Tải bản đầy đủ (.doc) (12 trang)

Giáo án Hàm số lượng giác

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (131.55 KB, 12 trang )

Chơng1
hàm số lợng giác và
phơng trình lợng giác
Giáo án Đ1. các hàm số lợng giác
Ngời soạn : Đoàn Văn Vịnh
Giáo viên toán trờng THPT A Nghĩa Hng
Ngày soạn : 05-09-2007
A. Mục tiêu cần đạt
1/ Về kiến thức :
- Nhớ lại bảng giá trị lợng giác.
- Sự biến thiên , tính tuần hoàn và các tính chất của các hàm số :
y=sinx; y=cosx; y=tanx; y=cotx.
- Đồ thị của các hàm số lợng giác.
- Tìm hiểu thêm về tính tuần hoàn của hàm số lợng giác.
2/ Về kỹ năng :
- HS phải diễn tả đợc tính tuần hoàn, chu kì tuần hoàn và sự biến thiên
của các hàm số lợng giác.
- Vẽ đợc đồ thị của các hàm số lợng giác.
- Mối quan hệ giữa các hàm số y=sinx và y=cosx.
- Mối quan hệ giữa các hàm số y=tanx và y=cotx.
3/ Về thái độ :
- Tích cực, tự giác trong học tập , nh : Trả lời các câu hỏi và thực hiện
các yêu cầu trong các hoạt động của học sinh ; Có tinh thần chờ đón
tiết học mở đầu môn đại số và giải tích 11.
- Biết phân biệt rõ các khái niệm cơ bản và vận dụnh trong trờng hợp cụ
thể.
4/ Về t duy :
Biết khái quát hoá, đặc biệt hoá, tơng tự ; Biết quy lạ về quen ; T duy
các vấn đề một cách lôgic và hệ thống.
B. Chuẩn bị của giáo viên và học sinh
1/ Chuẩn bị của giáo viên:


Soạn giáo án chi tiết. Chú ý các câu hỏi gợi mở; Đồ dùng dạy học nh
hình vẽ đồ thị của các hàm số lợng giác; computer và projecter.
2/ Chuẩn bị của học sinh:
- Đồ dùng học tập
- Kiến thức về lợng giác đã học ở lớp 10.
Đoàn Văn Vịnh THPT A Nghĩa Hng
1
C. Phân phối thời lợng
Bài này thực hiện trong 5 tiết.
Tiết 1 : Từ đầu đến hết sự biến thiên của hàm số y=sinx.
Tiết 2 : Tiếp theo đến hết đồ phần đồ thị của hàm số y=cosx.
Tiết 3 : Tiếp theo đến hết phần nhận xét về hàm số y=tanx.
Tiết 4 : Tiếp theo đến hết bài.
Tiết 5 : Luyện tập.
D. Tiến trình, nội dung, phơng pháp (tiết 1)
I. ổn định lớp.
II. Đặt vấn đề vào bài mới
Hoạt động của GV Hoạt động của HS Ghi bảng- Trình chiếu
-Nêu câu hỏi.
-Cả hai mệnh đề trên đều
sai (Có dẫn ra các trờng
hợp cụ thể)
- Nghe , t duy và trả lời câu
hỏi.
Cho a > b. Các mệnh đề sau đúng
hay sai :
1. sina > sinb.
2. cosa > cosb.
GV.Thuyết trình : Để chỉ ra đợc khi nào các mệnh đề trên đúng và khi nào
sai, sau đây chúng ta sẽ nghiên cứu về tính chất biến thiên của các hàm số l-

