counter">Trang 22</span><div class="page_container" data-page="22">

IV.Tính tốn các thơng số động lực học ơ tô

-<sub>The transmission ratio of the gear stages in the gear box is chosen according to the ‘geometric progression’ </sub>principle

-The multiplication factor is determined by the equation:

</div><span class="text_page_counter">Trang 23</span><div class="page_container" data-page="23">

IV.Tính tốn các thơng số động lực học ô tô

-The transmission ratio of the i-th gear stage in the gearbox is determined by the following formula:

i

<sub>hi</sub>

– Transmission ratio of the i-th gear stage in the gearbox (i = 1; 2;…; n-1) -With these formulas, we can determine the transmission ratio of each gear stage:Transmission ratio of gear stage 2: i

<sub>h2</sub>

= = = 2,4542

Transmission ratio of gear stage 3: i

<sub>h3</sub>

= = = 1,9608Transmission ratio of gear stage 4: i

<sub>h4</sub>

= = = 1,5666Transmission ratio of gear stage 5: i

<sub>h5</sub>

= = = 1,2516Transmission ratio of gear stage 6: i

<sub>h6</sub>

= = = 1

-Reverse transmission ratio: i

<sub>e </sub>

= 1,2 i

<sub>h1</sub>

= 1,23,0718 = 3,686

Verify the reverse transmission ratio according to the traction condition:

 

</div><span class="text_page_counter">Trang 24</span><div class="page_container" data-page="24">

IV.Tính tốn các thơng số động lực học ô tô

The transmission ratios corresponding to each gear are shown in the table below:

</div><span class="text_page_counter">Trang 25</span><div class="page_container" data-page="25">

IV.Tính tốn các thơng số động lực học ơ tơ

-The equation for the vehicle’s traction force balance:

P

<sub>k</sub>

= P

<sub>f</sub>

+ P

<sub>i</sub>

+ P

<sub>j </sub>

+ P

<sub>w</sub>

(2.11)Where:

P

<sub>k</sub>

– Traction force of the vehicleP

<sub>k</sub>

=

P

<sub>f </sub>

– Rolling resistance force: P

<sub>f</sub>

= G.f = G.fP

<sub>i</sub>

– Hill climbing resistance force: P

<sub>i</sub>

= G = 0

P

<sub>j</sub>

– Inertial force (occurs when the vehicle is in unstable motionP

<sub>j</sub>

= j

P

<sub>w</sub>

– Air resistance force: P

<sub>w</sub>

= K.F.v

<small>2</small>

 

</div><span class="text_page_counter">Trang 26</span><div class="page_container" data-page="26">

-Speed correspoding to each gear:

</div><span class="text_page_counter">Trang 27</span><div class="page_container" data-page="27">

IV.Tính tốn các thơng số động lực học ơ tơ

</div><span class="text_page_counter">Trang 28</span><div class="page_container" data-page="28">

IV.Tính tốn các thơng số động lực học ơ tơ

</div><span class="text_page_counter">Trang 29</span><div class="page_container" data-page="29">

IV.Tính tốn các thơng số động lực học ô tô

-<sub>Equation for drag force balance Pc:</sub>P

<sub>c</sub>

= P

<sub>f</sub>

+ P

<sub>w</sub>

Considering a vehicle moving on a level road without windP

<sub>c</sub>

= G.f + K.F.v²

</div><span class="text_page_counter">Trang 30</span><div class="page_container" data-page="30">

IV.Tính tốn các thơng số động lực học ô tô

Create a table to calculate P

<sub>c</sub>

and Pφ:

-Plot the graph P

<sub>k</sub>

=f(v) and P=f(v):

Figure 2: Traction force balance and speed for each gear

</div><span class="text_page_counter">Trang 31</span><div class="page_container" data-page="31">

