GV: ĐINH VĂN TRÍ
TỔ TOÁN TRƯỜNG TRUNG HỌC PHỔ THÔNG NGUYỄN AN NINH
ĐỀ THI THƯ ĐẠI HỌC NĂM 2009 – 2010
PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm )
Câu I : ( 2 điểm )
1) Giải phương trình :
2 3 2
4
77 3 2 0x x+ − − − =
.
2)Cho số tự nhiên n
∈
N
*
, x
∈
R,a
≠
0 ,b
≠
0 và a + b
≠
0 thỏa :
4 4
sin cos 1x x
a b a b
+ =
+
.
Chứng minh rằng :
( )
2 2
sin cos 2
n n
n
n n
x x
a b
a b
+ =
+
.
Câu II : ( 1 điểm ) Tính tích phân
4
6
4
tan
1
x
x
I dx
e
p
p
-
=
+
ò
.
Câu III : ( 2 điểm ) Cho hàm số
3 2
7
2
3 2 3
x x
y x=- - + +
( 1) .
1)Khảo sát sự biến thiên và vẽ đồ thò ( C ) của hàm số (1)
2) Tìm tất cả các điểm trên đường thẳng d có phương trình:
5 61
4 24
x
y = +
để từ đó kẻ đến đồ thò
(C) của hàm số (1) ba tiếp tuyến tương ứng với ba tiếp điểm có hoành độ x
1
, x
2
, x
3
thỏa:
1 2 3
0x x x< < <
.
Câu IV : ( 1 điểm ) Tìm giá trò nhỏ nhất của biểu thức
( ) ( )
2 2
2 5 1 3 5 4P x m y x m y
é ù é ù
= - + - + + + + -
ë û ë û
( Trong đó x và y là ẩn số và m là tham số ).
Câu V : ( 1 điểm ) Cho hình chóp S.ABCD có đáy ABCD là hình bình hành có cạnh AB = a, cạnh AD = b, góc
·
0
60BAD =
.
Cạnh SA = 4a và SA vuông góc với mặt phẳng (ABCD).Trên đoạn SA lấy điểm M sao cho AM = x ( 0 < x < 4a ) .Mặt phẳng
(MBC) cắt cạnh SD tại N. Tìm x để mặt phẳng (MBC) chia khối chóp S.ABCD ra thành hai phần sao cho thể tích của khối
SBCNM bằng
5
4
thể tích của khối BCNMAB.
PHẦN RIÊNG ( 3 điểm ) :Thí sinh chỉ được làm một trong hai phần A hoặc B
A.Theo chương trình chuẩn
Câu VI.a ( 2 điểm )
1)Trong không gian Oxyz cho hai đường thẳng
1
4 3
: 1
1 1
x z
d y
− +
= − =
−
và
2
1 3
: 2
2 1
x y
d z
+ −
= = −
−
Viết phương trình tham số của đường thẳng d3 đối xứng với đường thẳng d2 qua đường thẳng d1.
2)Tìm m nguyên để hệ phương trình
( ) ( )
2 2
1 2 3 0
6 6 13 0
m x m y m
x y x y
+ + − + + =
+ + − + =
vô nghiệm.
Câu VII.a ( 1 điểm) Cho các số thực a,b,c và số phức
1 3
.
2 2
z i= − +
.
Chứng minh rằng :
( ) ( )
2 2
0a bz cz a bz cz+ + + + ≥
.Dấu bằng của bất đẳng thức xảy ra khi nào?
B.Theo chương trình Nâng cao.
Câu VI.b ( 2 điểm )
1)Trong không gian Oxyz cho bốn điểm
( ) ( ) ( ) ( )
3;1;1 , 1;1; 1 , 1;2;3 , 4; 2;0A B C D− − −
và mp(P) có phương trình :
2 3 13 0x y z+ + − =
.Tìm tọa độ điểm M nằm trên mp(P) sao cho
2 2 2MA MB MC MD− + − +
uuur uuur uuuur uuuur
ngắn nhất.
2)Trong mặt phẳng Oxy cho ba điểm
( ) ( ) ( )
2;1 , 2;4 , 10;6A B C−
.Trong tam gáic ABC ,hãy viết phương trình tham số
đường phân giác ngoài của góc A.