ợng giác.
III/Bài mới
Hoạt động của GV Hoạt động của HS Ghi bảng- Trình chiếu
-Thuyết trình: Từ định
nghĩa giá trị lợng giác, ta
thấy: Với mỗi số x cho tr-
ớc, có duy nhất giá trị sinx,
cosx . Vậy quan hệ giữa x
và sinx; giữa x và cosx là
quan hệ hàm số. Do đó ta
có các định nghĩa.
-Nêu yêu cầu: Hãy xét tính
chẵn lẻ của các hàm số
trên.
-Chính xác vấn đề và nêu
nhận xét.
-Nghe và t duy.
-Phát biểu định nghĩa theo
gợi ý trên.
-HS khác đọc định nghĩa
SGK trang 4.
-Thực hiện yêu cầu của GV.
-Nghe và ghi chép.
1. Các hàm số y=sinx và y=cosx
a/ Định nghĩa (SGK trang 4).
*Nhận xét : Hàm số y=sinx là
hàm số lẻ và hàm số y=cosx là
hàm số chẵn.
Đoàn Văn Vịnh THPT A Nghĩa Hng
2


-Lập luận để suy ra khẳng
định.
-Thông báo: Trớc hết ta xét
sự biến thiên và đồ thị của
hàm số y=sinx trên
[- ; ].
-Cho biết : hàm số đồng
biến hay nghịch biến trên
các khoảng sau(dựa vào đ-
ờng tròn LG để trả lời).
-Chính xác vấn đề.
-Nghe, t duy và ghi lại kết
quả đợc suy ra từ lập luận
của GV.
- Trả lời yêu cầu của GV.
b/ Tính tuần hoàn của các hàm số
y=sinx và y=cosx.
Đối với hàm số y=sinx, số T=2
là số dơng nhỏ nhất thoả mãn
sin(x+T)=sinx.
Hàm số y=cosx cũng có tính chất
tơng tự.
Ta nói hai hàm số đó là các hàm
số tuần hoàn với chu kì 2.
c/ Sự biến thiên và đồ thị của hàm
số y=sinx
*Sự biến thiên:
Củng cố :
Câu hỏi : Em hãy cho biết những nội dung chính đã học trong tiết này?

Lu ý HS về kiến thức , kỹ năng , t duy và thái độ nh trong phần mục tiêu bài
học đã nêu.
Bài tập về nhà :
- Xem lại bài học hôm nay.
- Ôn lại các kiến thức về lợng giác đã học ở lớp 10.
- Làm các bài tập 1/a,b,c ; 2; 3; 4/f(x) ; 6 (trang 14,15 SGK).
D. Tiến trình, nội dung, phơng pháp (tiết 2)
I. ổn định lớp.
II. Kiểm tra bài cũ:
Câu hỏi 1: Nêu tính chất tuần hoàn của các hàm số y=sinx và y=cosx.
Câu hỏi 2: Nêu các khoảng đồng biến và nghịch biến của hàm số
y=sinx
III. Đặt vấn đề vào bài mới
Trong tiết học trớc chúng ta đã khảo sát về sự biến thiên củahàm số
y=sinx trên đoạn [-

;

]. Dựa trên cơ sở đó trong tiết học này ta sẽ dựng
đồ thị của hàm số.
Đoàn Văn Vịnh THPT A Nghĩa Hng
0
0
0
1
1
0




y
x
3
2

2


IV. Bài mới
Hoạt động của GV Hoạt động của HS Ghi bảng- Trình chiếu
-Vẽ đồ thị đi qua
một số điểm đặc
biệt trên đoạn
[0;

].
-Hãy nêu cách vẽ
đồ thị trên [-

;0].
-Nêu nhận xét.
-Do hàm số y=sinx là
hàm số lẻ nên đồ thị của
hàm số trên [-

;0] đối
xứng với đồ thị của hàm
số trên đoạn
[0;


] qua gốc toạ độ.
-Nghe, hiểu và ghi chép.
*Đồ thị
GV lập luận để suy ra đồ thị của hàm số trên toàn miền xác định (Dựa vào
tính tuần hoàn với chu kì 2). Đồ thị đó đợc gọi là một đờng sin.
Hoạt động của GV Hoạt động của HS Ghi bảng- Trình chiếu
-Nêu nhận xét. -Ghi chép và t duy. *Nhận xét :
- Khi x thay đổi, hàm số y=sinx nhận mọi giá
trị thuộc [-1;1]. Ta nói TGT của hàm số
Đoàn Văn Vịnh THPT A Nghĩa Hng
0
y
2


