Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
ĐẠI HỌC THÁI NGUYÊN
KHOA CÔNG NGHỆ THÔNG TIN
TRẦN QUANG HUY
NGHIÊN CỨU MỘT SỐ KỸ THUẬT
XÁC ĐỊNH ĐỘ ĐO TƯƠNG TỰ VÀ ỨNG DỤNG
LUẬN VĂN THẠC SỸ CÔNG NGHỆ THÔNG TIN
Thái nguyên - 2009
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
ĐẠI HỌC THÁI NGUYÊN
KHOA CÔNG NGHỆ THÔNG TIN
TRẦN QUANG HUY
NGHIÊN CỨU MỘT SỐ KỸ THUẬT
XÁC ĐỊNH ĐỘ ĐO TƯƠNG TỰ VÀ ỨNG DỤNG
Chuyên ngành: Khoa học máy tính
Mã số: 60.48.01
LUẬN VĂN THẠC SỸ CÔNG NGHỆ THÔNG TIN
Người hướng dẫn khoa học: TS. Phạm Việt Bình
Thái nguyên – 2009
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
5
LỜI CAM ĐOAN
Tôi xin cam đoan toàn bộ nội dung trong Luận văn hoàn toàn theo đúng
nội dung đề cương cũng như nội dung mà cán bộ hướng dẫn giao cho. Nội
dung luận văn, các phần trích lục các tài liệu hoàn toàn chính xác. Nếu có sai
sót tôi hoàn toàn chịu trách nhiệm.
Tác giả luận văn
Trần Quang Huy
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
6
MỤC LỤC
Nội dung Trang
ĐẶT VẤN ĐỀ 8
LỜI NÓI ĐẦU 9
Chƣơng 1: KHÁI QUÁT VỀ XỬ LÝ ẢNH VÀ ĐỘ ĐO TƢƠNG TỰ
TRONG XỬ LÝ ẢNH 11
1.1. Khái quát về xử lý ảnh 11
1.1.1. Một số khái niệm cơ bản 11
1.1.2. Một số vấn đề trong xử lý ảnh 12
1.1.2.1. Các hệ thống xử lý ảnh 12
1.1.2.2. Các hình thái của ảnh 14
1.1.2.3. Một số ứng dụng trong xử lý ảnh 15
1.1.2.4. Một số khái niệm, định nghĩa trong xử lý video 17
1.1.2.5. Lược đồ màu (Color Histogram) 22
1.1.2.6. Lược đồ tương quan màu (Color Correlogram) 25
1.1.2.7. Đặc trưng chuyển động (Motion) 26
1.1.2.8. Các bước thao tác với file video 28
1.2. Độ đo tƣơng tự trong xử lý ảnh 30
Chƣơng 2: MỘT SỐ PHƢƠNG PHÁP XÁC ĐỊNH ĐỘ ĐO TƢƠNG TỰ 32
2.1. Độ đo dựa trên khoảng cách 32
2.1.1. Độ đo khoảng cách min – max 32
2.1.2. Độ đo khoảng cách Euclid 32
2.1.3. Độ đo khoảng cách toàn phương: 32
2.2. Độ đo sử dụng trọng số 32
2.2.1. Độ đo có trọng số: 32
2.2.2. Độ đo hỗn hợp 33
2.2.2.1. Thuộc tính rời rạc 33
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
7
2.2.2.2. Thuộc tính có thứ tự 34
2.2.2.3. Thuộc tính liên tục 35
2.2.2.4. Kết hợp độ đo của các thuộc tính 36
2.2.2.5. Thuật toán nhanh cho thuộc tính liên tục 38
2.2.2.6. Thuật toán nhanh cho thuộc tính có thứ tự 40
2.3. Độ đo tƣơng tự có thể học (Trainable similarity measure) 41
2.4. Độ đo dựa trên Histogram 43
2.4.1. Giới thiệu 43
2.4.2. Định nghĩa 43
2.4.3. Lược đồ mức xám hai chiều 44
2.4.4. Các tính chất của lược đồ mức xám 45
2.4.5. Quan hệ giữa lược đồ mức xám và ảnh 46
2.4.6. Một chiều 46
2.4.7. Hai chiều 47
CHƢƠNG 3: ỨNG DỤNG ĐỘ ĐO TƢƠNG TỰ TRONG VIỆC PHÂN
LOẠI ẢNH TRONG FILE VIDEO 49
3.1. Giới thiệu bài toán 49
3.2. Cài đặt thuật toán 49
3.2.1. Code đọc ảnh 49
3.2.2. Code đọc và extract frame file video 56
3.3. Kết quả thực nghiệm và đánh giá 59
PHẦN KẾT LUẬN 62
TÀI LIỆU THAM KHẢO 63
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
8
ĐẶT VẤN ĐỀ
Lĩnh vực xử lý ảnh số tĩnh và xử lý ảnh động (video) đã được hình
thành và phát triển vào những thập kỷ đầu của thế kỷ XX. Các phương pháp
xử lý ảnh bắt nguồn từ một số ứng dụng như nâng cao chất lượng thông tin
hình ảnh đối với mắt người và xử lý số liệu, nhận dạng cho hệ thống tự động.