1
GV: ĐINH VĂN TRÍ
Câu VII.b ( 1 điểm ) Giải hệ phương trình :
( )
( )
( )
3 2
3 2
3 2
3 3 ln 2 2
3 3 ln 2 2
3 3 ln 2 2
x x x x y
y y y y z
z z z z x
ì
ï
+ - + - + =
ï
ï
ï
ï
+ - + - + =
í
ï
ï
ï
ï
+ - + - + =
ï
ỵ
.
ĐÁP ÁN
Câu I : ( 2 điểm )
1)Đặt :
( )
3 2 2
4
3 và v= x 77 ĐK: v 0u x= − + ≥
Ta có hệ :
( )
( )
3 4
2 0 1
80 2
v u
u v
− − =
− = −
(I)
Thế v = u+2 vào phương trình (2)
(2)
⇔
4 3 2
7 24 32 64 0u u u u− − − − + =
⇔
u = 1 hay u = - 4
(I)
1
3
=
⇔
=
u
v
hay
( )
4
2 Loại
= −
= −
u
v
KL : x =
2±
2) Ta có :
4 4
sin cos 1x x
a b a b
+ =
+
⇔
( )
2
2 2
4 4
sin cos
sin cos
x x
x x
a b a b
+
+ =
+
⇔
2 2
sin cosb x a x=
Ta có :
2 2 2 2
sin cos sin cos 1x x x x
a b a b a b
+
= = =
+ +
Þ
( ) ( )
( )
2 2
sin cos
1
n n
n
n n
x x
a b
a b
= =
+
Vậy :
( )
2 2
sin cos 2
n n
n
n n
x x
a b
a b
+ =
+
Câu II :( 1 điểm )
Đặt : x = -t
Þ
dx = -dt
Đổi cân : x=
4
p
Þ
t=
4
p
-
; x=
4
p
-
Þ
t=
4
p
I =
4 4
6 6
4 4
tan tan
1 1
t x
t x
e t e x
dt dx
e e
p p
p p
-
-
- =
+ +
ò ò
Ta có : I + I =
4 4
6 6
4 4
tan tan
1 1
x
x x
x e x
dx dx
e e
p p
p p
- -
+
+ +
ò ò
Þ
2I =
4
6
4
tan xdx
p
p
-
ò
=
0,25
0,25
0,25
0,25
0,25
0,25
0,25
0,25
0,25
0,25
KL :
26
30 4
I
p
= -
Câu III : ( 2 điểm )
1)
3 2
7
2
3 2 3
x x
y x=- - + +
có tập xác đònh
D= R
lim
x
y
®+¥
=- ¥
và
lim
x
y
®- ¥
=+¥
' 2
2y x x=- - +
2
2 0 1 2x x x hay x- - + = Û = =-
Hàm số đồng biến trên khoảng :(-2;1)
Hàm số nghòch biến trên khoảng: (-
∞
;-2),
(1; +
∞
)
Điểm cực đại của đồ thò hàm số :
7
1;
2
ỉ ư
÷
ç
÷
ç
÷
ç
è ø
Điểm cực tiểu của đồ thò hàm số :
( )
2; 1- -
Tọa độ điểm uốn :
1 5
;
2 4
I
ỉ ư
÷
ç
-
÷
ç
÷
ç
è ø
Vẽ đồ thò hàm số :
2)
∀
M
∈
d : M(m;
5 61
4 24
m
+
)
Phương trình tiếp tuyến của ( C) tại
M
0
(x0;y
0
):
3 2
0 0
0
7
2
3 2 3
x x
y x
ỉ ư
÷
ç
÷
- - - + +
ç
÷
ç
÷
ç
è ø
= (
2
0 0
2x x- - +
)(x – x
0
)
Tiếp tuyến đi quaM
⇔
3 2
0 0
0
5 61 7
2
4 24 3 2 3
x x
m
x
ỉ ư
÷
ç
÷
+ - - - + +
ç
÷
ç
÷
ç
è ø
= (
0,25
0,25
0,25
0,25
0,25
2
x
y
-2
-1
7
2
1
0
GV: ĐINH VĂN TRÍ
( ) ( )
4
4 2 2 2 2
4
tan tan 1 tan tan 1 tan 1 1x x x x x dx
p
p
-
é ù
+ - + + + -
ê ú
ë û
ò
5 3
4
4
tan tan
tan
5 3
x x
x x
p
p
-
é ù
ê ú
= - + -
ê ú
ë û
=
26
15 2
p
-
( )
0
2
0 0
1
0
2
2 5 5 3
0 *
3 6 12 2
x
m
x m x
= >
⇔
+ − + − =
÷
Để thỏa YCBT
⇔
(*) có hai nghiệm âm phân
biệt.