4
3

4

2
2
1
0
y
2


4
3


4

2
2
1
x


2


1
0
y

2
1
x
1

2
2


2





2
3


2
3

4
x
- Chính xác hoá
trả lời của HS
-Thông báo: Ta
khảo sát sự biến
thiên và đồ thị của
hàm số y=cosx t-
ơng tự nh đối với
hàm số y=sinx
-Vẽ đồ thị của
hàm số y=cosx.
-Nêu nhận xét thứ
nhất.
-Yêu cầu HS nêu
các nhận xét khác
(tơng tự hàm số
y=sinx).
-Thực hiện
-Vẽ đồ thị của hàm số.
-Nêu các nhận xét còn
lại.
-Thực hiên

-Một HS đọc ghi nhớ.
y=sinx là đoạn [-1;1].
- Hàm số đồng biến trên (-
2

;
2

). Từ đó, do
tính tuần hoàn với chu kì 2

, nên hàm số
đồng biến trên mỗi khoảng
(-
2

+k2

;
2

+k2

), k

Z.
(trang 7 SGK)
d/ Sự biến thiên và đồ thị của hàm số y=cosx
Nhận xét:
-Đồ thị của hàm số y=cosx cũng là một đ-

ờng hình sin.
- Khi x thay đổi, hàm số y=sinx nhận mọi giá
trị thuộc [-1;1]. Ta nói TGT của hàm số
y=sinx là đoạn [-1;1].
- Hàm số đồng biến trên (-

;0). Từ đó, do tính
tuần hoàn với chu kì 2

, nên hàm số đồng
biến trên mỗi khoảng
(-

+k2

;k2

), k

Z.
(trang 9 SGK)

(trang 9 SGK)
Củng cố :
Câu hỏi : Em hãy cho biết những nội dung chính đã học trong tiết này?
Lu ý HS về kiến thức , kỹ năng , t duy và thái độ nh trong phần mục tiêu bài
học đã nêu.
Bài tập về nhà :
- Xem lại bài học hôm nay.
- Khảo sát chi tiết hàm số y=cosx.

- Ôn lại các kiến thức về lợng giác đã học ở lớp 10.
Đoàn Văn Vịnh THPT A Nghĩa Hng
0
y

2
1
x
1

2
2


2




2
3


2
3

5
H3
H3
H5

H5
Ghi nhớ
- Làm các bài tập 1/a,b,c ; 2; 3; 4/f(x) và g(x) ; 5; 6 (trang 14,15 SGK).
D. Tiến trình, nội dung, phơng pháp (tiết 3)
I. ổn định lớp.
II. Kiểm tra bài cũ:
Câu hỏi: Em hãy nêu các điều ghi nhớ về các hàm số y=sinx và y=cosx
III. Đặt vấn đề vào bài mới
Trong hai tiết học trớc ta đã nghiên cứu sự biến thiên và đồ thị của các hàm
số y=sinx và y=cosx. Tiếp theo, trong tiết học này chúng ta sẽ định nghĩa các
hàm số y=tanx ; y=cotx và khảo sát về các hàm số này.
IV. Bài mới
Hoạt động của GV Hoạt động của HS Ghi bảng- Trình chiếu
-Yêu cầu HS đọc các định nghĩa.
-Hỏi: Các hàm số y=tanx và
y=cotx có phải là hàm số lẻ hay
hàm số chẵn không?
-Nêu nhận xét.
-Nêu khẳng định
Hỏi: Tơng tự nh đối với hàm số
y=sinx , em hãy cho biết ta chỉ
cần khảo sát hàm số trên một
khoảng có độ dài bao nhiêu?
-Hỏi: Dựa vào đờng tròn LG, hãy
cho biết trong khoảng
(-
2