Một trong những ứng dụng đầu tiên của xử lý ảnh là nâng cao chất lượng ảnh
báo truyền qua cáp giữa London và New York vào những năm 1920. Thiết bị
đặc biệt mã hóa hình ảnh, truyền qua cáp và khôi phục lại ở phía thu. Cùng
với thời gian, do kỹ thuật máy tính phát triển nên xử lý hình ảnh ngày càng
phát triển. Các kỹ thuật cơ bản cho phép tìm kiếm, đối sánh những ảnh để tìm
ra sự tương tự.
Từ năm 1964 đến nay, phạm vi xử lý ảnh và video (ảnh động) phát
triển không ngừng. Các kỹ thuật xử lý ảnh số (digital image processing) đang
được sử dụng để giải quyết một loạt các vấn đề nhằm nâng cao chất lượng
thông tin hình ảnh. Và xử lý ảnh số được ứng dụng rất nhiều trong y tế, thiên
văn học, viễn thám, sinh học, y tế hạt nhân, quân sự, sản xuất công nghiệp …
Một ứng dụng quan trọng trong xử lý ảnh số mà không thể không nhắc đến đó
là đối sánh một ảnh với các frame của một file video nhằm mục đích tìm kiếm
sự giống nhau hay khác nhau, qua đó giúp cho quá trình xử lý công việc
nhanh hơn mà không mất thời gian kiểm tra từng file video.
Chính vì vậy, tôi lựa chọn đề tài “Nghiên cứu một số kỹ thuật xác
định độ đo tƣơng tự và ứng dụng ” nhằm nghiên cứu một số kỹ thuật xác
định độ đo tương tự như Trainable similarity measure (TSM) và Histogram
dòng cột. Qua đó, tôi có thể đưa ra một số nhận xét và có thể có giải pháp đề
xuất để phân loại đối tượng ảnh trong file video hiệu quả hơn.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
9
LỜI NÓI ĐẦU
Xử lý ảnh là một lĩnh vực đã và đang được quan tâm của nhiều nhà khoa
học trong và ngoài nước bởi tính phong phú và lợi ích của nó được ứng dụng
trong khoa học kỹ thuật, kinh tế, xã hội và đời sống con người. Lĩnh vực xử lý
ảnh liên quan tới nhiều ngành khác như: hệ thống tin học, trí tuệ nhân tạo,
nhận dạng, viễn thám, y học
Hiện nay, thông tin hình ảnh đóng vai trò rất quan trọng trong trao đổi
thông tin, bởi phần lớn thông tin mà con người thu được thông qua thị giác.
Do vậy, vấn đề nhận dạng trong xử lý ảnh, đặc biệt là nhận dạng đối tượng
ảnh chuyển động đang được quan tâm bởi yêu cầu ứng dụng đa dạng của
chúng trong thực tiễn.
Mục đích đặt ra cho xử lý ảnh được chia thành hai phần chính: phần
thứ nhất liên quan đến những khả năng từ các ảnh thu lại các ảnh để rồi từ các
ảnh đã được cải biến nhận được nhiều thông tin để quan sát và đánh giá bằng
mắt, chúng ta coi như là sự biến đổi ảnh (image transformation) hay sự làm
đẹp ảnh (image enhancement). Phần hai nhằm vào nhận dạng hoặc đoán nhận
ảnh một cách tự động, đánh giá nội dung các ảnh.