⇔
2
7 5
0
3 12
5
0
18
3 5
0
2 4
m
m
m
m
ì
ï
ï
+ - >
ï
ï
ï
ï
ï
ï
- >
í
ï
ï
ï
ï
ï
- <
ï
ï
ï
ỵ
5 1
2 6
5
18
5
6
m hay m
m
m
< − >
⇔ <
<
KL: Những điểm M nằm trên d phải có hoành
độ thỏa :
5 1 5
2 6 18
M M
x hay x<- < <
Câu IV : ( 1 điểm )
Xét hệ :
( )
( )
2 5 1 0
3 5 4 0
x m y
x m y
ì
ï - + - + =
ï
í
ï
+ + - =
ï
ỵ
⇔
( )
( )
5 5 5 15
5 5 5
m x m
m y
ì
ï - + =- +
ï
í
ï
- + =-
ï
ỵ
(I)
TH1 :
1m ¹
MinP = 0 khi
3 1
và y=
1 m - 1
m
x
m
-
=
-
TH2 : m = 1
Đặt : t = -2x – 4y +1
Khi đó :
2
2
13 15 25 13 15 25 25
4 2 4 4 13 13 13
P t t t
ỉ ư
÷
ç
= + + = + + ³
÷
ç
÷
ç
è ø
MinP =
25
13
khi t = -
15
13
khi
28
2 4 0
13
x y+ - =
KL :
m
≠
1: MinP = 0 khi
3 1
và y=
1 m - 1
m
x
m
-
=
-
m=1 : MinP =
25
13
khi
7 1
13 2
x k R
y k
ì
= Ỵ
ï
ï
ï
í
ï
= -
ï
ï
ỵ
0,25
0,25
0,5
0,25
0,25
0,25
0,25
0,25
2
0 0
2x x- - +
)(m – x
0
)
⇔
3 2
0 0 0
2 1 3 5
0
3 2 4 24
m
x m x mx
ỉ ư
÷
ç
+ - - + - =
÷
ç
÷
ç
è ø
(MBC )
I
(SAD) = MN
P
AD
P
BC
( N
∈
SD )
2
0
.
1 2 3.
. .sin60 .
3 3
S ABCD
a b
V AB AD SA= =
.
2
. . .
1 3.
.
2 3
S ABC S ACD S ABCD
a b
V V V= = =
.
.
.
4
. .
4
S MBC
S ABC
V
SM SB SC a x
V SA SB SC a
-
= =
( )
3 4
12
SMBC
ab a x
V
-
=
2
.
.
. .
S MNC
S ADC
V
SM SN SC SM
V SA SD SC SA
ỉ ư
÷
ç
= =
÷
ç
÷
ç
è ø
( )
2
3. 4
48
SMNC
b a x
V
-
=
( ) ( )
.
3 4 8
48
S BCNM SMBC SMNC
b a x a x
V V V
- -
= + =
( )
3 12
48
BCNMAB
b x a x
V
-
=
Thỏa YCBT :
.
5
4
S BCNM BCNMAB
V V=
2 2
9 108 128 0
4a
x = (Nhận)
3
32a
x = (Loại)
3
x ax a⇔ − + =
⇔
KL :
4a
x =
3
Câu VIa
1)
∀
M
∈
d
2
:
( )
2 2 2
1 2 ;3 ;2M t t t− + − −
Dựng mp(P) đi qua M và vuông góc với d1
Ptmp(P) đi qua M và có VTPT
( )
1;1;1n = −
r
:
2
4 6 0x y z t− + + + − =
H = (P)
I
d
2
Þ
H =hc
1
M
d
2 2 2
4 4 4
;5 ;1
3 3 3
H t t t
ỉ ư
÷
ç
Þ - -
÷
ç
÷
ç
è ø
K đối xứng với M qua d
1
Þ
H là trung
0,25
0,25
0,25
0,25
0,25
0,25
3
GV: ĐINH VĂN TRÍ
Câu V : ( 1 điểm )
2)đường thẳng
∆
có phương trình :
( ) ( )
1 2 3 0m x m y m+ + − + + =
và đường tròn
(C) có phương trình :
2 2
6 6 13 0x y x y+ + − + =
.