;
2


) , hàm số ĐB hay NB?
-Yêu cầu HS trả lời
- Chính xác vấn đề : Do hàm số
tuần hoàn với chu kì

.
-Vẽ đồ thị
-Đọc, t duy và ghi chép.
-Trả lời câu hỏi
-Suy nghĩ và trả lời câu
hỏi.
- Trả lời.
- Trả lời .
-Vẽ đồ thị.
2. Các hàm số y=tanx và y=cotx
a/ Định nghĩa (trang 9 và 10 SGK).
*Nhận xét: Các hàm số y=tanx và
y=cotx là các hàm số lẻ.
b/ Tính tuần hoàn
T=

là số dơng nhỏ nhất thoả
mãn : tan(x+T)=tanx;
cot(x+T)=cotx.
Ta nói các hàm số y=tanx và
y=cotx là các hàm số tuần hoàn với
chu kì

.

c/ Sự biến thiên và đồ thị của
hàm số y=tanx
Khảo sát hàm số trên khoảng
(-
2

;
2

), sau đó tịnh tiến phần đồ
thị đó sang phải, trái các khoảng

;2

;3

; thì đợc toàn bộ đồ thị
của hàm số y=tanx.
* Chiều biến thiên
Hàm số ĐB trong khoảng (-
2

;
2

).
(trang11 SGK)
Đoàn Văn Vịnh THPT A Nghĩa Hng
6
H5

H5


Hoạt động của GV Hoạt động của HS Ghi bảng- Trình chiếu
*Hỏi:-Em hãy cho biết, tập các
giá trị của tanx khi x thay đổi ?
-Em có nhận xét gì về tính đối
xứng của đồ thị? Lí do?
*GV thông báo về đờng tiệm
cận.
*Trả lời các câu
hỏi của GV.
Nhận xét
-Khi x thay đổi, hàm số y=tanx nhận mọi
giá trị thực. Ta nói tập giá trị của hàm số
đó là R.
-Do hàm số y=tanx là hàm số lẻ nên đồ thị
nhận gốc toạ độ làm tâm đối xứng.
-Các đờng thẳng x=
2

+k

(k

Z) gọi là
các đờng tiệm cận của đồ thị hàm số
y=tanx.

Củng cố :

Câu hỏi : Em hãy cho biết những nội dung chính đã học trong tiết này?
Lu ý HS về kiến thức , kỹ năng , t duy và thái độ nh trong phần mục tiêu bài
học đã nêu.
Bài tập về nhà :
- Xem lại nội dung của bài học hôm nay bài học hôm nay.
- Ôn lại các kiến thức về lợng giác đã học ở lớp 10.
- Làm các bài tập luyện tập trang 16,17 SGK.
Đoàn Văn Vịnh THPT A Nghĩa Hng
2


2
3


2

2
3

x
y
0



7
D. Tiến trình, nội dung, phơng pháp (tiết 4)
I. ổn định lớp.
II. Kiểm tra bài cũ:

Câu hỏi1: Em hãy nêu nhận xét về sự biến thiên và đồ thị của
hàm số y=tanx.
Câu hỏi2: Em hãy nêu định nghĩa hàm số y=cotx.
III. Đặt vấn đề vào bài mới
Trong các tiết học trớc chúng ta đã khảo sát chi tiết về sự biến thiên và đồ
thị của các hàm số y= sinx; y=cosx; y=tanx. Trong tiết học này chúng ta
sẽ khảo sát hàm số còn lại , đó là hàm số y=cotx.
IV. Bài mới
Hoạt động của GV Hoạt động của HS Ghi bảng- Trình chiếu
-GV thông báo: Ta có thể
khảo sat và vẽ đồ thị của
hàm số y=cotx tơng tự nh
đối với hàm số y=tanx.
-GV vẽ đồ thị của hàm số.
-Yêu cầu một HS đọc ghi
nhớ.
-Yêu cầu học sinh tham
khảo định nghĩa và ví dụ
SGK trang 13.
-Nghe, t duy và làm theo hớng
dẫn.
-Đọc, ghi chép những điều cần
ghi nhớ.
-HS tham khảo SGK trang 13.
d/ Sự biến thiên và đồ thị của hàm
số y=cotx
* Ghi nhớ (trang 13 SGK).
3. Về khái niệm hàm số tuần hoàn
Củng cố :
Đoàn Văn Vịnh THPT A Nghĩa Hng