Quá trình nhận dạng ảnh nhằm phân loại các đối tượng thành các lớp
đối tượng đã biết (supervised learning) hoặc thành những lớp đối tượng chưa
biết (unsupervised learning). Sau quá trình tăng cường và khôi phục (đối với
những ảnh có nhiễu), giai đoạn tiếp theo, người ta phải trích rút các đặc tính
quan trọng, quyết định của ảnh cần nhận dạng. Các đặc tính đó có thể là đặc
tính hình học, đặc tính ngữ cảnh.
Bên cạnh đó, trong những năm gần đây lượng dữ liệu video số đã tăng
lên đáng kể cùng với việc sử dụng rộng rãi các ứng dụng đa phương tiện trong
giáo dục, giải trí, kinh doanh, y tế… Thực tế này đặt ra các bài toán như: giảm
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
10
dung lượng video và tăng tốc độ xử lý, tổ chức lưu trữ và tìm kiếm video hiệu
quả, hiểu nội dung video, nhận dạng đối tượng trong video. Một số nhóm
nghiên cứu trong và ngoài nước đã đưa ra các phương pháp giải quyết giảm
dung lượng video, tổ chức cơ sở dữ liệu video, và đặc biệt lĩnh vực là nhận
dạng đối tượng, đối tượng chuyển động trong dữ liệu video cũng đang được
quan tâm bởi tính ứng dụng đa dạng và cần thiết của nó trong khoa học, xã
hội và đời sống con người.
Trong luận văn thạc sĩ với đề tài “Nghiên cứu một số kỹ thuật xác
định độ đo tƣơng tự và ứng dụng”, tôi tập trung giải quyết bài toán đọc ảnh
và so sánh với các frame trong file video để đưa ra nhận xét. Luận văn gồm
phần mở đầu, phần kết luận, và 3 chương nội dung:
Chương 1 : Khái quát về xử lý ảnh và độ đo tương tự trong xử lý ảnh
Chương 2 : Một số phương pháp xác định độ đo tương tự
Chương 3 : Ứng dụng trong việc phân loại ảnh
Được sự giúp đỡ của các thầy cô trong Khoa Công nghệ thông tin - Đại
học Thái Nguyên cũng như của bạn bè, đồng nghiệp, đặc biệt là chỉ bảo tận
tình của Tiến sĩ Phạm Việt Bình và sự nỗ lực của bản thân, đến nay tôi đã
hoàn thành đề tài.
Tuy nhiên trong quá trình làm việc, mặc dù đã cố gắng nỗ lực hết sức
nhưng do kiến thức và kinh nghiệm vẫn còn hạn chế nên không thể tránh khỏi
còn sai sót, em tha thiết kính mong nhận được sự chỉ bảo của các thầy cô để
đề tài được hoàn thiện hơn.
Em xin chân thành cảm ơn.
Thái Nguyên, ngày 30 tháng 10 năm 2009
Học viên thực hiện
Trần Quang Huy
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
11
CHƢƠNG 1: KHÁI QUÁT VỀ XỬ LÝ ẢNH VÀ ĐỘ ĐO TƢƠNG TỰ
TRONG XỬ LÝ ẢNH
1.1. Khái quát về xử lý ảnh
1.1.1. Một số khái niệm cơ bản[1]
Xử lý ảnh là một trong những mảng quan trọng nhất trong kỹ thuật thị
giác máy tính, là tiền đề cho nhiều nghiên cứu thuộc lĩnh vực này. Hai nhiệm
vụ cơ bản của quá trình xử lý ảnh là nâng cao chất lượng thông tin hình ảnh
và xử lý số liệu cung cấp cho các quá trình khác trong đó có việc ứng dụng thị
giác vào điều khiển.
Quá trình bắt đầu từ việc thu nhận ảnh nguồn (từ các thiết bị thu nhận
ảnh dạng số hoặc tương tự) gửi đến máy tính. Dữ liệu ảnh được lưu trữ ở định
dạng phù hợp với quá trình xử lý. Người lập trình sẽ tác động các thuật toán
tương ứng lên dữ liệu ảnh nhằm thay đổi cấu trúc ảnh phù hơp với các ứng
dụng khác nhau.
