Tải bản đầy đủ (.pdf) (45 trang)

Luận văn: VỀ DẠNG ĐỊNH LÝ CƠ BẢN THỨ HAI KIỂU CARTAN CHO CÁC ĐƯỜNG CONG CHỈNH HÌNH pptx

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (616.06 KB, 45 trang )

ĐẠI HỌC THÁI NGUYÊN
TRƯỜNG ĐẠI HỌC SƯ PHẠM





NGUYỄN TRƯỜNG GIANG




VỀ DẠNG ĐỊNH LÝ CƠ BẢN THỨ HAI KIỂU
CARTAN CHO CÁC ĐƯỜNG CONG CHỈNH HÌNH





LUẬN VĂN THẠC SĨ KHOA HỌC TOÁN HỌC



THÁI NGUYÊN – 2008
ĐẠI HỌC THÁI NGUYÊN
TRƯỜNG ĐẠI HỌC SƯ PHẠM



NGUYỄN TRƯỜNG GIANG




VỀ DẠNG ĐỊNH LÝ CƠ BẢN THỨ HAI KIỂU CARTAN
CHO CÁC ĐƯỜNG CONG CHỈNH HÌNH


Chuyên ngành: GIẢI TÍCH
Mã số: 60.46.01

LUẬN VĂN THẠC SĨ KHOA HỌC TOÁN HỌC




Người hướng dẫn khoa học:
TS. TẠ THỊ HOÀI AN



THÁI NGUYÊN – 2008
C C∪{∞}
T (r, a, f)
a a
f : C −→ P
n
(C)
H
i
i = 1, , q

ε > 0
q

j=1
m(r, H
j
, f) ≤ (n + 1 + ε)T (r, f),
r > 0
f : C → P
n
(C)
D
j
, j = 1, , q,
d
j
(q − (n + 1) − ε)T (r, f) ≤
q

j=1
d
−1
j
N (r, D
j
, f) + o(T (r, f)),
r
f : C → P
n
(C)

D
j
1 ≤ j ≤ q q P
n
(C) d
j
ε > 0
M
q − (n + 1) − ε)T (r, f) ≤
q

j=1
d
−1
j
N
M
(r, D
j
, f) + o (T (r, f)) ,
r
C
P
n
(C).
D C
f(z) = u(x, y) + iv(x, y) C z
0
∈ C

lim
h→0
f(z
0
+ h) − f(z
0
)
h
f(z) z
0
f(z) C D C
z
0
∈ D.
f(z) z
0
∈ C
C z
0
f(z) D
z D
D H(D)
f(z)
C
f(z) = u(x, y) + iv(x, y) D
u(x, y) v(x, y) R
2
D
u(x, y) v(x, y)
∂u

∂x
=
∂v
∂y
,
∂u
∂y
= −
∂v
∂x
, ∀ (x, y) ∈ D.
f(z)
D ⊂ C z ∈ D
f(z)
f(z) = f(z
0
) +
(z − z
0
)
1!
f

(z
0
) +
(z − z
0
)
2

2!
f

(z
0
) + . . .
f(z)
|z − z
0
| ≤ ρ D.
f(z)
z
0
.
z
0
∈ C m > 0
m > 0 f(z) f
(n)
(z
0
) = 0,
n = 1, , m − 1 f
(m)
(z
0
) = 0.
f(z)
D ⊂ C f =
g

h
g, h D.
D = C f(z) C f(z)
z
0
m > 0 f(z) z
0
f(z) =
1
(z − z
0
)
m
.h(z)
h(z) z
0
h(z
0
) = 0
f(z) ≡ 0
{|z| ≤ R} 0 < R < ∞
a
µ
µ = 1, , M, b
ν
, ν = 1, 2, , N,
f
z = re

(0 < r < R), f(z) = 0, f(z) = ∞

log |f(z)| =
1



0
log


f(Re

)