2


2

2
3

x
y
0




2
8
Câu hỏi : Em hãy cho biết những nội dung chính đã học trong tiết này?
Lu ý HS về kiến thức , kỹ năng , t duy và thái độ nh trong phần mục tiêu bài
học đã nêu.
Bài tập về nhà :
- Xem lại bài học hôm nay.
- Khảo sát chi tiết hàm số y=cotx.
- Ôn lại các kiến thức về lợng giác đã học ở lớp 10.
- Làm các bài tập luyện tập trang 16,17 SGK.
D. Phơng pháp (tiết 5): Gợi mở, vấn đáp.
E. Tiến trình, nội dung :
I. ổn định lớp.
II. Kiểm tra bài cũ:
Câu hỏi: Em hãy nêu các điều ghi nhớ về các hàm số

y=sinx ; y=cosx; y=tanx; y=cotx
III. Đặt vấn đề vào bài mới
Trong các tiết học trớc chúng ta đã khảo sát các tính chất, sự biến thiên và
đồ thị của các hàm số lợng giác. Trong tiết học này chúng ta sẽ áp dụng
các tính chất đó để giải một số bài tập.
IV. Bài mới
1/ Bài tập 1:
GV Nêu bài tập 1: Hãy chọn phơng án đúng trong các phơng ánđã cho
trong mỗi câu sau:
a) Hàm số y=tan(
2

cosx) chỉ không xác định tại :
(A) x=0; (B) x=0 và x=

;
(C) x=k

, k

Z; (D) x=k
2

, k

Z ;
b) Hàm số y=
1cos x
+ 1- cos
2

x chỉ xác định khi :
(A) x

2

+ k

, k

Z; (B) x=0;
(C) x

k

, k

Z; (D) x=k2

, k

Z;
c) Tập xác định của hàm số y=
xsin
1
-
xcos
1
là :
(A) R\{ k


k

Z }; (B)R\{ k
2

k

Z };
(C) R\{ -
2

+k

k

Z }; (D) R\{ k2

k

Z };
HS Suy nghĩ giải bài tập 1.
HS Trình bày đáp án, có giải thích lý do chọn phơng án đó.
GV Chính xác vấn đề.
Hớng dẫn trả lời:
Đoàn Văn Vịnh THPT A Nghĩa Hng
9
a) D. b) C. c) B.
2/ Bài tập 2:
GV Nêu bài tập 2: Tìm giá trị lớn nhất và nhỏ nhất của hàm số (nếu có) ;
a) y= cosx trên đoạn [-

2

;
2

];
b) y= sinx trên đoạn [-
2

; 0 ];
c) y= sinx trên đoạn [-
2

;
3

]
HS Suy nghĩ giải bài tập 2.
HS Trình bày đáp án, có giải thích lý do chọn phơng án đó.
GV Chính xác vấn đề.
Hớng dẫn trả lời:
a) 1; 0. b) 0; -1. c) -
2
3
; -1.
3/ Bài tập 3:
GV Nêu bài tập 3: Giả sử trên khoảng J, hàm số y= sinx và hàm số
y= cosx có dấu không đổi. Chứng minh :
a) Nếu trên J, hai hàm số đó cùng dấu thì hàm số này đồng biến khi và
chỉ khi hàm số kia nghịch biến.