( C ) có tâm I(-3;3) và có bán kính R =
5
.
Hệ vô có nghiệm
⇔
∆
và ( C) không có điểm
chung
( )
,⇔ ∆ >d I R
2
6
5
2 2 5
−
⇔ >
− +
m
m m
11
1
9
⇔ − < <m
KL : m = 0 hay m = -1
Câu VIIa ( 1 điểm )
Ta có :
( ) ( )
2 2
a bz cz a bz cz+ + + +
= a
2
+ b
2
+ c
2
– ab – bc – ca
=
1
2
(2a
2
+ 2b
2
+2 c
2
–2 ab – 2bc – 2ca)
=
( ) ( ) ( )
2 2 2
1
2
a b b c c a
− + − + −
≥
0(ĐPCM)
Dấu “ =” xảy ra khi a = b = c
Câu VIb ( 2 điểm )
1)Gọi I thỏa :
2 2 2 0IA IB IC I D− + − + =
uur uur uur uur r
( )
5 ; 6 ; 7 0x y zÛ - - - - - =
r
Ta tìm được I(5; -6 ; -7 )
Lúc đó :
2 2 2MA MB MC MD− + − +
uuur uuur uuuur uuuur
=MI
2 2 2MA MB MC MD− + − +
uuur uuur uuuur uuuur
ngắn nhất
⇔
đoạn
MI ngắn nhất khi
( )
I
P
M hc=
Phương trình chính tắc của d qua I và d vuông
góc với (P) :
5 6
7
2 3
x y
z
− +
= = +
M=(P)
I
d
Þ
M(9;0;-5)
2)Đường thẳngAB ,AC lần lượt có các Vectơ
đơn vò :
1
4 3
;
5 5
AB
e
AB
= =
÷
uuur
ur
uuur
,
2
12 5
;
13 13
AC
e
AC
= =
÷
uuur
uur
uuur
Phương trình đường phân giác ngoài của góc A
0,25
0,25
0,25
0,25
0,25
0,25
0,25
0,25
0,25
0,25
0,25
0,25
0,25
0,25
điểm của đoạn MK
Đường thẳng d3 đối xứng với đường
thẳng d2 qua đường thẳng d1
2 2 2 3
2 5 5
1 ;7 ;
3 3 3
K t t t d
ỉ ư
÷
ç
Þ + - - Ỵ
÷
ç
÷
ç
è ø
KL: ptts của dường thẳng d
3
đối xứng với d
2
qua d
1
có dạng:
1 2 , 7 5 , 5x t y t z t
= + = − = −
2)Nghiệm của hệ là số giao điểm của
Xét hàm số
( )
( )
3 2
3 3 ln 2 2f t t t t t= + - + - +
trên R
Ta có :
( )
2
' 2
2
3 2 0,
2 2
t
f x t t R
t t
= + + > " Ỵ
- +
Xét hàm số g(t) = t trên R và g
’
(t)=1 >0,
∀
t
∈
R
Hàm f(t) và hàm g(t) cùng đồng biến trên
R
x
≤
y
Þ
f(x)
≤
f(y)
Þ
g(y)
≤
g(z)
Þ
y
≤
z
Þ
f(y)
≤
f(z)
Þ
g(z)
≤
g(x)
Þ
z
≤
x
Vậy : x = y = z = t
t là nghiệm của phương trình :
( )
3 2
2 3 ln 2 2 0t t t t+ - + - + =
(*)
Hàm số h(t) =
( )
3 2
2 3 ln 2 2t t t t+ - + - +
đồng biến trên R (vì có
( )
2
' 2
2
1 3
2 2
t
h t t
t t
= + +
- +
>0,
∀
t
∈
R) và
h(1) = 0
(*) có nghiệm duy nhất t= 1 .
KL: Hệ có nghiệm duy nhất (1;1;1)
0,25
0,25
0,25
0,25
0,25
0,25
4
D
B
A
C
S
M
N
GV: ĐINH VĂN TRÍ
có Vectơ chỉ phương :
1 2
8 14
;
65 65
e e
− = −
÷
ur uur
hay
(-4,7)
KL : Phương trình tham số của đường phân giác
ngoài của góc A là :
2 4
1 7
x t
y t
= − −
= +
( t
∈
R )
Câu VII b ( 1 điểm )
0,25
0,25
Hết
5