Tr ng ĐH Công Nghi p TP.HCMườ ệ T u lu n nguyên lýỉề ậ
máy
H Và Tên : Hùynh H ng Phúcọ ồ
MSSV: 0770398
THI T K C C U CAMẾ Ế Ơ Ấ
Cho c c u ơ ấ cam c n đ y đáy b ngầ ẩ ằ v i các thông s sauớ ố
1. Quy lu t gia t c c a c n đ y cho nh đ ng b c a hình v sauậ ố ủ ầ ẩ ư ườ ủ ẽ
xa
ϕ
di
ϕ
ve
ϕ
2
1
di
ϕ
2
1
ve
ϕ
2
2
ϕ
d
sd
ϕ
b (quy luật hình sin)
a
c (quy luật hình cos)
d
0
2. Hành trình c n đ y c a camầ ẩ ủ
s
= 6 mm
3. Góc áp l c c a c c u cam c n đ y đáy b ng ự ủ ơ ấ ầ ẩ ằ
0
10=
α
4. Các góc đ nh kỳ ị
di
ϕ
=
ve
ϕ
= 60
0
0
10
xa
φ
=
1. Trình t xác l p đ th :ự ậ ồ ị
Đ d dàng tính toán ta ch n t l xích cho góc làm vi c c a cam nh nhau v iể ể ọ ỉ ệ ệ ủ ư ớ
m i bi u đ : ộ ể ồ
[ ]
radmm /180/
πϕ
ϕ
=
Theo đ bài ta có: ề
0
140=++
xvd
ϕϕϕ
. Gi s ta ch n chi u dài c a đ th bi uả ử ọ ề ủ ồ ị ể
di n chuy n đ ng cam trong 3 tr ng thái là 140 mm ể ể ộ ạ
Ta có
0
140=
α
. ta chia
α
thành nhi u góc b ng nhau ề ằ
0
5=
ϕ
=5 mm, T nh ngừ ữ
góc
ϕ
ta làn l t d ng đ ng vuông góc ựơ ự ườ
ϕ
d
Ta v đ c đ th bi u di n gia t c c a c n ẽ ựơ ồ ị ể ể ố ủ ầ
2
2
ϕ
d
sd
nh hình v :ư ẽ
Tr ng ĐH Công Nghi p TP.HCMườ ệ T u lu n nguyên lýỉề ậ
máy
B ng ph ng pháp tích phân đ th ta tìm đ c đ th bi u đi n c a v n t cằ ươ ồ ị ượ ồ ị ể ề ủ ậ ố
cam (
ϕ
d
ds
) và đ th bi u di n chuy n đ ng c a c n (s) t đ th gia t c ban đ u (ồ ị ể ể ể ộ ủ ầ ừ ồ ị ố ầ
2
2
ϕ
d
sd
). Các b c ti n hành nh sauướ ế ư
- Ch n m t đi m Họ ộ ể
3
=30mm ngoài tr c oxụ
- Tìm hình chi u c a giao đi m gi a đ th ế ủ ể ữ ồ ị
2
2
ϕ
d
sd
và tr và ụ
i
d
ϕ
trên oy. T m iừ ổ
hình chi u k đ ng th ng t i đi m Hế ẻ ườ ẳ ớ ể
3
- K đ ng th ng song song v i nh ng đ ng th ng trên t i nh ng v tríẻ ườ ẳ ớ ữ ườ ẳ ạ ữ ị
t ng ng trên đ th v n t c. đ ng th ng này c t các tr c ươ ứ ồ ị ậ ố ườ ẳ ắ ụ
1+i
d
ϕ
k c n t i 1 đi m.ế ậ ạ ể
C ti p t c nh v y cho t i khi hoàn t t ứ ế ụ ư ậ ớ ấ
- N i các đi m l i v i nhau ta tìm đ c đ th c a ố ể ạ ớ ượ ồ ị ủ
ϕ
d
ds
T ng t ta l n l t tìm d c đ th bi u di n cho v t t c và đ ng điươ ư ầ ượ ượ ồ ị ể ễ ậ ố ườ