IV.Tính tốn các thơng số động lực học ơ tơ

The vertical axis represents P

<sub>k</sub>

, P

<sub>f</sub>

, P

<sub>w</sub>

, Pφ. The horizontal axis represents v (m/s)

The form of the car’s traction force graph P

<sub>ki</sub>

= f(v) is similar to the curve M

<sub>e</sub>

= f(n

<sub>e</sub>

) of the external speed characteristic curve of the engine

The range between the traction force curve P

<sub>ki</sub>

and the total traction force curve is the surplus traction force (P

<sub>kd</sub>

) used for acceleration or climbing

The total traction force of the car must be less than the adhesion between the wheels and the road surface

</div><span class="text_page_counter">Trang 32</span><div class="page_container" data-page="32">

IV.Tính tốn các thơng số động lực học ơ tơ

</div><span class="text_page_counter">Trang 33</span><div class="page_container" data-page="33">

IV.Tính tốn các thơng số động lực học ơ tơ

</div><span class="text_page_counter">Trang 34</span><div class="page_container" data-page="34">

IV.Tính tốn các thông số động lực học ô tô

</div><span class="text_page_counter">Trang 35</span><div class="page_container" data-page="35">

IV.Tính tốn các thơng số động lực học ơ tơ

On the graph N

<sub>k</sub>

= f(v), plot the graph according to the table -Consider a car moving on a level road:

N

<sub>c</sub>

= G.f.v +K.F.v3(2.14)-Create a table to calculate :

Table 5: Powertrain resistance per transmission ratio

</div><span class="text_page_counter">Trang 36</span><div class="page_container" data-page="36">

Figure 3: Power balance graph of the car

VII.Tính tốn các thơng số động lực học ơ tơ

</div><span class="text_page_counter">Trang 37</span><div class="page_container" data-page="37">

IV.Tính tốn các thông số động lực học ô tô

The dynamics factor is the ratio between the difference of the traction force P<sub>k</sub> and the air resistance P<sub>w</sub> with the total weight of the car. This ratio is denoted as "D"

</div><span class="text_page_counter">Trang 38</span><div class="page_container" data-page="38">

IV.Tính tốn các thơng số động lực học ơ tơ

</div><span class="text_page_counter">Trang 39</span><div class="page_container" data-page="39">

IV.Tính tốn các thơng số động lực học ơ tơ

</div><span class="text_page_counter">Trang 40</span><div class="page_container" data-page="40">

IV.Tính tốn các thơng số động lực học ơ tơ

</div><span class="text_page_counter">Trang 41</span><div class="page_container" data-page="41">

V<b>. </b>Lập bảng tính giá trị thời gian tăng tốc – quãng đường tăng tốc của ôtô

-<sub>Dynamic factor under adhesion conditions is determined as </sub>

</div><span class="text_page_counter">Trang 42</span><div class="page_container" data-page="42">

<b>V. Lập bảng tính giá trị thời gian tăng tốc – </b>

quãng đường tăng tốc của ôtô

Based on the table calculation results, construct the dynamic factor graph:

Figure 4: Dynamic factor graph of the vehicle

</div><span class="text_page_counter">Trang 43</span><div class="page_container" data-page="43">

V.Lập bảng tính giá trị thời gian tăng tốc – quãng đường tăng tốc của ôtô

The maximum value of the dynamic factor D

<sub>1</sub>

max at the lowest transmission ratio represents the vehicle’s ability to overcome the largest driving resistance of the road: D

<sub>1</sub>

max = 

<sub>max</sub>

</div><span class="text_page_counter">Trang 44</span><div class="page_container" data-page="44">

V.Lập bảng tính giá trị thời gian tăng tốc – quãng đường tăng tốc của ôtô

-No-slip driving region of the vehicle:

Similar to traction force, the dynamic factor is also limited by the adhesion conditions of the drive wheels on the road surface. To prevent the vehicle from slipping during rotation, the dynamic factor D must satisfy the following condition:  ≤ D ≤ D