Quá trình xử lý nhận dạng ảnh được xem như là quá trình thao tác ảnh
đầu vào nhằm cho ra kết quả mong muốn. Kết quả đầu ra của một quá trình
xử lý ảnh có thể là một ảnh “tốt hơn” hoặc một kết luận.
Hình 1.1. Quá trình xử lý ảnh
Ảnh trong xử lý ảnh có thể xem như ảnh n chiều. Bởi vì, ảnh có thể
xem là tập hợp các điểm ảnh. Trong đó, mỗi điểm ảnh được xem như là đặc
Ảnh
Xử lý ảnh
Ảnh tốt hơn
Kết luận
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
12
trưng cường độ sáng hay một dấu hiệu nào đó tại một vị trí nào đó của đối
tượng trong không gian và do đó nó có thể xem như một hàm n biến P(c1,
c2, , cn).
Sơ đồ tổng quát của một hệ thống xử lý ảnh:
Hình 1.2. Các bƣớc cơ bản trong một hệ thống xử lý ảnh
1.1.2. Một số vấn đề trong xử lý ảnh
1.1.2.1. Các hệ thống xử lý ảnh
* Tiền xử lý
Tiền xử lý là giai đoạn đầu tiên trong xử lý ảnh số. Tuỳ thuộc vào quá
trình xử lý tiếp theo trong giai đoạn này sẽ thực hiện các công đoạn khác nhau
như: nâng cấp, khôi phục ảnh, nắn chỉnh hình học, khử nhiễu v.v
* Trích chọn đặc điểm
Các đặc điểm của đối tượng được trích chọn tuỳ theo mục đích nhận
dạng trong quá trình xử lý ảnh. Trích chọn hiệu quả các đặc điểm giúp cho
việc nhận dạng các đối tượng ảnh chính xác, với tốc độ tính toán cao và dung
lượng nhớ lưu trữ giảm.
* Đối sánh, nhận dạng
Nhận dạng tự động (automatic recognition), mô tả đối tượng, phân loại
và phân nhóm các mẫu là những vấn đề quan trọng trong thị giác máy, được
ứng dụng trong nhiều ngành khoa học khác nhau. Ví dụ mẫu có thể là ảnh của
Thu nhận ảnh
(scanner,
camera…)
Tiền xử lý
(xoá nhiễu, lọc
nhiễu,…)
Trích
chọn đặc
điểm
Hậu
xử lý
Đối sánh rút ra
kết luận
Hệ quyết định Hệ quyết định
Lưu trữ
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
13
vân tay, ảnh của một vật nào đó được chụp, một chữ viết, khuôn mặt người
hoặc một ký đồ tín hiệu tiếng nói. Khi biết một mẫu nào đó, để nhận dạng
hoặc phân loại mẫu đó.
Hoặc phân loại có mẫu (supervised classification), chẳng hạn phân
tích phân biệt (discriminant analyis), trong đó mẫu đầu vào được định danh
như một thành phần của một lớp đã xác định. Hoặc phân loại không có mẫu
(unsupervised classification hay clustering) trong đó các mẫu được gán vào
các lớp khác nhau dựa trên một tiêu chuẩn đồng dạng nào đó. Các lớp này cho
đến thời điểm phân loại vẫn chưa biết hay chưa được định danh.
Hệ thống nhận dạng tự động bao gồm ba khâu tương ứng với ba giai đoạn
chủ yếu sau đây:
Thu nhận dữ liệu và tiền xử lý.
Biểu diễn dữ liệu.
Nhận dạng, ra quyết định.
Bốn cách tiếp cận khác nhau trong lý thuyết nhận dạng là:
Đối sánh mẫu dựa trên các đặc trưng được trích chọn.
Phân loại thống kê.
Đối sánh cấu trúc.
Phân loại dựa trên mạng nơ-ron nhân tạo.
Trong các ứng dụng rõ ràng là không thể chỉ dùng có một cách tiếp cận
đơn lẻ để phân loại “tối ưu” do vậy cần sử dụng cùng một lúc nhiều phương
pháp và cách tiếp cận khác nhau. Do vậy, các phương thức phân loại tổ hợp
hay được sử dụng khi nhận dạng và nay đã có những kết quả có triển vọng
dựa trên thiết kế các hệ thống lai (hybrid system) bao gồm nhiều mô hình kết
hợp.