R
2
− r
2
R
2
− 2Rr cos(θ − φ) + r
2

+
M

µ=1
log





R(z − a
µ
)
R
2
− a
µ
z





N

ν=1
log




R(z − b
ν
)
R
2
− b
ν

z




.
f R r < R
n(r, ∞, f) n(r, ∞, f),
f
r. a ∈ C
n(r, a, f) = n

r, ∞,
1
f − a

,
n(r, a, f) = n

r, ∞,
1
f − a

.
N(r, a, f),
N(r, a, f) f a
N(r, a, f) = n(0, a, f) log r +

r
0


n(t, a, f) − n(0, a, f)

dt
t
,
N(r, a, f) = n(0, a, f) log r +

r
0

n(t, a, f) − n(0, a, f)

dt
t
).
a = 0
N(r, 0, f) = (
+
0
f) log r +

z∈D(r)
z=0
(
+
z
f) log |
r
z

|,
D(r) r
+
z
f = max{0,
z
f}
m(r, a, f) f
a ∈ C
m(r, a, f) =


0
log
+



1
f(re

) − a





,
m(r, ∞, f) =



0
log
+
| f(re

) |


,
log
+
x = max{0, log x}.
m
f
(r, ∞) log |f|
|z| = r
T (r, a, f) f
a ∈ C
T (r, a, f) = m(r, a, f) + N
f
(r, a, f),
T (r, f) = m(r, ∞, f) + N(r, ∞, f).
T (r, a, f) ≥ N(r, a, f) + O(1),
O(1) r → ∞
T (r, f) = T (r, a, f) + log |f(0)|.
f(z) = c
z
p
+ + a

p
z
q
+ + b
p
,
c = 0.
p > q f(z) → ∞ z → ∞
m(r, a, f) = 0(1) z → ∞ a f(z) = a
p
N(r, a, f) =
r

a
n(t, a)
dt
t
= p log r + O(1)
r → ∞.
T (r, f) = p log r + O(1),
N(r, a, f) = p log r + O(1), m(r, a) = O(1) a = ∞.
f(z) = ∞ q
N(r, ∞, f) = q log r + O(1),
m(r, ∞, f) = (p − q) log r + O(1).
p < q
T (r, f) = q log r + O(1), N(r, a, f) = q log r + O(1),
m(r, a, f) = O(1), a = 0.
a = 0
N(r, 0, f) = p log r + O(1), m(r, a, f) = (q − p) log r + O(1).
p = q,

T (r, f) = q log r + O(1),
N(r, a) = q log r + O(1), a = c. k
f − c ∞
m(r, c, f) = k log r + O(1), N(r, c, f) = (q − k) log r + O(1).
T (r, f) = d log r + O(1),
d = max(p, q).
f(z) = e
z
.
m(r, f) =


0
log
+



e
re






=
π
2



π
2
r cos θ


=
r
π
.
f N(r, ∞, f) = 0 T (r, f) = r/π.
a = 0, ∞, f(z) = a 2πi
2t

t,
N(r, a, f) =
r

o
t
π
dt
t
+ O(log r) =
r
π
+ O(log r).
m(r, a, f) = O(log r).
sin z cos z
a

N(r, a, sin z) + O(1) = N(r, a, cos z) + O(1) =
2r
π
+ O(1).
sin z cos z e
iz
e
−iz
T (r, sin z) + O(1) = T(r, cos z) + O(1) ≤
2r
π
+ O(1).
T (r, sin z) + O(1) = T(r, cos z) + O(1) =
2r
π
+ O(1)
m(r, a, sin z) + O(1) = m(r, a, cos z) + O(1) = O(1).
a
1
, a
2
, , a
p
log
+




p


ν=1
a
ν





p

ν=1
log
+
|a
ν
|
log
+





p

ν=1
a
ν






≤ log
+

p max
ν=1, ,p
|a
ν
|


q

ν=1
log
+
|a
ν
| + log p
p f
1
(z), f
2
(z), , f
p
(z)
m


r,
p

ν=1
f
ν
(z)


p

ν=1
m (r, f
ν
(z)) + log p
m

r,
p

ν=1
f
ν
(z)


p

ν=1

m (r, f
ν
(z))
N

r,
p

ν=1
f
ν
(z)


p

ν=1
N (r, f
ν
(z))
N

r,
p

ν=1
f
ν
(z)



p

ν=1
N (r, f
ν
(z)).
T

r,
p

ν=1
f
ν
(z)


p

ν=1
T (r, f
ν
(z)) + log p.
T

r,
p

ν=1

f
ν
(z)


p

ν=1
T (r, f
ν
(z)).
p = 2 f
1
(x) = f(z), f
2
(z) = a a
T (r, f + a) ≤ T (r, f) + log
+
|a| + log 2
f + a, f f, f − a a −a
|T (r, f) − T (r, f − a)| ≤ log
+
|a| + log 2.
f a
m