<sub>φ</sub>

The region bounded by the D

<sub>φ</sub>

curve and the  curve on the dynamic factor graph is the region that meets the above condition. When D > D

<sub>φ</sub>

within a certain limit, the local characteristic of the engine can be used to prevent wheel slipping if practical operational conditions occur

</div><span class="text_page_counter">Trang 45</span><div class="page_container" data-page="45">

VII.Đánh gía khả năng kéo móc và vượt dốc

-Formula for calculating acceleration when the vehicle is moving on a level road:

J

<sub>i</sub>

= .g (2.17)Where:

Di is the value of the dynamic factor at transmission ratio i, corresponding to the speed vi from the D = f(v) graph

f is the cofficient of rolling resistance

Ji is the acceleration of the vehicle in transmission ratio iis a factor considering the influence of rotating masses

= 1+0.05(1+i

<sub>hi</sub>

²) (2.18)

 

</div><span class="text_page_counter">Trang 46</span><div class="page_container" data-page="46">

IV.Tính tốn các thơng số động lực học ơ tơ

</div><span class="text_page_counter">Trang 47</span><div class="page_container" data-page="47">

IV.Tính tốn các thơng số động lực học ơ tơ

</div><span class="text_page_counter">Trang 48</span><div class="page_container" data-page="48">

IV.Tính tốn các thơng số động lực học ô tô

</div><span class="text_page_counter">Trang 49</span><div class="page_container" data-page="49">

Based on the table calculation results, construct the acceleration graph:

Figure 5: Acceleration graph

</div><span class="text_page_counter">Trang 51</span><div class="page_container" data-page="51">

<i><b>Constructing the inverted acceleration graph:</b></i>

</div><span class="text_page_counter">Trang 54</span><div class="page_container" data-page="54">

Based on the table calculation results, construct the inverted acceleration graph:

Figure 6: Inverted acceleration graph

</div><span class="text_page_counter">Trang 55</span><div class="page_container" data-page="55">

<i><b>Calculate acceleration time and acceleration distance for a vehicle</b></i>

- <i><b>Acceleration time: </b></i>

<i><small>vv v</small></i>

</div><span class="text_page_counter">Trang 56</span><div class="page_container" data-page="56">

<i><b>Create a table to calculate the values of acceleration time and acceleration distance for the vehicle:</b></i>

-Consider speed loss and time during gear shifts

-Speed loss during gear shifts depends on the driver's skill level, gearbox structure, and engine type in the car

-<sub>Gasoline engines, with skilled drivers, have gear shift times ranging from 0.5s to 2s</sub>-Calculate the speed loss during gear shifts:

Δ

<sub>v</sub>

= (m/s) Where:

f

<sub>0</sub>

- the cofficient of rolling resistancecs – acceleration time (tcs = 1s)

Δ

<sub>v2 </sub>

= 0,157471 (m/s)Δ

<sub>v3 </sub>

= 0,204382 (m/s)

Δ

<sub>v4 </sub>

= 0,275517 (m/s)Δ

<sub>v5 </sub>

= 0,393684 (m/s) Δ

<sub>v6 </sub>

= 0,589652 (m/s)

</div><span class="text_page_counter">Trang 57</span><div class="page_container" data-page="57">

-Create a table to calculate acceleration time and acceleration distance for a vehicle:

</div><span class="text_page_counter">Trang 60</span><div class="page_container" data-page="60">

<i><b>Accerelation time and distance graph of the vehicle</b></i>

Figure 7: Accerelation time and distance graph of the vehicle

</div><span class="text_page_counter">Trang 61</span><div class="page_container" data-page="61">

Calculating the traction dynamics of a car is only meaningful in theory due to the relative nature of the calculations and the inaccuracies in choosing coefficients during the computation compared to reality. In practice, evaluating the traction quality of a car is conducted on the road or on specialized testing benches

</div>

×