b) Nếu trên J, hai hàm số đó khác dấu thì hàm số đó hoặc cùng đồng biến
hoặc cùng nghịch biến.
HS Suy nghĩ giải bài tập 3.
HS Trình bày đáp án, có giải thích lý do chọn phơng án đó.
GV Chính xác vấn đề.
Hớng dẫn trả lời:
Kí hiệu một trong hai hàm số là f(x) và hàm số còn lại là g(x).
Theo giả thiết thì f và g có dấu không đổi trên J.
a) Do g
2
=1- f
2
, nên nếu f
2
đồng biến (nghịch biến ) trên J thì tơng ứng
nghịch biến (đồng biến) trên J.
Giả sử f > 0 trên J :
- Nếu f đồng biến trên J thì f
2
đồng biến, từ đó g
2
nghịch biến. Vậy khi
đó , nếu g > 0 thì g nghịch biến , nếu g < 0 thì g đồng biến.
- Nếu f nghịch biến trên J thì f
2
nghịch biến, từ đó g
2
đồng biến. Vậy
khi đó, nếu g > 0 thì g đồng biến, nếu g < 0 thì g nghịch biến.
- Xét tơng tự trong trờng hợp f < 0 trên J, ta thấy khẳng định a) của bài

toán là đúng.
b) Chứng minh tơng tự câu a).
4/ Bài tập 4:
Đoàn Văn Vịnh THPT A Nghĩa Hng
10
GV Nêu bài tập 4: Lập bảng biến thiên của hàm số :
a) y= 2sin(x+
3

) trên đoạn [-
3
4

;
3
2

].
b) y= - cos(2x+
3

) trên đoạn [-
3
2

;
3

].
HS Suy nghĩ giải bài tập 4.

HS Lập bảng biến thiên của các hàm số đã cho.
GV Chính xác vấn đề.
Hớng dẫn trả lời:
a) Bảng biến thiên của hàm số y= 2sin(x+
3

) trên đoạn [-
3
4

;
3
2

].
x
-
3
4

-
6
5

-
3


6



3
2


y= 2sin(x+
3

)
b) Bảng biến thiên của hàm số y= - cos(2x+
3

) trên đoạn [-
3
2

;
3

].
x
-
3
4

-
6
5

-

3


6


3
2


- 2x +
3

-

-
2

0
2




y= - cos(2x+
3

)
5/ Bài tập 5:
GV Nêu bài tập 5: Phép tịnh tiến theo véc tơ

u
=(
4

; 1) biến đồ thị của
hàm số sau thành đồ thị của hàm số nào?
a) y= sinx; b) y= cos2x 1;
c) y= 2sin(x+
4

); d) y= cos x - 1.
HS Suy nghĩ giải bài tập 5.
HS Trình bày lời giải.
GV Chính xác vấn đề.
Hớng dẫn trả lời:
Đoàn Văn Vịnh THPT A Nghĩa Hng
0 0 0
2
0
0
1
1
11
2
1
Phép tịnh tiến theo véc tơ
u
=(
4


; 1) biến điểm (x;y) thành điểm (x;y)
sao cho :





+=
+=
1'
4
'
yy
xx

Từ đó nó biến đồ thị của hàm số y=f(x) thành đồ thị của hàm số
y=f(x-
4

)+1.
Vậy ta có :
a) y=sin(x-
4

)+1.
b) sin2x.
c) y= 2sinx+1.
d) y= cos x-
4


.
Củng cố :
Câu hỏi : Em hãy cho biết những nội dung chính đã học trong tiết này?
Lu ý HS về kiến thức , kỹ năng , t duy và thái độ nh trong phần mục tiêu bài
học đã nêu.
Bài tập về nhà :
- Ôn tập toàn bài.
- Xem lại các kiến thức về lợng giác đã học ở lớp 10.

Đoàn Văn Vịnh THPT A Nghĩa Hng
12

×