r,
1
f − a


+ N

r,
1
f − a

= T (r, f) − log |f(0) − a| + ε(a, r),
|ε(a, r)| ≤ log
+
|a| + log 2.
m

r,
1
f − a

+ N

r,
1
f − a

= T (r, f) + O(1),
f − a f a
T (r, f) a
m

r,
1
f − a


+ N

r,
1
f − a

= T

r,
1
f − a

= T (r, f − a) + log |f(0) − a| .
T (r, f − a) = T (r, f) + ε(a, r),
|ε(a, r)| ≤ log
+
|a| + log 2.
m

r,
1
f − a

+ N

r,
1
f − a


= T (r, f) + log |f(0) − a| + ε(a, r),
|ε(a, r)| ≤ log
+
|a| + log 2.
m(r, a) m

r,
1
f − a

m(r, ∞) m(r, f).
|z| ≤ r a
1
, a
2
, , a
q
q > 2
δ > 0 |a
µ
− a
ν
| ≥ δ 1 ≤ µ < ν ≤ q
m(r, ∞) +
q

ν=1
m(r, a
ν
) ≤ 2T (r, f) − N

1
(r) + S(r),
N
1
(r)
N
1
(r) = N

r,
1
f


+ 2N (r, f) − N (r, f

)
S(r) = m

r,
f

f

+m

r,
q

ν=1

f

f − a
ν

+q log
+
3q
δ
+log 2+log
1
|f

(0)|
S(r)
m(r, a
ν
)
2T (r)
S(r).
a
ν
, (1 ≤ ν ≤ q)
F (z) =
q

ν=1
1
f(z) − a
ν

.
ν |f(z) − a
ν
| <
δ
3q
µ = ν
|f(z) − a
µ
| ≥ |a
µ
− a
ν
| − |f(z) − a
ν
| ≥ δ −
δ
3q

2
3
δ,
µ = ν
1
|f(z) − a
µ
|

3



1
|f(z) − a
ν
|
.
|F (z)| ≥
1
|f(z) − a
ν
|


µ=ν
1
|f(z) − a
µ
|

1
|f(z) − a
ν
|

1 −
q − 1
2q


1

2 |f(z) − a
ν
|
.
log
+
|F (z)| ≥
q

µ=1
log
+
1
|f(z) − a
µ
|
− q log
+
2
δ
− log 2

q

µ=1
log
+
1
|f(z) − a
µ

|
− q log
+
3q
δ
− log 2.
µ = ν log
+
1
|f(z) − a
µ
|
≤ log
+
3

≤ log
+
2
δ
q

µ=1
log
+
1
|f(z) − a
µ
|
= log

+
1
|f(z) − a
ν
|
+

µ=ν
1
|f(z) − a
µ
|
≤ log
+
1
|f(z) − a
ν
|
+ (q − 1) log
+
2
δ
.

µ=ν
log
+
1
|f(z) − a
µ

|
≤ (q − 1) log
+
2
δ
.
log
+
|F (z)| ≥
q

µ=1
log
+
1
|f(z) − a
µ
|
− q log
+
3q
δ
− log 2.
ν ≤ q |f(z) − a
ν
| <
δ
3q
|f(z) − a
ν

| ≥
δ
3q
ν
log
+
|F (z)| ≥
q

ν=1
log
+
1
|f(z) − a
ν
|
− q log
+
3q
δ
− log 2.
|f(z) − a
ν
| ≥
δ
3q
ν
1
|f(z) − a
ν

|

3q
δ
ν
q

ν=1
log
+
1
|f(z) − a
ν
|
≤ q log
+
3q
δ
+ log 2.
log
+
|F (z)| ≥ 0 ≥
q

ν=1
log
+
1
|f(z) − a
ν

|
− q log
+
3q
δ
− log 2.
log
+
|F (z)| ≥
q

ν=1
log
+
1
|f(z) − a
ν
|
− q log
+
3q
δ
− log 2.
z = re



0
log
+



F (re

)






0

q

ν=1
log
+
1
|f(z) − a
ν
|
− q log
+
3q
δ
− log 2

dθ.
m(r, F ) ≤

q

ν=1
m(r, a
ν
) − q log
+
3q
δ
− log 2.
m(r, F ) = m

r,
1
f
.
f
f

.f

F



r,
1
f

+m


r,
f
f


+m (r, f

F ) .
T (r, f) = T

r,
1
f

+ log |f(0)| ,
T

r,
f
f


= T

r,
f

f


+ log




f(0)
f

(0)