Trong đó t l xìch t ng ng nh sau:ỉ ệ ươ ứ ư
[ ]
mmmm
H
s
s
/12.0
49
6
1
===
µ
[ ]
mmradmm
H
ds
d
ds
/46.0
.15
180.12,0
2
===⇒
πµ
µ
ϕ
ϕ
Tr ng ĐH Công Nghi p TP.HCMườ ệ T u lu n nguyên lýỉề ậ
máy
[ ]
2
3
/88.0
.30
180.46,0
2
2
mmradmm
H
d
ds
d
sd
===⇒
πµ
µ
µ
ϕ
ϕ
ϕ
2. Xác đ nh tâm cam:ị
Do là cam c n đ y đáy b ng nên luôn tho m n đi u ki n ầ ẩ ằ ả ả ề ệ
10][
max
≤⇔≤
ααα
Do v y ta ch c n tìm tâm cam v i đi u ki n biên d ng cam phài l i (biên d ngậ ỉ ầ ớ ề ệ ạ ồ ạ
cam không có v t lõm) ế
Đi u ki n l i c a cam là:ề ệ ồ ủ
δϕ
ϕ
ϕ
ϕ
ϕ
ϕ
++−≥⇔
≥++
)]()([
0)()(
2
2
2
0
2
0
d
sd
sr
d
sd
sr
T đ th s và ừ ồ ị
2
2
ϕ
d
sd
ta chuy n v cùng t l xích ể ề ỉ ệ
88.0
2
2
=
ϕ
η
d
sd
Suy ra đ th cùa hồ ị
min
=s+
2
2
ϕ
d
sd
T ph n âm c a đ th ta c ng thêm m t đo n ừ ầ ủ ồ ị ộ ộ ạ
δ
. Trong th c t ng i ta th ng chự ế ườ ườ ế
t o c c u cam v i ạ ơ ấ ớ
10
=
δ
][30][10][
0
2
2
0
mmrmm
d
sd
sr ≥⇔++−≥⇒
ϕ
Mi n tâm cam đ c bi u di n trên đ th s+ề ượ ể ể ồ ị
2
2
ϕ
d
sd
Tr ng ĐH Công Nghi p TP.HCMườ ệ T u lu n nguyên lýỉề ậ
máy
3. V biên d ng cam:ẽ ạ
- ch n bán kính cam tho đi u ki n l i. đây ta ch n rọ ả ề ệ ồ Ở ọ
0
=30[mm]
- T đ ng tròn tâm r ta ch n m t góc b t kỳ ừ ườ ọ ộ ấ
0
140=
α
. T cung tròn này taừ
chia ra làm 28 đo n b ng nhau. Trên m i đi m t ng ng ta v m t đo n th ng s’ạ ằ ỗ ể ươ ứ ẽ ộ ạ ẳ
t ng ng v i giá tr s trên đ th (ph i qui v t l th c cùa s=s’)ươ ứ ớ ị ồ ị ả ề ỉ ệ ự
M i quan h gi a s và s’ đ c bi u di n trong đ th sau v i ố ệ ữ ượ ể ể ồ ị ớ
12.0=
s
µ
s 1.07 4.03 9.39 16.5 24.6
5
32.8 39.8
8
45.0
6
48.0
2
49.0
9
49.09
s’ 0.15 0.55 1.28 2.25 3.36 4.47 5.44 6.14 6.55 6.7 6.7
s 49.0
9
49.0
9
49.0
9
49.0
9
49.0
9
49.0
9
49.0
9
48.0
2
45.0
6
39.8
8
32.8
s’ 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.55 6.14 5.44 4.47
s 24.6
5
16.5 9.39 4.03 1.07
s’ 3.36 2.25 1.28 0.55 0.15
T i đ nh các đ ngạ ỉ ườ th ng r+s’ẳ
ta k các đ ng th ng ti pẻ ườ ẳ ế tuy n. cácế
ti p tuy n t o thành biênế ế ạ d ng c aạ ủ
cam