Việc giải quyết bài toán nhận dạng trong những ứng dụng mới, nảy
sinh trong cuộc sống không chỉ tạo ra những thách thức về thuật giải, mà còn
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
14
đặt ra những yêu cầu về tốc độ tính toán. Đặc điểm chung của tất cả những
ứng dụng đó là những đặc điểm đặc trưng cần thiết thường là nhiều, không
thể do chuyên gia đề xuất, mà phải được trích chọn dựa trên các thủ tục phân
tích dữ liệu.
1.1.2.2. Các hình thái của ảnh
* Chuyển ảnh màu thành ảnh xám
Đơn vị tế bào của ảnh số là pixel. Tùy theo mỗi định dạng là ảnh màu
hay ảnh xám mà từng pixel có thông số khác nhau. Đối với ảnh màu từng
pixel sẽ mang thông tin của ba màu cơ bản tạo ra bản màu khả kiến là Đỏ (R),
Xanh lá (G) và Xanh biển (B) [Thomas 1892]. Trong mỗi pixel của ảnh màu,
ba màu cơ bản R, G và B được bố trí sát nhau và có cường độ sáng khác nhau.
Thông thường, mỗi màu cơ bản được biểu diễn bằng tám bit tương ứng 256
mức độ màu khác nhau. Như vậy mỗi pixel chúng ta sẽ có 2
8x3
=2
24
màu
(khoảng 16.78 triệu màu). Đối với ảnh xám, thông thường mỗi pixel mang
thông tin của 256 mức xám (tương ứng với tám bit) như vậy ảnh xám hoàn
toàn có thể tái hiện đầy đủ cấu trúc của một ảnh màu tương ứng thông qua
tám mặt phẳng bit theo độ xám.
Trong hầu hết quá trình xử lý ảnh, chúng ta chủ yếu chỉ quan tâm đến
cấu trúc của ảnh và bỏ qua ảnh hưởng của yếu tố màu sắc. Do đó bước
chuyển từ ảnh màu thành ảnh xám là một công đoạn phổ biến trong các quá
trình xử lý ảnh vì nó làm tăng tốc độ xử lý là giảm mức độ phức tạp của các
thuật toán trên ảnh.
* Lược đồ xám của ảnh (Histogram)
Lược đồ xám của một ảnh số có các mức xám trong khoảng [0,L−1]
là một hàm rời rạc p(r
k
)=n
k
/n . Trong đó n
k
là số pixel có mức xám thứ
r
k
, n là tổng số pixel trong ảnh và k=0,1,2 L−1. Do đó P(r
k
) cho một xấp
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
15
xỉ xác suất xảy ra mức xám r
k
. Vẽ hàm này với tất cả các gia trị của k sẽ biểu
diễn khái quát sự xuất hiện các mức xám của một ảnh. Chúng ta cũng có thể
thề hiện lược đồ mức xám của ảnh thông qua tần suất xuất hiện mỗi mức xám
qua hệ tọa độ vuông góc xOy. Trong đó, trục hoành biểu diễn số mức xám từ
0 đến N (số bit của ảnh xám). Trục tung biểu diễn số pixel của mỗi mức xám.
Hình 1.3. Lược đồ xám của ảnh
1.1.2.3. Một số ứng dụng trong xử lý ảnh
Như đã nói ở trên, các kỹ thuật xử lý ảnh trước đây chủ yếu được sử
dụng để nâng cao chất lượng hình ảnh, chính xác hơn là tạo cảm giác về sự
gia tăng chất lượng ảnh quang học trong mắt người quan sát. Thời gian gần
đây, phạm vi ứng dụng xử lý ảnh mở rộng không ngừng, có thể nói hiện
không có lĩnh vực khoa học nào không sử dụng các thành tựu của công nghệ
xử lý ảnh số .
Trong y học các thuật tóan xử lý ảnh cho phép biến đổi hình ảnh được
tạo ra từ nguồn bức xạ X -ray hay nguồn bức xạ siêu âm thành hình ảnh
quang học trên bề mặt film x-quang hoặc trực tiếp trên bề mặt màn hình hiển
thị. Hình ảnh các cơ quan chức năng của con người sau đó có thể được xử lý
tiếp để nâng cao độ tương phản, lọc, tách các thành phần cần thiết (chụp cắt
lớp) hoặc tạo ra hình ảnh trong không gian ba chiều (siêu âm 3 chiều).