.
m

r,
f
f


+ N

r,
f
f


= m


r,
f

f

+ N

r,
f

f

+ log




f(0)
f

(0)




.
m

r,
f

f


= m

r,
f

f

+ N

r,
f

f


− N

r,
f
f


+ log





f(0)
f

(0)




.
T (r, f) = m

r,
1
f

+ N

r,
1
f

+ log |f(0)| .
m

r,
1
f

= T (r, f) − N


r,
1
f

+ log
1
|f(0)|
.
m(r, F ) ≤ T(r, f) − N

r,
1
f

+ log
1
|f(0)|
+ m

r,
f

f

+
+ N

r,
f


f

− N

r,
f
f


+ log




f(0)
f

(0)




+m(r, f

F ).
q

ν=1
m(r, a
ν

) + m(r, ∞) ≤ m(r, F ) + m(r, f) + q log
+
3q
δ
+ log 2.
≤ T (r, f) − N

r,
1
f

+ N

r,
f

f

− N

r,
f
f


+ m

r,
f


f

+m(r, f

F ) + log
1
|f

(0)|
+ T (r, f) − N(r, f) + q log
+
3q
δ
+ log 2
f
f

log




f(0)
f

(0)





=
1



0
log




f(re

)
f

(re

)




dφ + N

r,
f
f



− N

r,
f

f

.
N

r,
f

f

− N

r,
f
f


=
1



0
log





f(re

)
f

(re

)




dφ − log




f(0)
f

(0)




=
1




0
log


f(re

)


dφ−log |f(0)|−
1



0
log


f

(re

)


dφ−log |f


(0)|
= N

r,
1
f

− N (r, f) − N

r,
1
f


+ N (r, f

) .
q

ν=1
m(r, a
ν
) + m(r, ∞)
≤ 2T (r, f) −

2N (r, f) − N (r, f

) + N

r,

1
f


+
+ m

r,
f

f

+ m (r, f

F ) + log
1
|f

(0)|
+ q log
+
3q
δ
+ log 2.
m (r, f

F ) = m

r,
q


ν=1
f

f − a
ν

N
1
(r) = N

r,
1
f


+ 2N (r, f) − N (r, f

) ,
S(r) = m

r,
f

f

+ m

r,
q


ν=1
f

f − a
ν

+ q log
+
3q
δ
+ log 2 + log
1
|f

(0)|
.
m(r, ∞) +
q

ν=1
m(r, a
ν
) ≤ 2T (r, f) − N
1
(r) + S(r).
N
1
(r) N (r, f) =
q


ν=1
log




R
b
ν




b
v
k
k
b
1
, b
2
, , b
N
f(z)
k
1
, k
2
, , k

N
b
v
f(z)
f(z) =
c
k
ν
(z − b
ν
)
k
ν
+
f

(z) f(z) =
c
−k
ν
(z − b
ν
)
k
ν
+1
+ b
v
k
v

+ 1 f

(z). b
1
, b
2
, , b
N
f

(z) k
1
+ 1, k
2
+ 1, , k
N
+ 1
N(r, f) =
N

ν=1
k
ν
log |
r
b
ν
| N(r, f

) =

N

ν=1
(k
ν
+ 1) log |
r
b
ν
|
2N(r, f) − N(r, f

) =
N

ν=1
2k
ν
log |
r
b
ν
| −
N

ν=1
(k
ν
+ 1) log |
r

b
ν
| =
N

ν=1
(2k
ν
− (k
ν
+ 1)) log |
R
b
ν
| =
N

ν=1
(2k
ν
− 1)) log |
r
b
ν
| ≥ 0.
f
C a
1
, a
2

, , a
q
q > 2
(q − 1)T (r, f) ≤ N (r, f) +
q

j=1
N

r,
1
f − a
j

− N
1
(r, f) + S (r, f)
≤ N (r, f) +
q

j=1
N

r,
1
f − a
j

− N
0

(r, f) + S (r, f) .
S (r, f) = o(T (r, f)) r → ∞
N
1
(r, f) = N

r
1
f


+ 2N (r, f) − N (r, f

) + S (r, f)
N
0

r,
1
f


f

f − a
j
, j = 1, , q
C
P
n

(C)
f := (f
0
: : f
n
) : C → P
n
(C)
C f
0
, , f
n
C
f = (

f
0
:

f
1
: · · · :

f
n
)

f
i
C.


f = (

f
0
,

f
1
, . . . ,

f
n
)
f

×